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ABSTRACT 
Real life optimization problems often require finding optimal 
solution to complex high dimensional, multimodal problems 
involving computationally very expensive fitness function 
evaluations.  Use of any population based iterative technique such 
as evolutionary algorithm   in such problem domains is thus 
practically prohibitive. A feasible alternative is to build surrogates 
or use an approximation of the actual fitness functions to be 
evaluated. Naturally these surrogate or meta models are order of 
magnitude cheaper to evaluate compared to the actual function 
evaluation. This paper presents two evolutionary algorithm 
frameworks which involve surrogate based fitness function 
evaluation. The first framework, namely the Dynamic 
Approximate Fitness based Hybrid EA (DAFHEA) model [1] 
reduces computation time by controlled use of meta-models (in 
this case approximate model generated by Support Vector 
Machine regression) to partially replace the actual function 
evaluation by approximate function evaluation. However, the 
underlying assumption in DAFHEA is that the training samples 
for the meta-model are generated from a single uniform model. 
This does not take into account problem domains involving 
uncertain environment. The second model, DAFHEA-II, an 
enhanced version of the original DAFHEA framework, 
incorporates a multiple-model based learning approach for the 
support vector machine approximator to handle uncertain 
environment [2]. Empirical evaluation results have been presented 
based on application of the frameworks to commonly used 
benchmark functions. 

Categories and Subject Descriptors 
 Computing Methodologies [I.2 Artificial Intelligence]: I.2.8 
Problem Solving, Control Methods, and Search. 

General Terms 
Algorithms, Design, Performance. 

Keywords 
Premature convergence, evolutionary algorithm, approximation. 

1. INTRODUCTION AND BACKGROUND 
The optimization of complex, high dimensional, multimodal 
problems often poses a problem which in fact depends on the 
structure inherent in the problems.  Examples of such problem 
domains include large-scale finite element analysis (FEA), 
computational fluid dynamics (CFD), engineering design 
problems etc. For example, optimization problems involving 
engineering design are often characterized by features that make 
them highly computationally expensive to be solved by 
evolutionary algorithms or even other standard nonlinear 
optimization techniques. One of the most critical of these features 
is that the functions used to define such optimization problems are 
often computationally intensive. In engineering design 
optimization problem domains, a design can be represented by a 
number of continuous design parameters and the potential 
solutions are vectors in a multidimensional vector space [11]. 
Determining the fitness of these potential solutions generally 
involve some form of simulation to compute the relevant physical 
properties of the object represented by the solution vector and 
consolidate them into a single measure of merit, including the 
information on the status of the constraints if necessary. In such 
problems, the run-time for a single function evaluation could be in 
the range from a fraction of a second to hours of supercomputer 
time. The computational expense of evaluating the functions that 
define the problem would necessarily be incurred for each 
iteration, within any iterative optimization algorithm and in a 
population-based search algorithm like EA, for the entire 
population or part of the population, as is required, in each 
iteration. Considering such prohibitive computational costs, a 
feasible alternative is to build approximate models, within an 
optimization context, since these approximate models are order of 
magnitude cheaper to run compared to the actual function 
evaluations [14,17,18]. Many regression and interpolation tools 
could be used to construct such meta models, (e.g. least square 
regression, back propagating artificial neural network, response 
surface models, etc.) which provide less accurate, but more 
efficient (in terms of computational cost) measures of the merit of 
the fitness functions. 

However, it can not be denied that accuracy of the result is a 
major risk involved in using meta-models to replace actual 
function evaluation [24, 12, 13, and 11].  When it is infeasible to 
precisely judge when, where and how much of such replacement 
is optimal, using a controlled approach holds the answer. 

The use of approximate model to speed up optimization dates all 
the way back to the sixties [1]. The most widely used models 
being Response Surface Methodology [15], Krieging models [20] 
and artificial neural network models [3]. The concepts of using 
approximate model vary in levels of approximation (Problem 
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approximation, Functional approximation, and Evolutionary 
approximation), model incorporation mechanism and model 
management techniques [11]. 

