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ABSTRACT 
Developmental systems typically produce a phenotype through a 
generative process whose outcome depends on feedback from the 
environment. In most artificial developmental systems, this 
feedback occurs in one way: The environment affects the 
development process, but the development process does not 
necessarily affect the environment. Here we explore a condition 
where both the developing system and the environment affect 
each other on a similar timescale, thus resulting in system-
environment dynamical interaction. Using a model inspired by 
termite nest construction, we demonstrate how evolution can 
exploit these system-environment dynamics to generate adaptive 
and self-repairing structure more efficiently than a purely reactive 
developmental system. Finally, we offer a metric to quantify the 
level of interaction and distinguish between reactive and 
interactive developmental systems.   

Categories and Subject Descriptors 
I.2.2 [Artificial Intelligence]: Automatic Programming 

General Terms 
Algorithms, Design 

Keywords 
System-Environment Interaction, Developmental Systems, 
System Representation 

1. INTRODUCTION 
Phenotypic form of evolved systems can be represented 

through direct encoding or through a generative process. The term 
developmental system is often used to describe a generative 
process that produces a phenotype whose form depends on 
feedback obtained from the environment during development. 
This process is markedly different from ballistic generative 
systems which produce a final phenotype without such feedback. 
While purely ballistic processes are unlikely in any realistic 

environment, they have been successful in specifying structure in 
simulation [10][20]. The advantage of developmental systems, 
however, is their ability to adapt to the environment in situ [4]. 

In this paper we aim to define and investigate a fourth level 
of phenotypic representation which is based on bi-directional 
system-environment dynamics. In most artificial developmental 
systems (e.g. Bongard), the environment affects the development 
process, but the development process does not necessarily affect 
the environment (or affects it on a timescale that is relatively 
slow) [3]. We call this a reactive developmental system. In 
contrast, when both the developing system and the environment 
affect each other on a similar timescale, the resulting system-
environment interaction leads to bi-directional dynamics that can 
be exploited by the evolutionary process. While most biological 
developmental systems may be interactive, most developmental 
systems studied in the evolutionary computation literature tend to 
be reactive. We believe that this distinction between reactive 
developmental systems and interactive developmental systems is 
critical to understanding many of the apparent complexities 
observed in biological systems, and can help generate more robust 
artificial systems as well.  
1.1 Levels of system representation 

When considering system-environment interaction one must 
be aware of the varying degrees of system-environment 
interaction and what those different levels mean. System-
environment interaction is heavily studied even outside 
developmental systems. Environmental feedback and 
evolutionary algorithms can be combined to generate adaptive 
behavior in locomotive systems [1][3][15][18][19]. Even though 
none of these works are about developmental systems they 
explore system-environment interaction and also support the use 
of evolutionary algorithms linked with environmental feedback. 

• Explicit 

The representation with the least System-Environment 
Interaction is the explicit level. Systems at this level are 
represented as blueprints and the environment has no effect in the 
final form of the system because form is pre-determined within 
their representation. 

• Ballistic 

Next we have the ballistic level, at this level the system 
develops by following a sequence of instructions without using 
any kind of feedback, affecting the environment but with no 
knowledge of how the system is affected by the environment. An 
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example of this level of system-environment interaction could be 
a system operating with an open-loop controller that takes no 
input and does not make any adjustments to it behavior. As 
generative systems they still offer advantages over conventional 
blueprints as a method of form specification since they have been 
shown capable of exploiting environment physics [20]. 

• Developmental (reactive) 

At a reactive level we have systems that use environment 
feedback during their development but because of their timescale, 
environment dynamics do not affect development. A reactive 
system would use a closed-loop controller but would act fast so 
that its development would be mostly affected by the initial state 
of the environment. Even though this controller uses feedback 
during operation it is mostly just aware of the direct effects of its 
own actions and is not aware of changes in environment dynamics 
and much less able to react to them. When the system develops on 
a timescale that is much faster than the environment dynamics, 
the system is basically not aware of these dynamics. If the 
environment is not dynamic then the reactive level is the highest 
level of system environment interaction a system can achieve in 
that environment [2][5][9][12]. At this level of system-
environment interaction the system is already able to adjust its 
developmental path to suit different environments. 

