
Expensive Optimization, Uncertain Environment:
An EA-Based Solution

Maumita Bhattacharya
SOBIT, Charles Sturt University

Australia - 2640

maumita.bhattacharya@ieee.org

ABSTRACT
Real life optimization problems often require finding optimal
solution to complex high dimensional, multimodal problems
involving computationally very expensive fitness function
evaluations. Use of any population based iterative technique such
as evolutionary algorithm in such problem domains is thus
practically prohibitive. A feasible alternative is to build surrogates
or use an approximation of the actual fitness functions to be
evaluated. Naturally these surrogate or meta models are order of
magnitude cheaper to evaluate compared to the actual function
evaluation. This paper presents two evolutionary algorithm
frameworks which involve surrogate based fitness function
evaluation. The first framework, namely the Dynamic
Approximate Fitness based Hybrid EA (DAFHEA) model [1]
reduces computation time by controlled use of meta-models (in
this case approximate model generated by Support Vector
Machine regression) to partially replace the actual function
evaluation by approximate function evaluation. However, the
underlying assumption in DAFHEA is that the training samples
for the meta-model are generated from a single uniform model.
This does not take into account problem domains involving
uncertain environment. The second model, DAFHEA-II, an
enhanced version of the original DAFHEA framework,
incorporates a multiple-model based learning approach for the
support vector machine approximator to handle uncertain
environment [2]. Empirical evaluation results have been presented
based on application of the frameworks to commonly used
benchmark functions.

Categories and Subject Descriptors
 Computing Methodologies [I.2 Artificial Intelligence]: I.2.8
Problem Solving, Control Methods, and Search.

General Terms
Algorithms, Design, Performance.

Keywords
Premature convergence, evolutionary algorithm, approximation.

1. INTRODUCTION AND BACKGROUND
The optimization of complex, high dimensional, multimodal
problems often poses a problem which in fact depends on the
structure inherent in the problems. Examples of such problem
domains include large-scale finite element analysis (FEA),
computational fluid dynamics (CFD), engineering design
problems etc. For example, optimization problems involving
engineering design are often characterized by features that make
them highly computationally expensive to be solved by
evolutionary algorithms or even other standard nonlinear
optimization techniques. One of the most critical of these features
is that the functions used to define such optimization problems are
often computationally intensive. In engineering design
optimization problem domains, a design can be represented by a
number of continuous design parameters and the potential
solutions are vectors in a multidimensional vector space [11].
Determining the fitness of these potential solutions generally
involve some form of simulation to compute the relevant physical
properties of the object represented by the solution vector and
consolidate them into a single measure of merit, including the
information on the status of the constraints if necessary. In such
problems, the run-time for a single function evaluation could be in
the range from a fraction of a second to hours of supercomputer
time. The computational expense of evaluating the functions that
define the problem would necessarily be incurred for each
iteration, within any iterative optimization algorithm and in a
population-based search algorithm like EA, for the entire
population or part of the population, as is required, in each
iteration. Considering such prohibitive computational costs, a
feasible alternative is to build approximate models, within an
optimization context, since these approximate models are order of
magnitude cheaper to run compared to the actual function
evaluations [14,17,18]. Many regression and interpolation tools
could be used to construct such meta models, (e.g. least square
regression, back propagating artificial neural network, response
surface models, etc.) which provide less accurate, but more
efficient (in terms of computational cost) measures of the merit of
the fitness functions.

However, it can not be denied that accuracy of the result is a
major risk involved in using meta-models to replace actual
function evaluation [24, 12, 13, and 11]. When it is infeasible to
precisely judge when, where and how much of such replacement
is optimal, using a controlled approach holds the answer.

The use of approximate model to speed up optimization dates all
the way back to the sixties [1]. The most widely used models
being Response Surface Methodology [15], Krieging models [20]
and artificial neural network models [3]. The concepts of using
approximate model vary in levels of approximation (Problem

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-698-1/07/0007...$5.00.

2407

approximation, Functional approximation, and Evolutionary
approximation), model incorporation mechanism and model
management techniques [11].

