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ABSTRACT 
Markov Networks (also known as Markov Random Fields) have 
been proposed as a new approach to probabilistic modelling in 
Estimation of Distribution Algorithms (EDAs). An EDA employing 
this approach called Distribution Estimation Using Markov 
Networks (DEUM) has been proposed and shown to work well on a 
variety of problems, using a unique fitness modelling approach. 
Previously DEUM has only been demonstrated on univariate and 
bivariate complexity problems. Here we show that it can be 
extended to a difficult multivariate problem and is capable of 
accurately modelling a fitness function and locating an optimum 
with a very small number of function evaluations. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, 
and Search; 
G.3 [Probability and statistics]: Probabilistic algorithms, 
Stochastic processes 

General Terms 
Algorithms, Performance, Theory 

Keywords 
Estimation of Distribution Algorithms, Evolutionary Algorithms, 
Probabilistic Modelling 

1. INTRODUCTION 
Estimation of Distribution Algorithms (EDAs) [6] is a well-
established topic in the field of evolutionary algorithms. EDAs 
develop the concept of evolution found in a GA, continuing the 
principals of selection and variation. They differ by replacing the 
traditional genetic reproduction operators of crossover and mutation 
with the construction and sampling of a probabilistic model. EDAs 
are typically categorised by the complexity of their probabilistic 
model structure as univariate, bivariate or multivariate [8]. 

DEUM is a framework for constructing EDAs using Markov 
Networks to model the fitness function. The initial theory was 

published in [1] and DEUM was first presented in [11]. Background 
on DEUM can be found in [12]. 

In [13] DEUM was extended to bivariate problems, using the Ising 
Spin Glass problem [4] as a test case. The experiments described in 
that paper used an implementation of DEUM with a fixed bivariate 
model structure. Here we propose an extension using a fixed 
multivariate structure; specifically that of the MAXSAT problem. 
The performance of the algorithm is measured, using the 
hierarchical Bayesian Optimisation Algorithm (hBOA) and 
WalkSAT algorithm presented in [9] as benchmarks. The ability of 
the algorithm to model fitness is demonstrated by using it to predict 
the fitness of randomly generated individuals. 

The overall purpose of this paper is to demonstrate that DEUM can 
successfully construct an accurate model of the fitness function and 
that this can be extended to higher complexity problems than in 
previous publications. 

The remainder of this paper is structured as follows. Section 2 looks 
at the MAXSAT problem in more detail. Section 3 goes on to 
describe DEUM, the fitness modelling approach it uses and how it is 
sampled. Section 4 describes and presents results of an experiment 
comparing the performance of DEUM on MAXSAT with that of 
other algorithms. An analysis of the results is then presented. In 
Section 5 we describe an experiment with demonstrates the fitness 
modelling capability of DEUM with results and analysis. Section 6 
concludes the paper and summarises our intended future work on 
this topic. 

2. MAXSAT AND EDAS 
The Maximum Satisfiability or MAXSAT Problems are described 
in [3]. A MAXSAT problem attempts to find a set of values which 
maximises the number of satisfied clauses of a fixed predicate logic 
formula expressed in conjunctive normal form. Many real-world 
problems can be mapped on to MAXSAT, including the well-
known graph colouring problem. It is known to be NP-complete in 
its general form. The SATLIB resource [2] provides a collection of 
a large number of sample MAXSAT problems. 

MAXSAT is particularly useful for experiments in modelling high 
order interactions as each instance of the problem uses a known 
predefined structure. It has already been used in benchmarking an 
EDA [9]. 

Encoding MAXSAT for evolutionary algorithms is a 
straightforward task. The candidate solutions are bitstrings in which 
each bit encodes a predicate variable in the formula. An individual’s 
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fitness is equal to the number of satisfied clauses given the predicate 
values in it.  

3. BACKGROUND 
3.1 Distribution Estimation Using Markov 
Networks 
DEUM uses a Markov Network to model fitness as an energy 
distribution over the solution space. A Markov Network is an 
undirected graphical model, in contrast to the directed graphical 
models such as Bayesian Networks used by many EDAs. 