In the multidisciplinary optimization (MDO) community, 
primarily response surface analysis and polynomial fitting 
techniques are used to build the approximate models [9, 24]. 
These models work well when single point traditional gradient-
based optimization methods are used. However, they are not well 
suited for high dimensional multimodal problems as they 
generally carry out approximation using simple quadratic models. 

In another approach, multilevel search strategies are developed 
using special relationship between the approximate and the actual 
model. An interesting class of such models focuses on having 
many islands using low accuracy/cheap evaluation models with 
small number of finite elements that progressively propagate 
individuals to fewer islands using more accurate/expensive 
evaluations [26]. As is observed in [11], this approach may suffer 
from lower complexity/cheap islands having false optima whose 
fitness values are higher than those in the higher 
complexity/expensive islands. Rasheed et al. in [17, 18], uses a 
method of maintaining a large sample of points divided into 
clusters. Least square quadratic approximations are periodically 
formed of the entire sample as well as the big clusters. Problem of 
unevaluable points was taken into account as a design aspect. 
However, it is only logical to accept that true evaluation should be 
used along with approximation for reliable results in most 
practical situations. Another approach using population clustering 
is that of fitness imitation [11]. Here, the population is clustered 
into several groups and true evaluation is done only for the cluster 
representative [14]. The fitness value of other members of the 
same cluster is estimated by a distance measure. The method may 
be too simplistic to be reliable, where the population landscape is 
a complex, multimodal one. 

Jin et al. in [12, 13] analysed the convergence property of 
approximate fitness based evolutionary algorithm. It has been 
observed that incorrect convergence can occur due to false optima 
introduced by the approximate model. Two controlled evolution 
strategies have been introduced. In this approach, new solutions 
(offspring) can be (pre)-evaluated by the model. The (pre)-
evaluation can be used to indicate promising solutions. It is not 
clear however, how to decide on the optimal fraction of the new 
individuals for which true evaluation should be done [4]. In an 
alternative approach, the optimum is first searched on the model. 
The obtained optimum is then evaluated on the objective function 
and added to the training data of the model [19, 23, and 4]. Yet in 
another approach as proposed in [12], a regularization technique 
is used to eliminate false minima. 

It is obvious that incorporation of approximate models may be 
one of the most promising approaches to realistically use EA to 
solve complex real life optimization problems, especially where: 
(i). Fitness computation is highly time-consuming, (ii). Explicit 
model for fitness computation is absent, (iii). Environment of the 
evolutionary algorithm is noisy etc. However, considering the 
obvious risk involved in such approach, an EA with efficient 
control strategy for the approximate model and robust 
performance is welcome. 

While dealing with complex real world optimization problems, 
expensive function evaluations can be feasibly used only in a 

limited manner. Research on using surrogate models should focus 
on: 

1) Minimizing uncertainty in approximate estimation 
2) Employing corrective measures 
3) Exploring ways to exploit the approximate knowledge for 

improving the optimization technique 
The hybrid evolutionary algorithm framework, DAFHEA 
(dynamic approximate fitness based hybrid evolutionary 
algorithm) addresses some of the above issues [1]. DAFHEA 
replaces expensive function evaluation by its support vector 
machine (SVM) approximation. The concept of merit function 
[23] is borrowed to maintain diversity in the solution space using 
approximate knowledge. However, the assumption used in the 
original DAFHEA is that the training samples for the meta-model 
are generated from a single uniform model. This does not cover 
situations, where information from variable input dimensions and 
noisy data is involved. DAFHEA-II attempts to correct this by 
using a multi-model regression approach. The multiple models are 
estimated by successive application of the SVM regression 
algorithm. Retraining of the model is done in a periodic fashion. 

The original DAFHEA framework is similar to other existing 
models in that it uses an approximation model to partially replace 
expensive fitness evaluation in evolutionary algorithm. An 
explicit control strategy (a cluster-based on-line learning 
technique) to improve reliability of using such approximate 
models to reduce expensive function evaluations was introduced. 
Also the approximate knowledge thus generated is exploited to 
avoid premature convergence (one of the major impediments of 
using evolutionary algorithm to solve complex real life 
optimization problems). However, the major constraint associated 
with DAFHEA is that it treats the solution space as one 
comprising of information coming from a uniform model. 
Situations like model formation involving variable input 
dimensions and noisy data certainly can not be covered by this 
assumption. DAFHEA-II addresses this issue by using a multiple 
model regression approach for the SVM approximator. 