In the multidisciplinary optimization (MDO) community,
primarily response surface analysis and polynomial fitting
techniques are used to build the approximate models [9, 24].
These models work well when single point traditional gradient-
based optimization methods are used. However, they are not well
suited for high dimensional multimodal problems as they
generally carry out approximation using simple quadratic models.

In another approach, multilevel search strategies are developed
using special relationship between the approximate and the actual
model. An interesting class of such models focuses on having
many islands using low accuracy/cheap evaluation models with
small number of finite elements that progressively propagate
individuals to fewer islands using more accurate/expensive
evaluations [26]. As is observed in [11], this approach may suffer
from lower complexity/cheap islands having false optima whose
fitness values are higher than those in the higher
complexity/expensive islands. Rasheed et al. in [17, 18], uses a
method of maintaining a large sample of points divided into
clusters. Least square quadratic approximations are periodically
formed of the entire sample as well as the big clusters. Problem of
unevaluable points was taken into account as a design aspect.
However, it is only logical to accept that true evaluation should be
used along with approximation for reliable results in most
practical situations. Another approach using population clustering
is that of fitness imitation [11]. Here, the population is clustered
into several groups and true evaluation is done only for the cluster
representative [14]. The fitness value of other members of the
same cluster is estimated by a distance measure. The method may
be too simplistic to be reliable, where the population landscape is
a complex, multimodal one.

Jin et al. in [12, 13] analysed the convergence property of
approximate fitness based evolutionary algorithm. It has been
observed that incorrect convergence can occur due to false optima
introduced by the approximate model. Two controlled evolution
strategies have been introduced. In this approach, new solutions
(offspring) can be (pre)-evaluated by the model. The (pre)-
evaluation can be used to indicate promising solutions. It is not
clear however, how to decide on the optimal fraction of the new
individuals for which true evaluation should be done [4]. In an
alternative approach, the optimum is first searched on the model.
The obtained optimum is then evaluated on the objective function
and added to the training data of the model [19, 23, and 4]. Yet in
another approach as proposed in [12], a regularization technique
is used to eliminate false minima.

It is obvious that incorporation of approximate models may be
one of the most promising approaches to realistically use EA to
solve complex real life optimization problems, especially where:
(i). Fitness computation is highly time-consuming, (ii). Explicit
model for fitness computation is absent, (iii). Environment of the
evolutionary algorithm is noisy etc. However, considering the
obvious risk involved in such approach, an EA with efficient
control strategy for the approximate model and robust
performance is welcome.

While dealing with complex real world optimization problems,
expensive function evaluations can be feasibly used only in a

limited manner. Research on using surrogate models should focus
on:

1) Minimizing uncertainty in approximate estimation
2) Employing corrective measures
3) Exploring ways to exploit the approximate knowledge for

improving the optimization technique
The hybrid evolutionary algorithm framework, DAFHEA
(dynamic approximate fitness based hybrid evolutionary
algorithm) addresses some of the above issues [1]. DAFHEA
replaces expensive function evaluation by its support vector
machine (SVM) approximation. The concept of merit function
[23] is borrowed to maintain diversity in the solution space using
approximate knowledge. However, the assumption used in the
original DAFHEA is that the training samples for the meta-model
are generated from a single uniform model. This does not cover
situations, where information from variable input dimensions and
noisy data is involved. DAFHEA-II attempts to correct this by
using a multi-model regression approach. The multiple models are
estimated by successive application of the SVM regression
algorithm. Retraining of the model is done in a periodic fashion.

The original DAFHEA framework is similar to other existing
models in that it uses an approximation model to partially replace
expensive fitness evaluation in evolutionary algorithm. An
explicit control strategy (a cluster-based on-line learning
technique) to improve reliability of using such approximate
models to reduce expensive function evaluations was introduced.
Also the approximate knowledge thus generated is exploited to
avoid premature convergence (one of the major impediments of
using evolutionary algorithm to solve complex real life
optimization problems). However, the major constraint associated
with DAFHEA is that it treats the solution space as one
comprising of information coming from a uniform model.
Situations like model formation involving variable input
dimensions and noisy data certainly can not be covered by this
assumption. DAFHEA-II addresses this issue by using a multiple
model regression approach for the SVM approximator.