A Markov Network models a set of random variables as nodes on a 
graph, and interactions between those variables as edges. It is 
characterised by a property known as Markovianity, which states 
that the distribution of any node can be completely defined by the 
values of its neighbouring nodes. The Markov Network may be 
viewed as a set of cliques, a clique simply being any fully connected 
subgraph of the graphical model. This allows a joint probability 
distribution for the Markov Network to be defined in terms of the 
Gibbs distribution: 
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U(x) is a sum of clique potential functions, each of which models 
the neighbourhood relationship between variables in one particular 
clique on the graph. The summations are over all possible solutions 
y. T is a temperature coefficient, which remains set to 1 in all of our 
current experiments. For some problems slowly reducing this 
temperature could prevent premature convergence on a poor model. 
As with many evolutionary algorithms DEUM models a set of 
individuals. Each individual },...,,{ 21 nxxxx =  is a particular set of 
values which can be applied to the set of variables 

},...,,{ 21 nXXXX =  in a problem – here these are the MAXSAT 
predicate variables.  Each individual is assigned a fitness to denote 
the quality of solution it represents. 
In [1] it was shown that an equation for each individual in a 
population may be derived from the joint probability distribution 
shown in (1). This relates solution fitness to an energy function 
calculated from the values taken by variables in a set of individuals: 

)())(ln( xUxf =−  (2) 

Here, f(x) is the fitness of an individual x and U(x) is the energy 
function derived from alleles. U(x) fully specifies the joint 
probability distribution, so can be regarded as a probabilistic model 
of the fitness function. Minimising U(x) is equivalent to maximising 
f(x). 
In early versions of DEUM, the Markov Network used a univariate 
structure, and there was only one clique for each variable. Ising-
DEUM [13] introduced extra cliques for the bivariate interactions. 
Here we expand this further to incorporate terms for interactions 
between up to 3 variables, which we call trivariate terms. The sets of 
interactions are derived directly from the structure of the given 
MAXSAT problem instance. This gives us an energy function for 
each individual which can be expressed as: 
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where each α  is a parameter associated with a clique on the 
Markov Network, c  is a constant representing the zero-clique of 
background energy in the Markov Network, n is the number of 
variables in each individual and xi represents the value of variable i 
in the solution x. Here {-1,1} are used as the values of xi in place of 
{0,1} to ensure arithmetical symmetry between values. The set of 
α  values completely model the distribution. 

An example is helpful to illustrate this. A simple MAXSAT 
problem has the set of predicates in (4). 

)()()( 2432321 xxxxxxx ∨∧∨∧∨∨ (4) 

The negations may be ignored when considering the relationships 
between predicate variables giving us the undirected graphical 
structure shown in Figure 1. 

 
Figure 1: Relationships Between Predicate Variables 

In the general energy function (5) for this problem, we have a 
constant, a term for each of the predicate variables xi, a term for the 
bivariate interactions shown as edges on the graph and a term for the 
trivariate interaction shown by the shaded area. 
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An individual }0011{=x , with fitness 2)( =xf would thus have 
the energy function shown in (6). 

123242313124321)2ln( ααααααααα +−−−+++−−=− c  (6) 

To determine the Markov Network parameters, a random population 
is formed in the normal manner for an evolutionary algorithm. The 
energy function for each individual is formed resulting in a set of 
equations relating α  values, energy (derived from fitness) and 
alleles. Singular value decomposition (SVD) [10] is used to solve 
the system of simultaneous equations and determine the unknown 
α  values. The entire population is used in this process – selective 
pressure comes from energy minimisation in the model rather than 
traditional selection operators. The model is then sampled to 
generate a new population for the next generation. 