The rest of the paper is arranged as follows: Section 2 presents the 
basic frameworks of DAFHEA and DAFHEA-II (the enhanced 
version of DAFHEA). Experiment details and simulation results 
are presented in Section 3. Finally conclusions are drawn in 
Section 4. 

2. THE PROPOSED FRAMEWORKS 
The proposed DAFHEA framework includes a global model of 
genetic algorithm (GA), hybridised with support vector machine 
(SVM) as the approximation tool. Expensive fitness evaluation of 
individuals as required in traditional evolutionary algorithm is 
partially replaced by a SVM approximation (regression) model. 
Explicit control strategies are used for evolution control, leading 
to considerable speedup without compromising heavily on 
solution accuracy. Also the approximate knowledge about the 
solution space generated is used to maintain population diversity 
to avoid premature convergence. 

While approximation is not a new idea in accelerating iterative 
optimization process, DAFHEA focuses on controlled speedup to 
avoid detrimental effects of approximation and also exploiting 
approximate knowledge to improve optimization solution. The 
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following section presents the basic algorithm structure of 
DAFHEA. 

2.1 Algorithm Structure of DAFHEA 
Step One: Create a random population of cN  individuals, where, 

ac NN *5=  and =aN actual initial population size.  

Step Two: Evaluate cN  individual using actual expensive 
function evaluation. Build the SVM approximate model using 
normalised expensive function evaluation values as training set 
for off-line training. (Use of normalised values in the training set 
appears to improve performance of meta model, reducing effects 
of unnaturally high or low values). SVM hyper-parameters are 
initially tuned based on this training set. 

Step Three: Select aN  best individual out of cN  evaluated 
individuals to form the initial GA population. 

Remarks: The idea behind using five times the actual EA 
population size (as explained in Step One) is to make the 
approximation model sufficiently representative at least initially. 
Since initial EA population is formed with aN best individuals out 

of these cN individuals, with high recombination and low 
mutation rates, the EA population in first few generations is 
unlikely to drift much from its initial locality. Thus it is expected 
that large number of samples used in building the approximation 
model will facilitate better performance at this stage. Also using 
the higher fitness individuals, chosen out of a larger set should 
give an initial boost to the evolutionary process. 

Step Four: Select parents using suitable selection operator and 
apply genetic operators namely recombination and mutation to 
create new generation. 

Step Five: Use SVM approximation model to compute fitness of 
new generation individuals based on approximate evaluation. 
Form m  distance-based (considering spatial distribution of 
individuals) clusters in the new population space. If for some n  
clusters, the standard deviation ≥σ Predefined Threshold, 
rearrange solution space into nm +  clusters. Compute a merit 
function )(xf m  as below: 

ijdixafxmf 21)()( ρσρ −−= - is3ρ                            (1) 

where,  )(xfa is the predicted fitness function value. iσ  is 

standard deviation (in terms of objective value) for the thi cluster 

and ijd  is the normalized minimum Euclidean distance of thj  

point of thi  cluster from the all truly evaluated points so far [5]. 

is  is the sparseness of the thi cluster. 1ρ , 2ρ  and 3ρ  are 

scaling factors for  iσ , ijd  and  is respectively. 

individualofDimension
iclusterinsindividualfoNosi =                                    (2) 

Step Six: Dynamically update the approximate model as below: 

1) Identify the cluster containing the optimum based on 
approximation. 

2) Perform expensive evaluation for the approximate optimum 
and its −k nearest neighbours. Also perform expensive 
evaluation for the centroid of all other data clusters and their 
−k nearest neighbours. Expand neighbourhood for true 

evaluation until a point is found in each space dimension 
such that % error ≤δ Predefined threshold. Here, 

100×
−

=
it

ipit

a
aa

δ                                                           (3) 

where, ita =True value of the thi neighbour and ipa =Predicted 

value of the thi neighbour and max ki = . 

3)        Add the newly evaluated points to approximate model 
training set to update model. 

Step Seven: When termination/evolution control criteria are not 
met, repeat Step Four to Step Seven. 