The rest of the paper is arranged as follows: Section 2 presents the
basic frameworks of DAFHEA and DAFHEA-II (the enhanced
version of DAFHEA). Experiment details and simulation results
are presented in Section 3. Finally conclusions are drawn in
Section 4.

2. THE PROPOSED FRAMEWORKS
The proposed DAFHEA framework includes a global model of
genetic algorithm (GA), hybridised with support vector machine
(SVM) as the approximation tool. Expensive fitness evaluation of
individuals as required in traditional evolutionary algorithm is
partially replaced by a SVM approximation (regression) model.
Explicit control strategies are used for evolution control, leading
to considerable speedup without compromising heavily on
solution accuracy. Also the approximate knowledge about the
solution space generated is used to maintain population diversity
to avoid premature convergence.

While approximation is not a new idea in accelerating iterative
optimization process, DAFHEA focuses on controlled speedup to
avoid detrimental effects of approximation and also exploiting
approximate knowledge to improve optimization solution. The

2408

following section presents the basic algorithm structure of
DAFHEA.

2.1 Algorithm Structure of DAFHEA
Step One: Create a random population of cN individuals, where,

ac NN *5= and =aN actual initial population size.

Step Two: Evaluate cN individual using actual expensive
function evaluation. Build the SVM approximate model using
normalised expensive function evaluation values as training set
for off-line training. (Use of normalised values in the training set
appears to improve performance of meta model, reducing effects
of unnaturally high or low values). SVM hyper-parameters are
initially tuned based on this training set.

Step Three: Select aN best individual out of cN evaluated
individuals to form the initial GA population.

Remarks: The idea behind using five times the actual EA
population size (as explained in Step One) is to make the
approximation model sufficiently representative at least initially.
Since initial EA population is formed with aN best individuals out

of these cN individuals, with high recombination and low
mutation rates, the EA population in first few generations is
unlikely to drift much from its initial locality. Thus it is expected
that large number of samples used in building the approximation
model will facilitate better performance at this stage. Also using
the higher fitness individuals, chosen out of a larger set should
give an initial boost to the evolutionary process.

Step Four: Select parents using suitable selection operator and
apply genetic operators namely recombination and mutation to
create new generation.

Step Five: Use SVM approximation model to compute fitness of
new generation individuals based on approximate evaluation.
Form m distance-based (considering spatial distribution of
individuals) clusters in the new population space. If for some n
clusters, the standard deviation ≥σ Predefined Threshold,
rearrange solution space into nm + clusters. Compute a merit
function)(xf m as below:

ijdixafxmf 21)()(ρσρ −−= - is3ρ (1)

where,)(xfa is the predicted fitness function value. iσ is

standard deviation (in terms of objective value) for the thi cluster

and ijd is the normalized minimum Euclidean distance of thj

point of thi cluster from the all truly evaluated points so far [5].

is is the sparseness of the thi cluster. 1ρ , 2ρ and 3ρ are

scaling factors for iσ , ijd and is respectively.

individualofDimension
iclusterinsindividualfoNosi = (2)

Step Six: Dynamically update the approximate model as below:

1) Identify the cluster containing the optimum based on
approximation.

2) Perform expensive evaluation for the approximate optimum
and its −k nearest neighbours. Also perform expensive
evaluation for the centroid of all other data clusters and their
−k nearest neighbours. Expand neighbourhood for true

evaluation until a point is found in each space dimension
such that % error ≤δ Predefined threshold. Here,

100×
−

=
it

ipit

a
aa

δ (3)

where, ita =True value of the thi neighbour and ipa =Predicted

value of the thi neighbour and max ki = .

3) Add the newly evaluated points to approximate model
training set to update model.

Step Seven: When termination/evolution control criteria are not
met, repeat Step Four to Step Seven.

It must be noted, the optimum is considered based on the original
predicted value)(xfa . For all other purposes fitness based on

the merit function)(xfm is considered. Periodic parameter
tuning of the SVM approximation model was incorporated,
though no specific criterion was used.

The following section presents the enhanced DAFHEA or
DAFHEA-II framework that incorporates the enhancement to
tackle situations where the inputs to the meta model generation
tools are generated by different models.

