On the Scalability of Evolution Strategies in the Optimization of Dynamic Molecular Alignment

Ofer M. Shir Natural Computing Group, Leiden University Niels Bohrweg 1, Leiden, The Netherlands oshir@liacs.nl Thomas Bäck Natural Computing Group, Leiden University Niels Bohrweg 1, Leiden, The Netherlands baeck@liacs.nl

Marc J.J. Vrakking FOM-Institute for Atomic and Molecular Physics (AMOLF) Kruislaan 407, Amsterdam, The Netherlands vrakking@amolf.nl

ABSTRACT

We consider the numerical optimization of dynamic molecular alignment by shaped femtosecond pulses, and study the scalability of the electric field subject to optimization by Evolution Strategies. The trade-off between fine-tuning of the electric field versus the *evolutionary* optimization feasibility is investigated.

Categories and Subject Descriptors

I.2.8 [Computing Methodologies]: ARTIFICIAL INTEL-LIGENCE—Problem Solving, Control Methods, and Search

General Terms

Algorithms, Experimentation, Performance

Keywords

Scalability, Evolution Strategies, Laser Pulse Shaping

1. INTRODUCTION

The goal of our research is to optimize the *alignment* of an ensemble of diatomic molecules after the interaction with a shaped laser pulse. Here we consider the optimization of dynamic molecular alignment by a specific *derandomized* Evolution Strategy [1]. The task is defined as the calibration of the electric field, based on a low-dimensional parameterization. An important issue for this physics application is the dimensional scalability, i.e., increasing the number of variables, aiming to provide a more appropriate, fine-grained modeling approach for the problem. We question whether there exists an optimal parameterization for this problem, which allows fine-tuning of the laser pulse shaping process, but is also feasible from the optimization perspective. The role of the experimental feedback in the self-learning loop is played here by a numerical simulation [2].

The time-dependent profile of the laser pulse is described by: $E(t) = \int_{-\infty}^{\infty} A(\omega) \exp(i\phi(\omega)) \exp(i\omega t) \ d\omega$. $A(\omega)$ is a Gaussian window function describing the contribution of different frequencies to the pulse and $\phi(\omega)$, the *phase function*, equips these frequencies, which are equally distributed across the spectrum of the pulse, with different complex phases. $\phi(\omega)$ is interpolated at *n* frequencies $\{\omega_i\}_{i=1}^n$; the *n* values $\{\phi(\omega_i)\}_{i=1}^n$ are the decision parameters to be optimized. The alignment's success-rate is defined as the expectation value of the *cosine-squared* of the angle of the molecular axis with respect to the laser polarization axis.

From the numerical-technical aspect, one should keep in mind that these n decision parameters are eventually *interpolated* into $N^* = 16,384$ function values which are transformed into the electric field in the so-called *Schrödinger simulation*.

2. RESULTS AND DISCUSSION

When subject to 10,000 function evaluations, the best results were obtained for the low-dimensional parameterization, $n = \{80, 100, 120, 140\}$, forming a decreasing curve of performance as the dimensionality increases. Successful learning of the decision parameters was typically observed after $\approx 5,000$ function evaluations, and was not achieved for the high-dimensional cases. When more function evaluations were granted, the optimization routine succeeded in locating a high-quality solution even for a parameterization of n = 1,000 decision parameters.

From the algorithmic perspective, we may conclude that the derandomized ES variant in use was capable of optimizing a large number of decision parameters. However, from the *physics* perspective, such a high-resolution parameterization does not seem to pay-off, as far as the cosine-squared alignment is concerned, and there seems to be no justification for allowing more phase function values to be optimized.

Acknowledgments

This work is part of the research program FOM, financially supported by NWO.

3. REFERENCES

- A. Ostermeier, A. Gawelczyk, and N. Hansen. Step-size adaption based on non-local use of selection information. In *PPSN*, volume 866 of *Lecture Notes in Computer Science*. Springer, 1994.
- [2] F. Rosca-Pruna and M. Vrakking. Revival structures in picosecond laser-induced alignment of i2 molecules. *Journal of Chemical Physics*, 116(15):6579–6588, 2002.

^{*}NuTech Solutions, Martin-Schmeisser-Weg 15, 44227 Dortmund, Germany.

Copyright is held by the author/owner(s).

GECCO'07, July 7–11, 2007, London, England, United Kingdom. ACM 978-1-59593-697-4/07/0007.