It must be noted, the optimum is considered based on the original 
predicted value )(xfa . For all other purposes fitness based on 

the merit function )(xfm  is considered. Periodic parameter 
tuning of the SVM approximation model was incorporated, 
though no specific criterion was used. 

The following section presents the enhanced DAFHEA or 
DAFHEA-II framework that incorporates the enhancement to 
tackle situations where the inputs to the meta model generation 
tools are generated by different models. 

2.2 Algorithm Structure of Enhanced 
DAFHEA 
As in the original DAFHEA framework, DAFHEA-II [Figure 1] 
includes a global model of genetic algorithm (GA), hybridised 
with support vector machine (SVM) as the approximation tool. 
Expensive fitness evaluation of individuals as required in 
traditional evolutionary algorithm is partially replaced by SVM 
approximation (regression) models. Evolution control is 
implemented by periodic expensive evaluations, leading to 
considerable speedup without compromising heavily on solution 
accuracy. Also the approximate knowledge about the solution 
space generated is used to maintain population diversity to avoid 
premature convergence. 

DAFHEA-II is specifically suited for applications involving 
information that could be considered generated by more than one 
model. As in original DAFHEA, this framework also focuses on 
controlled speedup to avoid detrimental effects of approximation 
and exploiting approximate knowledge to improve optimization 
solution. The following section presents the basic algorithm 
structure of DAFHEA-II. 

The proposed DAFHEA-II framework is introduced in the context 
of unconstrained optimization problems. Figure (1) schematically 
presents the algorithm. 

/* The basic algorithm for the DAFHEA-II 
framework */ 

Procedure DAFHEA_II 
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{ 
 { 

 initialize population matrix, 0g =en  

 and  set βα ,  

 call actual function evaluation 
 call Procedure train_SVM to generate 
     approximation models  
 while ( α<gen ) 

  { 

  1+= gengen  

  rank solutions based on     
  fitness 
  retain actual elite 
  apply crossover and mutation   
  to generate offspring 

  call Procedure predict_SVM to 

  approximate the fitness of the 

  offspring 
  retain approximate elite 

  if ( 0mod =βgen ) then 

  { 
  call actual function 

  evaluation 

  call Procedure train_SVM 

  } 
  } 
  rank solutions based on 

  fitness 

  get the best solution 

 } 
/* This procedure estimates multiple models 
from the training data set */ 

Procedure train_SVM 

{ 
 initialize data set=population in 
 current generation with fitness 
 resulting from actual evaluation 

 while (!stopping criterion) 

 { 
/* Estimate the dominant model describing 
majority of the candidates in data set */ 

 apply robust regression to data set 

/* Partition the available data */ 

 { 
 analyse available data to separate 

 others from majority based on their 

 distance from the dominant model 
remove subset of data generated by 
the dominant model from the data set 

 } 
  } 
} 
/* This procedure selects the most likely 
model for each member of the population to 
find its corresponding estimate */ 

Procedure predict_SVM 

{ 
 while (population member) 

 { 
 determine appropriate model for the 

 given test sample ),( yz x=  using a 

 distance measure from each model 

 } 
} 
} 

Figure 1. DAFHEA-II framework. 
In the above framework (see Figure 1) α  is the number of 
predetermined generations and β  is the predetermined retraining 
frequency. 

2.2.1 Implementation of DAFHEA-II Framework 
Step One: Create a random population of cN  individuals, where, 

ac NN *5=  and =aN actual initial population size. 

Step Two: Evaluate cN  individual using actual expensive 
function evaluation. Build the SVM approximate models using 
the candidate solutions as input and the actual fitness (expensive 
function evaluation values) as targets forming the training set for 
off-line training. Details of the Multiple Model Formation 
technique is described in Section IV. 

Step Three: Select aN  best individual out of cN  evaluated 
individuals to form the initial GA population. 

Remarks: The idea behind using five times the actual EA 
population size (as explained in Step One) is to make the 
approximation model sufficiently representative at least initially. 
Since initial EA population is formed with aN best individuals 

out of these cN individuals, with high recombination and low 
mutation rates, the EA population in first few generations is 
unlikely to drift much from its initial locality. Thus it is expected 
that large number of samples used in building the approximation 
model will facilitate better performance at this stage. Also using 
the higher fitness individuals, chosen out of a larger set should 
give an initial boost to the evolutionary process. 