2.2 Algorithm Structure of Enhanced
DAFHEA
As in the original DAFHEA framework, DAFHEA-II [Figure 1]
includes a global model of genetic algorithm (GA), hybridised
with support vector machine (SVM) as the approximation tool.
Expensive fitness evaluation of individuals as required in
traditional evolutionary algorithm is partially replaced by SVM
approximation (regression) models. Evolution control is
implemented by periodic expensive evaluations, leading to
considerable speedup without compromising heavily on solution
accuracy. Also the approximate knowledge about the solution
space generated is used to maintain population diversity to avoid
premature convergence.

DAFHEA-II is specifically suited for applications involving
information that could be considered generated by more than one
model. As in original DAFHEA, this framework also focuses on
controlled speedup to avoid detrimental effects of approximation
and exploiting approximate knowledge to improve optimization
solution. The following section presents the basic algorithm
structure of DAFHEA-II.

The proposed DAFHEA-II framework is introduced in the context
of unconstrained optimization problems. Figure (1) schematically
presents the algorithm.

/* The basic algorithm for the DAFHEA-II
framework */

Procedure DAFHEA_II

2409

{
 {

 initialize population matrix, 0g =en

 and set βα ,

 call actual function evaluation
 call Procedure train_SVM to generate
 approximation models
 while (α<gen)

 {

 1+= gengen

 rank solutions based on
 fitness
 retain actual elite
 apply crossover and mutation
 to generate offspring

 call Procedure predict_SVM to

 approximate the fitness of the

 offspring
 retain approximate elite

 if (0mod =βgen) then

 {
 call actual function

 evaluation

 call Procedure train_SVM

 }
 }
 rank solutions based on

 fitness

 get the best solution

 }
/* This procedure estimates multiple models
from the training data set */

Procedure train_SVM

{
 initialize data set=population in
 current generation with fitness
 resulting from actual evaluation

 while (!stopping criterion)

 {
/* Estimate the dominant model describing
majority of the candidates in data set */

 apply robust regression to data set

/* Partition the available data */

 {
 analyse available data to separate

 others from majority based on their

 distance from the dominant model
remove subset of data generated by
the dominant model from the data set

 }
 }
}
/* This procedure selects the most likely
model for each member of the population to
find its corresponding estimate */

Procedure predict_SVM

{
 while (population member)

 {
 determine appropriate model for the

 given test sample),(yz x= using a

 distance measure from each model

 }
}
}

Figure 1. DAFHEA-II framework.
In the above framework (see Figure 1) α is the number of
predetermined generations and β is the predetermined retraining
frequency.

2.2.1 Implementation of DAFHEA-II Framework
Step One: Create a random population of cN individuals, where,

ac NN *5= and =aN actual initial population size.

Step Two: Evaluate cN individual using actual expensive
function evaluation. Build the SVM approximate models using
the candidate solutions as input and the actual fitness (expensive
function evaluation values) as targets forming the training set for
off-line training. Details of the Multiple Model Formation
technique is described in Section IV.

Step Three: Select aN best individual out of cN evaluated
individuals to form the initial GA population.

Remarks: The idea behind using five times the actual EA
population size (as explained in Step One) is to make the
approximation model sufficiently representative at least initially.
Since initial EA population is formed with aN best individuals

out of these cN individuals, with high recombination and low
mutation rates, the EA population in first few generations is
unlikely to drift much from its initial locality. Thus it is expected
that large number of samples used in building the approximation
model will facilitate better performance at this stage. Also using
the higher fitness individuals, chosen out of a larger set should
give an initial boost to the evolutionary process.

Step Four: Rank the candidate solutions based on their fitness
value.

Step Five: Preserve the elite by carrying over the best candidate
solution to the next generation.

2410

Step Six: Select parents using suitable selection operator and
apply genetic operators namely recombination and mutation to
create children (new candidate solutions) for the next generation.

Step Seven: The SVM regression models created in Step two are
applied to estimate the fitness of the children (new candidate
solutions) created in Step six. This involves assignment of most
likely or appropriate models to each candidate solution.

Step Eight: The set of newly created candidate solutions is ranked
based on their approximate fitness values.