• Developmental (interactive) 

At the interactive level a system uses dynamic 
environmental feedback by developing on a timescale that allows 
the environment to react to its actions. Thus, this system is able to 
exploit the environment’s dynamics [17]. During the system’s 
developmental stage the system perturbs the environment through 
its actions and because of these perturbations the environment 
will be developing alongside the system using system feedback 
just like the system uses environmental feedback. Therefore, the 
environment dynamics can affect the behavior and development 
of the system. This parallel development allows the agent access 
to information about the environment that is simply unavailable to 
reactive systems. The interactive level is only possible to achieve 
when the timescale of the environment’s dynamics is faster or 
comparable to the timescale of the system’s development. 
Feedback Systems using the same channels of perturbation could 
potentially fall under the reactive or interactive levels of system-
environment interaction based solely on a difference in 
timescales. 

Previous work has been done comparing ballistic vs. reactive 
systems [10] although this terminology was not used. The 
experiments included in this work where designed to find what 
effect on performance occurs from using similar systems on 
different timescales, and this was done by a comparison of 
reactive vs. interactive systems. The experiments mentioned are 
all evolutionary runs using a hill climber evolutionary algorithm. 

2. SYSTEM AND ENVIRONMENT 
The environment and experiments were designed as a two-

dimensional simplification of how termites build their nests and 
the environment in which this is done. The accuracy of the model 
relating to termites is not a priority but the terminology regarding 
the physics and constraints do revolve around this concept. Our 
system is situated in an environment consisting of a two-

dimensional square grid composed of square cells. Each square 
cell has a floating-point temperature value which is represented in 
the simulation as a color (Fig.1). The temperatures are allowed to 
go beyond 0 and 100 degrees (of some arbitrary unit) however, 
the color of a cell will only show a gradient between 0 and 100 
degrees. This constant color map was chosen to ease comparison 
between results. 

 
Figure 1 - Screenshot of environment showing the initial 

conditions of matter that is referred to as the “hill” and one of 
the initials conditions for temperature.  

Aside from this floating-point temperature value, cells in these 
simulations also have a binary matter state. A cell can either be 
empty for matter state 0 or solid for matter state 1. In the display, 
solid cells have a black outline. The main difference between the 
matter states is that solid cells absorb sunrays (which results in an 
increase in temperature) while the empty cells will not. The other 
difference lies in their heat conduction and heat capacitance 
properties. In both cases the solid cells have a higher value. 
Figure 1 shows the starting conditions of solid and empty cells 
and one of the three starting conditions for temperature. A hill 
shape was chosen so that different initial conditions for 
temperature would result from each of the sunray angles. 

 
Figure 2 - Shading pattern that would result from a T-shaped 

structure and a sun angle of 45 degrees (as in test 3). 

The “sunrays” mentioned earlier refer to a part of the 
simulation where vector rays originating for the top of the 
environment and descending in parallel at a specified angle until 
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they collide with a solid cell (Figure 2). This causes the cell’s 
temperature to rise by a fixed amount. There is a constant 
temperature boundary condition placed on the top and bottom 
rows of cells. These rows act as heat sinks to the solar input so 
that steady state is achieved within our defined temperature color 
scale. This defines the environment for the system. The system 
used for these experiments executes an action each time step. The 
action taken by the system follows the rule defined by its genome 
as shown in Figure 3. 

 
Figure 3 - Breakdown of system genome. First two genes 
represent the conditions and the last 3 genes specify the 

action. 

In each time step the system scans only the empty cells that 
are adjacent to at least one solid cell to find a location in the 
environment that best matches its first two genes for mean 
temperature and mean density. Once a location is selected the 
action is taken according to the last 3 genes. The first action gene 
specifies whether the system builds or digs (action, 1 or 0). The 
next gene specifies the direction of the building or digging (angle, 
0 to 360). The system is not allowed to build on a solid block or 
dig an empty spot (waste of a turn), so a built-in safety has the 
system rotate until it finds a suitable cell for its action (for 
example, an empty cell for building). The direction of this 
rotation is specified by the last gene (Direction, -1 or 1). 