3.2 Gibbs Sampler 
To generate a new population DEUM can employ a number of 
sampling techniques. In [13] it was found that the Gibbs sampler 
performed well on more complex models, and that is the technique 
employed here. The Gibbs sampler repeatedly samples marginal 
probabilities for individual variables. For each variable xi the 
marginal probability of that variable taking the value 1 is given by: 

x1 x2 

x3 x4 
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where T is a temperature constant and Wi is an energy function for 
all the cliques which contain xi: 
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The temperature T falls over the run of the Gibbs sampler according 
to a cooling scheme. 

We have made methodological changes to the implementation of 
the algorithm used in [13], both of which we have found empirically 
to yield better results.  Firstly, we now adopt the exponential 
cooling scheme proposed by Kirkpatrick in [5]. The scheme starts 
with an initial temperature to, and at generation g the temperature is 
given by: 

1−= gg ktt  (8) 

where k is a constant in the range 0 < k  < 1.  

The second modification to the Bitwise Gibbs Sampler used in [13] 
is that bits are now sampled at random rather than in a raster scan. 
The sampler runs until no further improvement to the current 
individual or 10000 iterations have completed. 
The sampler runs as follows: 

Repeat for each individual xo in the previous population: 
1. Set g = 0 and set initial value for T 
2. Repeat: 

2.1 Set xtmp = xo 
2.2 Pick a variable xo

i at random 
2.3 Compute marginal probability distribution for 

xo
i according to (7) 

2.4 Sample distribution to obtain new value for xo
i 

2.5 Increase g by 1 
Until xtmp = xo or g = 10000 

Terminate with answer xo 

3.3 DEUM with Gibbs Sampler 
Incorporating the Gibbs sampler into DEUM is a straightforward 
task, giving us the following algorithm: 
1. Generate an initial population, P, of size M with uniform 
distribution. 
2. Calculate the Markov Network parameters by making a 
maximum likelihood estimation from the initial population. 
3. Use Gibbs sampler to sample Markov Network, until M 
individuals or an optimal individual is generated 
4. Terminate with the fittest solution found in step 4. 
Notice that there is only a single generation to this algorithm. It may 
be adapted to run for multiple generations by repeating steps 2-3 
using the population generated in 3 to build a new model. We have 
not done this here as we found that once the model has been 
generated using an appropriately sized population, repeatedly 
sampling the model with different random starts will normally yield 
an optimum. 

4. SOLVING THE MAXSAT PROBLEM 
4.1 Aims 
The aim of this experiment was to draw a comparison between the 
extended DEUM algorithm and existing algorithms applied to 
MAXSAT. Chosen for comparison are a multivariate EDA (hBOA) 
and a MAXSAT-specific algorithm (WalkSAT). 

4.2 Method 
The algorithm was run on the set of 3-CNF benchmark problems 
obtained from SATLIB [2]. The problem sizes were 20, 50, 75, 100, 
125 and 150 (as used in [9]) On each size of problem, the algorithm 
was repeated on 20 different instances selected at random from the 
set held by SATLIB. Each instance tested belongs to the phase 
transition region, the point at which the problems tip from generally 
solvable instances to generally unsolvable. This occurs where the 
number of clauses is equal to the number of predicates multiplied by 
4.3. Each instance tested is from the set of those proven to be 
solvable.  

In the first experiment single generation DEUM was run to find an 
optimum. The problem is considerably more complex than the Ising 
problem described in [13]. Consequently, the Gibbs sampler must run 
for considerably longer and with a much slower cooling rate than 
used on that problem: the cooling rate parameter was 0.995 for 
problems up to size 100 and 0.999 for the larger problems. The 
sampler ran for a maximum of 10000 iterations, in contrast to 500 
iterations on the Ising problem. The population size used in each case 
was the number of terms in the energy function multiplied by 1.1. 

The number of fitness evaluations reported is the number used in 
evaluating the initial population plus the number used in evaluating 
the individuals generated by the Gibbs sampler. Also reported is the 
number of internal probability calculations used by the Gibbs 
sampler. 