Step Nine: The best performing newly created candidate solution
and the elite selected in Step five are carried to the population of
the next generation.

 Step Ten: New candidate solutions or children are created as
described in Step six.

Step Eleven: Repeat Step seven to Step ten until either of the
following condition is reached:

i. The predetermined maximum number of generations has
been reached; or

ii. The periodic retraining of the SVM regression models is due.

Step Twelve: If the periodic retraining of the SVM regression
models is due, this will involve actual evaluation of the candidate
solutions in the current population. Based on this training data
new regression models are formed. The algorithm then proceeds
to execute Step four to Step eleven.

Remarks: The idea behind using periodic retraining of the SVM
regression models is to ensure that the models continue to be
representatives of the progressive search areas in the solution
space.

2.2.1.1 Single Approximation Model Formation with
SVM Regression
The theoretical background of support vector machine is mainly
inspired from statistical learning theory [25]. Major advantages of
the support vector machines over other machine learning models
such as neural networks, are that there is no local minima during
learning and the generalization error does not depend on the
dimension of the space. Also the fast learning ability of the SVM
regression [21, 22] model is a desirable property for on-line
learning. In DAFHEA (both original and enhanced versions), as
the approximation model has to be rebuilt frequently to be
representative of the progressing solution space, this is an
important criterion for model selection.

Let us consider the problem of approximating the set of data,

() (){ }ll yxyxD ,,...,, 11= (4)
with a linear function,

() bf += xwx . , RbRn ∈∈ ,,xw (5)
The construction of a model is reduced to the minimization of the
following regularized ε -insensitive loss function:

(){ }∑
=

−−+=
l

i
ii fy

l
CL

1

2 max1. εxw (6)

where ε is the tolerable error, C is a pre-specified
regularization constant and f is the function to be estimated.

The minimization of (6) is equivalent to the following constrained
optimization problem, giving the optimal regression function as:

min ()∑
=

+⋅+
l

i
iil

C
1

*2 1
2
1 ξξw (7)

subject to ()() iii yb ξε +≤−+⋅ xw (8)

()() *. iii by ξε +≤+− xw (9)

0, * ≥ii ξξ , li ,...,1= (10)
where iξ and *

iξ are slack variables representing upper and
lower constraints on the output of the system.

Thus, quadratic-programming techniques can be applied to solve
the minimization problem.

In the enhanced version of DAFHEA (DAFHEA-II), a multiple
model regression approach is used. The technique used closely
follows the approach described in [5].

2.2.1.2 Multiple Model Regression Technique
The multiple model regression involves the following two stages:

i. The training/learning phase, involving creation of the
models based on training data.

ii. The prediction phase, involving assignment of the most
likely model to each candidate data and estimation of
improved response using the selected model.

2.2.1.2.1 The Training/Learning Phase
Let us consider a finite number of samples or training data

),...,1(),,(niyii =x
[5]. The learning involves two

objectives:

(a) to estimate N target models from a set of possible models:

),...1,(),,(Nmf mmmm =Ε∈ωωx (11)
Where mΕ is a parametric space for model m. Each model
estimate approximates the corresponding target

model
)(),(* xx mmm trf →ω

.

(b) to partition available training data set into N subsets, where
each subset belong to an appropriate model. The input (x) and/or
output (y) space will be thus partitioned into N disjoint regions.

It is clear from the above discussion that the creation of multiple
models here can be viewed as a generalization of the traditional
single-model estimation. Traditional regression is applied to
estimate appropriate regression-like models in a progressive

2411

manner while partitioning the data set into subsets at the same
time.

2.2.1.2.2 The Prediction Phase
Using a single model approach, estimating a response ŷ for a

given test input x , simply amounts to deducing),(ˆ *ωxfy = ,

where),(*ωxf is a model predetermined based on the
training data. In case of multiple model estimation, first an
appropriate model has to be selected for the test input x and then

the response ŷ can be computed as),(ˆ *ωxcfy = , where

),(*ωxcf is the specifically chosen model for x . However,
it is not possible to select a model using x alone, as there may be
overlapping of input domains for different models. Thus, selection
of model should be based on the),(yx values of the test data as

described in [5]. For a given sample of test data),(yz x=

generated by an unknown model u and a set of models estimated
during training stage:

),...1(),,(* NiXf iii =∈xx ω (12)

to determine the appropriate or most likely model the distance
between the test sample and each of the models in (12), has to be
computed. Each model in (12) is defined as a region in the input
(x) space and the mapping yfc →x: in this region.
Therefore, the distance may be defined in the input (x) space or in
the y-space, or some combination of the two.