The system in these experiments, as envisioned originally, 
represented termites. The systems actions reflected termites 
working on the surface of the soil (hence the constraint of 
scanning empty cells adjacent to a solid one). This however, 
presents a problem of disembodiment since the termites are not 
physically represented in the simulation. Further thought lead to 
the conclusion that the system is not just the termites but the 
whole nest. The soil and termites together create a termite/nest 
system which is indeed what is developing here. Once this point 
is made, the concepts fit better together as the genotype which 
from a different point of view seems to dictate behavior and not 
development, does indeed dictate the development of the nest. In 
Emerson’s introduction to his work he makes the observation that 
a termite nest is the physical representation of termite behavior 
[6]. Thus the genotype to phenotype connection of our system can 
be said to be inspired by the connection between termite behavior 
and the structure of the nest. That leads to a comparison between 
the way our system develops and interacts with our environment 
and the way a termite/nest system develops and interacts with our 
environment. And just as the environment can affect the 
development of a termite nest [8] our environment can also affect 
the development of our system. 

Therefore, our system can also be seen as a growing or 
shrinking solid mass with reacts to the environment by expanding 
or receding in certain spots of its surface. Thus our system is 
indeed embodied and is interacting with the environment. 

 
Figure 4 – Example for progression of test 1 on an interactive 
system. Notice the cell temperatures are being updated as the 

system builds. 
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3. EXPERIMENTS 
The goal of our experiments was to find out how interactive 

systems would perform a given task in comparison to reactive 
systems. The task given to both systems was to have the 
temperature value of all cells be as close as possible to a certain 
value. As the system can only directly affect the matter states of 
the cells then the task is really to build a structure such that the 
dynamics of the environment cause all cells to be as close as 
possible to the target temperature. Fitness was calculated as one 
divided by the sum of differences between each cell’s temperature 
and the target temperature. As a test for robustness, the final 
fitness appointed to a system was the average fitness of 3 different 
tests. The only difference between each test condition was the 
solar radiation angle. Figure 5 shows the corresponding solar 
angle for each test. 

 
Figure 5 – Solar angle for each of the three tests and their 
green-square patterns as shown in the top of the display. 

Each test begins with the environment in steady state 
according to a chosen tolerance as seen in the first frame of figure 
4. In each test the systems are allowed 128 steps to create a 
structure. At the end of the test the system is allowed to reach 
steady state and then the fitness for that test is measured. 

The difference between the reactive and interactive systems 
is that for the reactive system tests the environment does not 
update between steps while for the interactive systems the 
environment is allowed to reach steady state. 

4. RESULTS 
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Figure 6 – Results averaged from 16 runs, error bars 

included. T-test significance = 0.0269 

The main results of this work are shown in figure 6. Systems 
with an Interactive Level of system-environment interaction are 
indeed able to achieve a higher fitness performance when 
compared to reactive systems. 

Taking a closer look at each of the 16 run’s best individuals 
for each system gives further insight into what solutions the 
evolution was finding and what genotypes performed the best. 
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Figure 7 – Evolved Genotypes for Reactive Systems. 

When reading Figures 7 and 8 note that each point or 
individual needs to express six dimensions of data (five genes 
plus the fitness value). 
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Figure 8 – Evolved Genotypes for Interactive Systems. 

The first 2 dimensions are shown as the x and y coordinates 
on the graph. These correspond to the temperature and density 
sensor genes respectively. The next dimension shown corresponds 
to the binary action gene that indicates whether the system builds 
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or digs. A cross symbol indicates a builder system and a circle 
symbol is an excavator. The angle and direction genes are 
displayed as the line extending out of the center towards the angle 
that the action was to be taken at the little knob at the tip showing 
whether it was a clockwise or counter-clockwise rotation. The 
final dimension is the fitness and it is shown by color. The same 
color gradient as the temperatures is shown with the highest 
fitness being red and the lowest being black. 