Step Four: Rank the candidate solutions based on their fitness 
value. 

Step Five: Preserve the elite by carrying over the best candidate 
solution to the next generation. 
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Step Six: Select parents using suitable selection operator and 
apply genetic operators namely recombination and mutation to 
create children (new candidate solutions) for the next generation. 

Step Seven: The SVM regression models created in Step two are 
applied to estimate the fitness of the children (new candidate 
solutions) created in Step six. This involves assignment of most 
likely or appropriate models to each candidate solution. 

Step Eight: The set of newly created candidate solutions is ranked 
based on their approximate fitness values. 

Step Nine: The best performing newly created candidate solution 
and the elite selected in Step five are carried to the population of 
the next generation. 

 Step Ten: New candidate solutions or children are created as 
described in Step six. 

Step Eleven: Repeat Step seven to Step ten until either of the 
following condition is reached: 

i. The predetermined maximum number of generations has 
been reached; or 

ii. The periodic retraining of the SVM regression models is due. 

Step Twelve: If the periodic retraining of the SVM regression 
models is due, this will involve actual evaluation of the candidate 
solutions in the current population. Based on this training data 
new regression models are formed. The algorithm then proceeds 
to execute Step four to Step eleven. 

Remarks: The idea behind using periodic retraining of the SVM 
regression models is to ensure that the models continue to be 
representatives of the progressive search areas in the solution 
space. 

2.2.1.1 Single Approximation Model Formation with 
SVM Regression 
The theoretical background of support vector machine is mainly 
inspired from statistical learning theory [25]. Major advantages of 
the support vector machines over other machine learning models 
such as neural networks, are that there is no local minima during 
learning and the generalization error does not depend on the 
dimension of the space. Also the fast learning ability of the SVM 
regression [21, 22] model is a desirable property for on-line 
learning. In DAFHEA (both original and enhanced versions), as 
the approximation model has to be rebuilt frequently to be 
representative of the progressing solution space, this is an 
important criterion for model selection. 

Let us consider the problem of approximating the set of data, 

( ) ( ){ }ll yxyxD ,,...,, 11=            (4) 
with a linear function, 

( ) bf += xwx . , RbRn ∈∈ ,,xw        (5) 
The construction of a model is reduced to the minimization of the 
following regularized ε -insensitive loss function: 

( ){ }∑
=

−−+=
l

i
ii fy

l
CL

1

2 max1. εxw        (6) 

where ε  is the tolerable error, C  is a pre-specified 
regularization constant and f is the function to be estimated. 

The minimization of (6) is equivalent to the following constrained 
optimization problem, giving the optimal regression function as: 

min ( )∑
=

+⋅+
l

i
iil

C
1

*2 1
2
1 ξξw                    (7) 

subject to ( )( ) iii yb ξε +≤−+⋅ xw       (8) 

( )( ) *. iii by ξε +≤+− xw       (9) 

0, * ≥ii ξξ , li ,...,1=                (10) 
where iξ  and  *

iξ  are slack variables representing upper and 
lower constraints on the output of the system. 

Thus, quadratic-programming techniques can be applied to solve 
the minimization problem. 

In the enhanced version of DAFHEA (DAFHEA-II), a multiple 
model regression approach is used. The technique used closely 
follows the approach described in [5]. 

2.2.1.2 Multiple Model Regression Technique 
The multiple model regression involves the following two stages:  

i. The training/learning phase, involving creation of the 
models based on training data. 

ii. The prediction phase, involving assignment of the most 
likely model to each candidate data and estimation of 
improved response using the selected model. 

2.2.1.2.1 The Training/Learning Phase 
Let us consider a finite number of samples or training data 

),...,1(),,( niyii =x
[5]. The learning involves two 

objectives: 

(a) to estimate N target models from a set of possible models: 

),...1,(),,( Nmf mmmm =Ε∈ωωx                (11)  
Where mΕ is a parametric space for model m. Each model 
estimate approximates the corresponding target 

model
)(),( * xx mmm trf →ω

. 