4.3 Results 
Table 1 shows the experimental results of the performance of 
DEUM on differently sized instances of the MAXSAT problem. 
The first column (PS) is the problem size. Next is the number of 
fitness evaluations (FE) required by the algorithm to find an 
optimum, including evaluation of the initial population and the 
population produced by the Gibbs sampler, averaged over the 20 
runs. The corresponding standard deviation (FE-SD) for this data is 
also included. Next is the average number of iterations (IT) of the 
Gibbs sampler followed by its standard deviation (IT-SD) – each 
iteration contains one marginal probability calculation. The final 
column shows the success rate (SR) of finding the optimum over the 
20 runs. The number of function evaluations required to find an 
optimum is also represented graphically in Figure 2, where the error 
bars represent one standard deviation in the set of results. 

Table 1:  Performance of DEUM on MAXSAT Problem 

PS FE FE-SD IT IT-SD SR 

20 533 22 5.27x106 6.87 x104 100 

50 1626 82 1.58 x107 1.87 x105 100 

75 2980 608 2.49 x107 1.85 x105 100 

100 3667 507 3.40 x107 1.17 x105 100 

125 5151 826 4.32 x107 1.99 x105 65 

150 6853 1510 5.25 x107 1.51 x105 70 
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Figure 2:  Performance of DEUM on MAXSAT Problem 

4.4 Analysis 
4.4.1 Comparison with hBOA and WalkSAT 
Previously hBOA had been tested on the same set of problems and 
had been reported to perform comparably with the MAXSAT-
specific solver WalkSAT, when hBOA was used in a hybrid with 
the deterministic hillclimber GSAT. From Table 1 we can see that 
DEUM requires significantly fewer fitness evaluations than reported 
for hBOA and without the use of a hybrid approach. For example, to 
solve instances of the problem at size 100 bits, DEUM requires an 
average of 3500 evaluations. This compares to 105 evaluations for 
hBOA + GSAT. DEUM also compares favourably with WalkSAT, 
which was reported to require 104 evaluations. The decreasing 
success rate with larger problems is most likely caused by the Gibbs 
sampler, which is partly dependent on the random start and is highly 
dependent on an optimal cooling rate and run time. 

4.4.2 Overhead 
We previously reported that for Ising problem the computational 
complexity of the algorithm was dominated by the Gibbs sampler. 
Here, again the Gibbs sampler presents a significant computational 
expense, requiring greater than 107 iterations for all but the smallest 
instances of MAXSAT. On this problem however the computational 
time required to calculate the Markov Network parameters 
dominates the run time of the algorithm. The system of equations 
forms a matrix of considerable size: for a typical 100 bit MAXSAT 
problem there are 100 univariate terms, around 1100 bivariate terms 
and 430 trivariate terms. With an unknown alpha value for each 
term the system of equations has over 1600 unknowns. We have 
found by experimental analysis that the model is poor enough that it 
is extremely unlikely to yield an optimum unless there are slightly 
more equations than unknowns. The number of equations is the 
same as the population size, so in the experiments here we used a 
population of the number of terms multiplied by 1.1 – resulting in n 

approximating to 6103× . SVD is known to have a computational 
complexity of O(n3) for an nxn matrix. 

5. FITNESS PREDICTION 
5.1 Aims 
Given the algorithm overheads we have described, it would appear 
that our initial approach is unlikely to be the best use of fitness 
modelling. In our previous publications, the advantage gained by 
DEUM over other EDAs has been its use of fitness modelling. The 
aim of this experiment is to demonstrate the fitness modelling 
capability of the Markov Network as a basis for further work. 

5.2 Fitness Modelling and Prediction 
The unique advantage which is gained by using this approach is that 
rather than building a distribution of highly fit individuals, DEUM 
models the fitness function directly. In addition to sampling model 
to find an optimum we can also use it to predict the fitness of 
individuals. 
Predicting the fitness of an individual is a simple task given a 
previously constructed model. The bitstring is encoded as before so 
that for each xi, 0 is coded as -1 and 1 remains unchanged. These 
values are substituted into the energy function (3) to give a 
predicted energy U(x) for the individual. The predicted fitness can 
then be calculated thus: 

)()( xUexf −=  (7) 

Here, we use this as a measure of quality of fitness models being 
constructed. This concept also has a number of possible 
applications; for problems where the fitness function is expensive to 
compute the model could then be used in place of calls to the fitness 
function.  