2.2.1.3 Use of Approximate Knowledge to Curb
Premature Convergence
Please see [1] for details.

3. EXPERIMENTS

3.1 Method Used for Result Comparison
For comparison purposes we have used the results reported in
[27]. Won et al. in [27] presents a population-based, stochastic,
zero order, elite preserving algorithm that uses approximate
function evaluation in lieu of actual function evaluations. Details
of the method are given in [27]. Performances of DAFHEA and
DAFHEA-II have been evaluated against that of Canonical GA
and the proposed method of Won et al. as reported in [27].

3.2 Test Details and Discussions
The performance of the proposed algorithms is tested on five
popular benchmark test functions (see Table 1): namely,
Spherical, Rosenbrock, Rastrigin, Schwefel and Ellipsoidal.
These benchmark functions in the test suit are scalable and are
commonly used to assess the performance of optimization
algorithms. For all five functions except Rosenbrock the global

minimum is () 0=xf at{ } 0=n
ix . Rosenbrock has a global

minimum of () 0=xf at{ } 1=n
ix .

All simulations were carried out using the following assumptions:
The population size of n10 was used for all the simulations,
where n is the number of variables for the problem; for
comparison purposes three sets of input dimensions are
considered; namely, 10,5=n and 20. For all three cases,
tenfold validation was done with the number of generations being
1000; the SVM regression models were trained with five times the
real GA population size initially and all the simulation processes

were executed using a Pentium
®

4, 2.4GHz CPU processor.
Tables 2, 3 and 4 show the comparative statistics of the various
simulations runs using canonical GA model which uses only
actual function evaluations and the proposed DAFHEA and
DAFHEA-II models which use actual function evaluations
sparingly. We report the results for the 5-D (dimension), 10-D
(dimension) and 20-D (dimension) scenarios. The reported results
were obtained by achieving same level of tolerance for both
canonical GA and the proposed models. For comparison purpose,
results reported in [27] were considered (see Table 2, 3 and 4).
The results reported for Canonical GA and Won et al.’s proposed
method are averages of ten independent runs [27]. However,
results reported for DAFHEA and DAFHEA-II are averages of
thirty independent runs.

It is clear from the depicted results that the proposed DAFHEA
and DAFHEA-II models effectively reduce the number of actual
function evaluations for most of the benchmark function in our
test suit to obtain similar level of solution accuracy. Due to space
constrains the actual solutions could not be presented here. It is
true that the formation and maintenance of the regression models
incorporates additional computational expense. However, this
approximation based evolutionary algorithm model is not
proposed for regular optimization problems where actual function
evaluation is not a matter of concern. Complex real world
problems involving very expensive function evaluations will
benefit from such approximation based algorithms even when the
reduction in the number of actual evaluations is relatively quite
low.

Table 1. Description of Benchmark Functions

Function Formula
Spherical

() ∑
=

=
n

i
ixf

1

2x

Ellipsoidal () ∑
=

=
n

i
iixf

1

2x

Schwefel
()

2

1 1
∑ ∑
= =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

n

i

i

j
jxf x

Rosenbrock
() () ()21

2
21

1
1001 +

−

=

−+−= ∑ ii

n

i
i xxxf x

Rastrigin () ()()∑
=

−+=
n

i
ii xxnf

1

2 2cos1010 πx

2412

Table 2. Total Evaluations required (5-Dimensional case)
where,

1M =Canonical GA,
2M = Proposed method as

described in [27],
3M = DAFHEA Framework,

4M =
DAFHEA-II Framework. All values shown here represent
total number of actual function evaluations involved in the

specific methods.