(b) to partition available training data set into N  subsets, where 
each subset belong to an appropriate model. The input (x) and/or 
output (y) space will be thus partitioned into N disjoint regions. 

It is clear from the above discussion that the creation of multiple 
models here can be viewed as a generalization of the traditional 
single-model estimation. Traditional regression is applied to 
estimate appropriate regression-like models in a progressive 
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manner while partitioning the data set into subsets at the same 
time. 

2.2.1.2.2 The Prediction Phase 
Using a single model approach, estimating a response ŷ for a 

given test input x , simply amounts to deducing ),(ˆ *ωxfy = , 

where ),( *ωxf  is a model predetermined based on the 
training data. In case of multiple model estimation, first an 
appropriate model has to be selected for the test input x  and then 

the response ŷ  can be computed as ),(ˆ *ωxcfy = , where 

),( *ωxcf  is the specifically chosen model for  x . However, 
it is not possible to select a model using x  alone, as there may be 
overlapping of input domains for different models. Thus, selection 
of model should be based on the ),( yx  values of the test data as 

described in [5]. For a given sample of test data ),( yz x=  

generated by an unknown model u  and a set of models estimated 
during training stage: 

),...1(),,( * NiXf iii =∈xx ω                (12)  
 
to determine the appropriate or most likely model the distance 
between the test sample and each of the models in  (12), has to be 
computed. Each model in (12) is defined as a region in the input 
(x) space and the mapping yfc →x:  in this region. 
Therefore, the distance may be defined in the input (x) space or in 
the y-space, or some combination of the two. 

2.2.1.3 Use of Approximate Knowledge to Curb 
Premature Convergence 
Please see [1] for details. 

3. EXPERIMENTS 

3.1 Method Used for Result Comparison 
For comparison purposes we have used the results reported in 
[27]. Won et al. in [27] presents a population-based, stochastic, 
zero order, elite preserving algorithm that uses approximate 
function evaluation in lieu of actual function evaluations. Details 
of the method are given in [27]. Performances of DAFHEA and 
DAFHEA-II have been evaluated against that of Canonical GA 
and the proposed method of Won et al. as reported in [27]. 

3.2 Test Details and Discussions 
The performance of the proposed algorithms is tested on five 
popular benchmark test functions (see Table 1): namely, 
Spherical, Rosenbrock, Rastrigin, Schwefel and Ellipsoidal. 
These benchmark functions in the test suit are scalable and are 
commonly used to assess the performance of optimization 
algorithms. For all five functions except Rosenbrock the global 

minimum is ( ) 0=xf  at{ } 0=n
ix . Rosenbrock has a global 

minimum of ( ) 0=xf at{ } 1=n
ix .  

All simulations were carried out using the following assumptions: 
The population size of n10 was used for all the simulations, 
where n  is the number of variables for the problem; for 
comparison purposes three sets of input dimensions are 
considered; namely, 10,5=n  and 20. For all three cases, 
tenfold validation was done with the number of generations being 
1000; the SVM regression models were trained with five times the 
real GA population size initially and all the simulation processes 

were executed using a Pentium
® 

4, 2.4GHz CPU processor. 
Tables 2, 3 and 4 show the comparative statistics of the various 
simulations runs using canonical GA model which uses only 
actual function evaluations and the proposed DAFHEA and 
DAFHEA-II models which use actual function evaluations 
sparingly. We report the results for the 5-D (dimension), 10-D 
(dimension) and 20-D (dimension) scenarios. The reported results 
were obtained by achieving same level of tolerance for both 
canonical GA and the proposed models. For comparison purpose, 
results reported in [27] were considered (see Table 2, 3 and 4). 
The results reported for Canonical GA and Won et al.’s proposed 
method are averages of ten independent runs [27]. However, 
results reported for DAFHEA and DAFHEA-II are averages of 
thirty independent runs. 