In both figures 7 and 8, a strong correlation can be observed 
between fitness and the first three genes. Note how the best 
fitness values correspond to systems in the lower left corner of the 
plots and they are always builders. The digging systems where 
never able to evolve into high fitness and also do not show any 
preferred region in the sensor landscape. The angle and direction 
genes have no visible pattern. Therefore these genes must not 
have had a large effect on the structures being built. The main 
difference noted between the two graphs is that the interactive 
systems tended to have higher fitness (shown by the redness of 
their dots), so even though similar system genomes where 
evolved, in the case of the interactive systems better structures 
where being built. 

Another question explored was regarding the performance of 
the systems in each individual test. In Figure 9 it can be seen that 
the performance in test one was always significantly lower than 
the performance in the two other tests. Was the system neglecting 
performance in test one to focus on tests two and three? To 
answer that question new experiments were run. 
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Figure 9 - Breakdown of results by test. 

 
In order to explain these new experiments some new 

terminology needs to be introduced. These new experiments were 
evolutionary runs that focused on only one of the three tests at a 
time. So six new experiments where run, three tests for two kinds 
of systems. In the original experiments the systems where trying 
to optimize for all tests, while these new ones only focus on one 
test each. Thus, the new systems are called specialists and the 
originals are called generalists. Figure 10 shows an overlay of the 
originals systems over the specialists. 
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Figure 10 - Comparison of Generalists vs. Specialist.  

Showing tests 1, 2, and 3 from left to right. 

The main take-away point from this graph is that even the 
specialist systems were not able to evolve good systems for test 1. 
Also note that for the specialist cases the reactive systems were 
better at evolving test 2 and 3, but for the generalist case the 
interactive system was able to make systems that where better in 
all three tests. The point here is that interactive systems have a 
performance increase when robustness is needed, but not 
necessarily when only a single problem/task needs to be solved. 
However, the motivation behind most research on systems 
powered by evolutionary algorithms is to seek automated 
adaptation in order to increase system robustness [11][23].  

5. SYSTEM SELF-REPAIR 
One of the main advantages of interactive developmental 

systems is that automated repair can be just part of the 
representation and execution of the system. In our case, the 
system simply determines where an action needs to be taken at the 
moment when it will be taken. If you remove some of the 
previously built structure the system will simply rebuild if its 
rules determine that this empty space is the best spot to build. 

  
Figure 11 – Frames of test showing Self-repair 
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A designer would probably be tempted to include some sort 
of damage triggers and sequences that could be included among 
the rules of the systems to better allow a system to promptly fix 
damage, but in time with a better understanding of system-
environment interaction we might end up realizing that it is not 
necessary to explicitly implement hard triggers and sequenced 
protocols, as these aspects of behavior will be implicitly 
evolvable. The following figure shows the self-repair capabilities 
of one of our evolved genomes. 

Notice that the system rebuilds the part of the structure 
damaged at step 192. It does not rebuild exactly the same thing 
but the resulting structure serves the same purpose. This is 
reminiscent of regeneration in biological systems where a fully 
developed organism can replace lost parts [22]. Note that this 
system was not evolved for self-repair. The self-repair test was 
simply run on one of our previously evolved systems.  

6. INTERACTIVE DYNAMICS INDEX 
The relation of timescales between the system and the 

environment is what determines whether a system is reactive or 
interactive. Because there is a continuous scale from a fully 
reactive system to a fully interactive system a metric needs to be 
defined in order to categorize these systems as reactive or 
interactive.  

A fully reactive system is a system that develops in a 
relatively static environment, meaning that the system 
development is instantaneous and from the systems’ point of view 
the environment is indeed static. On the opposite end of the 
spectrum are fully interactive systems. These systems are 
constantly developing in an environment that is in steady-state. 
This means system development is so slow that after each system 
step the environment reaches steady-state before the system takes 
the sensor input for the next step. 