Function 1M
2M 3M

4M

Spherical 49045 21450 21210 21200

Ellipsoidal 49045 21051 21000 21000

Schwefel 49045 25951 25500 25500

Rosenbrock 18000 7201 7015 7009

Rastrigin 16500 4601 4550 4545

Table 3. Total Evaluations required (10-Dimensional case)
where,

1M =Canonical GA,
2M = Proposed method as

described in [27],
3M = DAFHEA Framework,

4M =
DAFHEA-II Framework. All values shown here represent
total number of actual function evaluations involved in the

specific methods.

Function 1M
2M 3M

4M

Spherical 99150 77567 77520 77500

Ellipsoidal 99150 84334 84310 84300

Schwefel 99150 53834 53755 53750

Rosenbrock 16500 7001 6990 6985

Rastrigin 17100 7100 7175 7075

Table 4. Total Evaluations required (20-Dimensional case)
where,

1M =Canonical GA,
2M = Proposed method as

described in [27],
3M = DAFHEA Framework,

4M =
DAFHEA-II Framework. All values shown here represent
total number of actual function evaluations involved in the

specific methods.

Function 1M
2M 3M

4M

Spherical 199200 110467 110420 110400

Ellipsoidal 199200 81534 81450 81450

Schwefel 199200 144267 144220 144200

Rosenbrock 70447 21201 21170 21150

Rastrigin 101650 28020 28010 27890

4. CONCLUSIONS
Population based, iterative optimization techniques such as
evolutionary algorithms can not be feasibly used in problem
domains that involve expensive fitness evaluation. Use of
approximation or meta models to replace actual functions is an

attractive choice to address this issue. This can drastically lower
the computational expense of using EA to solve complex
optimization problems. In this paper two evolutionary algorithm
techniques that replace actual function evaluation by SVM
regression tool generated meta model evaluation, have been
presented. The second framework is an enhanced version of the
first. In this, a multiple model approach for support vector
machine regression is used to develop the approximate models.
The algorithms showed reliable performance in terms of solution
accuracy and reduction in actual function evaluations. The
overhead cost towards developing and maintaining the meta-
model is not alarmingly high. Since this overhead is expected not
to increase much with increased problem complexity, both the
versions of DAFHEA should lead to considerable speed up for
complex real life problems. As mentioned earlier the DAFHEA-II
[2] framework is an enhancement of the original DAFHEA [1] to
extend its application to problems involving uncertain fitness
functions. The enhanced framework is suitable for solving
complex real world optimization problems where the input
information is expected to be generated by multiple models
instead of a single model due to presence of noise. Our future
research will investigate mechanisms to reduce the overhead cost
of developing and maintaining the surrogate models.

5. REFERENCES
[1] Bhattacharya, M. and Lu, G. DAFHEA: A Dynamic

Approximate Fitness based Hybrid Evolutionary Algorithm.
Proceedings of the IEEE Congress on Evolutionary
Computation’ 2003, Vol.3, IEEE Catalogue No.
03TH8674C, ISBN 0-7803-7805-9, pp. 1879-1886.

[2] Bhattacharya, M. Surrogate based Evolutionary Algorithm
for Engineering Design Optimization. Proceedings of the
Eighth International Conference on Cybernetics, Informatics
and Systemic (ICCIS 2005), ISBN 975-98458-9-X, pp. 52-
57.

[3] Bishop, C. Neural Networks for Pattern Recognition, Oxford
Press, 1995.

[4] Büche, D., Schraudolph, N. and Koumoutsakos, P.
Accelerating Evolutionary Algorithms Using Fitness
Function Models. Proc. Workshops Genetic and
Evolutionary Computation Conference, Chicago, 2003.

[5] Cherkassky, V. and Ma, Y. Multiple Model Estimation: A
New Formulation for Predictive Learning. under review in
IEEE Transaction on Neural Network.

[6] Dunham, B., Fridshal, D., Fridshal, R. and North, J. Design
by natural selection. Synthese, 15, pp. 254-259, 1963.

[7] El-Beltagy, M. A. and Keane, A. J. Evolutionary
optimization for computationally expensive problems using
Gaussian processes. Proc. Int. Conf. on Artificial Intelligence
(IC-AI'2001), CSREA Press, Las Vegas, pp. 708-714, 2001.