5.3 Method 
The procedure for this experiment is identical to the first part of the 
previous experiment. A random population is generated and used to 
build a model. Subsequently, a second random population equal in 
size to the starting population was generated and evaluated. The 
model was then used to predict the fitnesses for this population, and 
the product moment correlation coefficient [7] between the 
predicted and true sets of fitnesses was calculated. We call this 
figure the fitness prediction correlation. 

5.4 Results 
The results in Table 2 are again sorted by MAXSAT problem size 
(PS) in the first column. The following two columns are the average 
number of fitness evaluations (FE) and accompanying standard 
deviation (FE-SD) required in evaluating the first population. That 
is, the number of evaluations required to build the model. The final 
two columns are the average fitness prediction correlation (FPC) 
and the corresponding standard deviation (FPC-SD). 
Correlation coefficient values run from -1 (perfect negative 
correlation) to 1 (perfect positive correlation). Values greater than 
0.9 typically indicates a strong linear relationship between two sets 
of data [7]. It can be seen from Table 2 that the correlation between 
true fitness values and those predicted using the model is 
considerably higher than this. 

Table 2: Fitness Prediction Capability of Model 

PS FE FE-SD FPC FPC-SD 

20 284 5 0.9970 0.0011 

50 849 11 0.9984 0.0004 

75 1341 10 0.9988 0.0002 

100 1834 10 0.9992 0.0001 

125 2336 12 0.9993 0.0001 

150 2829 13 0.9994 0.0001 
 

5.5 Analysis 
The results show that the algorithm is able to accurately predict the 
fitnesses of completely random individuals. This indicates that 
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DEUM is able to closely model the fitness function after a relatively 
small number of samples of it. 
Firstly this reinforces our thought in section 4.4.1 that the poor 
algorithm success rate was caused by the nature of the Gibbs 
sampler. Given the accuracy of the fitness models being constructed 
it is feasible that by altering the sampling scheme to run for 
considerably longer with a considerably slower cooling rate an 
optimum could be found in every case. However, the run time of the 
sampling algorithm is likely to render this approach impractical. 
This suggests a new approach to consider in future work. Fitness 
prediction could be used to bias traditional genetic operators such as 
crossover and mutation. Some work has already been done in this 
area using different probabilistic models – an example is the guided 
mutation operator described in [14]. 

6. CONCLUSIONS AND FUTURE WORK 
This study has shown that the DEUM fitness modelling approach 
can be extended to more complex problems than the bivariate and 
univariate problems previously investigated. A Markov Network 
can be built and sampled to produce an optimal individual. It can 
also be used to predict the fitness of individuals instead of calling 
the real fitness function. The experiments here demonstrate that this 
can be achieved with a small number of function evaluations 
relative to other algorithms. 

However, this is achieved at a high cost in terms of algorithm 
overhead. In earlier experiments, DEUM gained a significant 
advantage over other algorithms through its use of fitness 
modelling. With increasing problem complexity the number of 
terms in the energy function increases which leads to an O(n3) 
increase in model build time. The time required by the sampler also 
increases considerably with as problem complexity grows. Further 
investigation is required into the effect of using models which do 
not perfectly match the problem structure, which could have a 
significantly smaller number of terms in their energy function. 
Limiting the model structure to a particular degree of complexity 
may be one way to achieve this. Indeed, this approach has been 
taken in a number of algorithms employing Bayesian networks and 
shown to be successful [6]. This will also require some degree of 
structure learning or approximation to be effective. We will need to 
investigate the trade-off between maximum fitness modelling 
accuracy and efficient model construction. 

While the model is still able to model fitness – even to a less 
accurate degree than that described in this paper – it may be used to 
guide traditional genetic operators. Our immediate consideration for 
future work is to investigate the use of hybrid operators. This could 
well lead to similar or better problem solving ability with reduced 
computational cost. 
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