An interactive dynamics index (IDI) is proposed that goes 
from zero to one. Fully reactive systems are considered 
completely non-interactive so they correspond to zero dynamic 
interactivity, while fully interactive systems would have an index 
value of one. In practical real-world systems it is impossible to 
devise a system with exactly zero or one dynamic interactivity 
due to the required speed of development being infinitely fast or 
slow, respectively. However, one must be able to determine if a 
given system is reactive or interactive. Where is the midpoint or 
system response time boundary where a system changes from 
being reactive to interactive? 

By specifying an environment steady-state tolerance one is 
able to experimentally find a system response time where the 
system allows the environment to reach steady-state according to 
that tolerance, call this Tss. Then, we consider a system as 
interactive if its response time is one-quarter or greater this value. 

If this value is called Tb and then a plot of equation 1 is 
made, one will note that the system response time of Tb on the y-
axis will correspond to an IDI value equal 0.5 on the x-axis. 

-log2(1-t)*Tb (equation  1) 
Figure 12 plots response times on the y-axis from zero to 

infinity (fully reactive to fully interactive) against the Interactive 

Dynamic Index on the x-axis from 0 to 1 while at the same time 
having the boundary condition at 0.5 IDI (the midpoint). 

The reason for finding Tss first is that it is simple and feasible 
to find the response time for what would be an experimentally 
fully interactive system according to a specified tolerance. And 
the reason for choosing a factor of 4 between Tb and Tss, besides 
being a nice low square number, is that when placing Tb at the 
midpoint of the IDI then Tss will be just over 90% fully interactive 
(93.75%). This index was devised to facilitate future experiments 
concerning effects of different degrees of dynamic interactivity. 

 
Figure 12 - Interactive Dynamics Index example plot. 

7. CONCLUSION 
Earlier we spoke about the different levels of system 

representation. Previous work by Rieffel and Pollack was 
mentioned that showed advantages of ballistic systems (term 
coined by Rieffel) over explicit systems (represented by 
blueprints) [20]. There is also previous work such as Hornby’s 
tables that shows developmental systems (reactive) being 
advantageous when compared with ballistic systems [10]. 
Furthermore now a distinction has been made within 
developmental systems and two new levels of system 
representation have been created due to their different levels of 
system-environment interaction. Noting the correlation made 
several times in the past between increased system-environment 
interaction and performance, we set out to compare the Reactive 
and Interactive systems. 

We have shown that systems evolved using an interactive 
level of system-environment interaction where able to build more 
functional structures over different environmental conditions. 
This shows more robust behavior. Increased adaptability is very 
important when designing systems that will need to build 
structures in unforeseen environments or if one knows that the 
system is going need to perform it’s duties over a wide range of 
environmental conditions. When working with developmental 
systems it is important to pay attention to the level of system-
environment interaction present, especially to identify the role 
that the environment plays in the development of the system. In 
biology the important role of the environment in the development 
of an organism is yet to become widely recognized [13]. 

The importance of looking closely at the system-
environment interaction in systems that we work with goes 
beyond just achieving better performance and adaptability, it is 
also about having a better understanding of the behavior of our 
experimental system and seeing the importance of the role that the 
environment plays in system development. 
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8. FUTURE WORK 
We will further explore the performance of reactive vs. 

interactive systems using different degrees of dynamic 
interactivity to find out if there is a noticeable threshold where the 
behavior changes from reactive to interactive. These experiments 
would result in an updated and validated Interactive Dynamics 
Index. Also, since the simple setup used for these experiments is 
able to show self-repair even when it wasn’t even evolved for it, 
more work exploring the self-repair capabilities of an interactive 
system must be explored.  

There is also potential in combining these self-repair 
capabilities with 3D printing technologies. Work is already being 
done in printing functional components with solid freeform 
fabrication using computer 3D models as blueprints [16]. With the 
addition of mobility this technology could eventually become the 
platform for robots that build the first structures using Functional 
Blueprints [7]. Already real-life reactive developmental systems 
have been built [21] so interactive systems is the next logical 
step.It would be of great interest to design interactive 
developmental systems tasked with solving real-world 
engineering problems starting in areas where evolutionary 
algorithms are being used for design already. There is great 
potential in the work done involving designing real-world systems 
[3][14].  
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