[8] Gunn, S. R. Support Vector Machines for Classification and
Regression. Technical Report, School of Electronics and
Computer Science, University of Southampton,
(Southampton, U.K.), 1998.

[9] Hajela, P. and Lee, A. Topological optimization of rotorcraft
subfloor structures for crashworthiness considerations.
Computers and Structures, vol.64, pp. 65-76, 1997.

2413

[10] Hastie, T., Tibshirani, R., Friedman,J. The Elements of
Statistical Learning: Data Mining, Inference, and
Prediction. Springer Series in Statistics, ISBN 0-387-95284-
5.

[11] Jin, Y. A comprehensive survey of fitness approximation in
evolutionary computation. Soft Computing Journal, 9(1),
Springer, pp. 3-12, 2005.

[12] Jin, Y., Olhofer, M. and Sendhoff, B. A Framework for
Evolutionary Optimization with Approximate Fitness
Functions. IEEE Transactions on Evolutionary Computation,
6(5), pp. 481-494, (ISSN: 1089-778X). 2002.

[13] Jin, Y., Olhofer, M. and Sendhoff, B. On Evolutionary
Optimisation with Approximate Fitness Functions.
Proceedings of the Genetic and Evolutionary Computation
Conference GECCO, Las Vegas, Nevada, USA. pp. 786-
793, July 10-12, 2000.

[14] Kim, H. S. and Cho, S. B. An efficient genetic algorithm
with less fitness evaluation by clustering. Proceedings of
IEEE Congress on Evolutionary Computation, pp. 887-894,
2001.

[15] Myers, R. and Montgomery, D. Response Surface
Methodology. John Wiley & Sons, 1985.

[16] Pierret, S. Three-dimensional blade design by means of an
artificial neural network and Navier-Stokes solver.
Proceedings of Fifth Conference on Parallel Problem
Solving from Nature, Amsterdam, 1999.

[17] Rasheed, K. An Incremental-Approximate-Clustering
Approach for Developing Dynamic Reduced Models for
Design Optimization. Proceedings of IEEE Congress on
Evolutionary Computation, 2000.

[18] Rasheed, K., Vattam, S. and Ni., X. Comparison of Methods
for Using Reduced Models to Speed Up Design
Optimization. The Genetic and Evolutionary Computation
Conference (GECCO'2002), 2002.

[19] Ratle, A. Accelerating the convergence of evolutionary
algorithms by fitness landscape approximation. Parallel
Problem Solving from Nature-PPSN V, Springer-Verlag, pp.
87-96, 1998.

[20] Sacks, J., Welch, W., Mitchell, T. and Wynn, H. Design and
analysis of computer experiments. Statistical Science, 4(4),
1989.

[21] Schölkopf , B., Burges, J. and Smola, A. ed. Advances in
Kernel Methods: Support Vector Machines, MIT Press,
1999.

[22] Smola, A. and Schölkopf, B. A Tutorial on Support Vector
Regression. NeuroCOLT Technical Report NC-TR-98-030,
Royal Holloway College, University of London, UK, 1998.

[23] Torczon, V. and Trosset, M. W. Using approximations to
accelerate engineering design optimisation. ICASE Report
No. 98-33. Technical report, NASA Langley Research
Center Hampton, VA 23681-2199, 1998.

[24] Toropov, V., Filatov, A. and Polykin, A. Multiparameter
structural optimization using FEM and multipoint explicit
approximations. Structural Optimization, vol. 6, pp. 7-14,
1993.

[25] Vapnik, V. The Nature of Statistical Learning Theory.
Springer-Verlag, NY, USA, 1999.

[26] Vekeria, H. D. and Parmee, I. C. The use of a co-operative
multi-level CHC GA for structural shape optimization.
Fourth European Congress on Intelligent Techniques and
Soft Computing – EUFIT’96, 1996.

[27] Won, K., Roy, T. and Tai, K. A Framework for Optimization
Using Approximate Functions. Proceedings of the IEEE
Congress on Evolutionary Computation’ 2003, Vol.3, IEEE
Catalogue No. 03TH8674C, ISBN 0-7803-7805-9.

2414