It is clear from the depicted results that the proposed DAFHEA 
and DAFHEA-II models effectively reduce the number of actual 
function evaluations for most of the benchmark function in our 
test suit to obtain similar level of solution accuracy. Due to space 
constrains the actual solutions could not be presented here. It is 
true that the formation and maintenance of the regression models 
incorporates additional computational expense. However, this 
approximation based evolutionary algorithm model is not 
proposed for regular optimization problems where actual function 
evaluation is not a matter of concern. Complex real world 
problems involving very expensive function evaluations will 
benefit from such approximation based algorithms even when the 
reduction in the number of actual evaluations is relatively quite 
low. 

 
Table 1. Description of Benchmark Functions 

Function Formula 
Spherical 

( ) ∑
=

=
n

i
ixf

1

2x  

Ellipsoidal ( ) ∑
=

=
n

i
iixf

1

2x  

Schwefel 
( )

2

1 1
∑ ∑
= =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

n

i

i

j
jxf x  

Rosenbrock 
( ) ( ) ( )21

2
21

1
1001 +

−

=

−+−= ∑ ii

n

i
i xxxf x  

Rastrigin ( ) ( )( )∑
=

−+=
n

i
ii xxnf

1

2 2cos1010 πx  
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Table 2. Total Evaluations required (5-Dimensional case) 
where, 

1M =Canonical GA, 
2M = Proposed method as 

described in [27], 
3M = DAFHEA Framework, 

4M = 
DAFHEA-II Framework. All values shown here represent 
total number of actual function evaluations involved in the 

specific methods.   

Function 1M  
2M  3M  

4M  

Spherical 49045 21450 21210 21200 

Ellipsoidal 49045 21051 21000 21000 

Schwefel 49045 25951 25500 25500 

Rosenbrock 18000 7201 7015 7009 

Rastrigin 16500 4601 4550 4545 

  

Table 3. Total Evaluations required (10-Dimensional case) 
where, 

1M =Canonical GA, 
2M = Proposed method as 

described in [27], 
3M = DAFHEA Framework, 

4M = 
DAFHEA-II Framework. All values shown here represent 
total number of actual function evaluations involved in the 

specific methods. 

Function 1M  
2M  3M  

4M  

Spherical 99150 77567 77520 77500 

Ellipsoidal 99150 84334 84310 84300 

Schwefel 99150 53834 53755 53750 

Rosenbrock 16500 7001 6990 6985 

Rastrigin 17100 7100 7175 7075 

 

Table 4. Total Evaluations required (20-Dimensional case) 
where, 

1M =Canonical GA, 
2M = Proposed method as 

described in [27], 
3M = DAFHEA Framework, 

4M = 
DAFHEA-II Framework. All values shown here represent 
total number of actual function evaluations involved in the 

specific methods. 

Function 1M  
2M  3M  

4M  

Spherical 199200 110467 110420 110400 

Ellipsoidal 199200 81534 81450 81450 

Schwefel 199200 144267 144220 144200 

Rosenbrock 70447 21201 21170 21150 

Rastrigin 101650 28020 28010 27890 

 

4. CONCLUSIONS 
Population based, iterative optimization techniques such as 
evolutionary algorithms can not be feasibly used in problem 
domains that involve expensive fitness evaluation. Use of 
approximation or meta models to replace actual functions is an 

attractive choice to address this issue. This can drastically lower 
the computational expense of using EA to solve complex 
optimization problems. In this paper two evolutionary algorithm 
techniques that replace actual function evaluation by SVM 
regression tool generated meta model evaluation, have been 
presented. The second framework is an enhanced version of the 
first. In this, a multiple model approach for support vector 
machine regression is used to develop the approximate models. 
The algorithms showed reliable performance in terms of solution 
accuracy and reduction in actual function evaluations. The 
overhead cost towards developing and maintaining the meta-
model is not alarmingly high. Since this overhead is expected not 
to increase much with increased problem complexity, both the 
versions of DAFHEA should lead to considerable speed up for 
complex real life problems. As mentioned earlier the DAFHEA-II 
[2] framework is an enhancement of the original DAFHEA [1] to 
extend its application to problems involving uncertain fitness 
functions. The enhanced framework is suitable for solving 
complex real world optimization problems where the input 
information is expected to be generated by multiple models 
instead of a single model due to presence of noise. Our future 
research will investigate mechanisms to reduce the overhead cost 
of developing and maintaining the surrogate models.  
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