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ABSTRACT
The  role  of  space  is  more  and  more  accepted  as  a  way  to 
dramatically  improve  the  success  of   coevolutionary  function 
approximation.  The process behind this success however is not 
yet  fully  understood.  It  is  suggested  that  spatiality  causes  a 
persistence  in  the  population  diversity  over  generations  and  a 
better targeting  of weak points in the host-population by means 
of the parasite.

In this paper we will discuss the role of  spatial pattern formation 
and speciation in coevolutonary function approximation and the 
influence on the success rate of coevolution.

We observe specific patterns of speciation in the problems as well 
in  the  problem  solving-population(LISP  functions).  These 
patterns depend on a  combination of the functions and the fitness 
criteria. The success of the spatial coevolutionary process  can be 
understood  from  the speciation  patterns:  only  if   the  problems 
speciate  such  that  'easy  ones'  are  first  evaluated,  the 
coevolutionary process is successful.  
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1. INTRODUCTION
More  and  more  coevolution  is  regarded  as  a  very  successful 
evolutionary  computational  method [1,2,3].  Without  having  to 
evaluate all  problems  in  the domain  or defining  very specific 
problem  sets,  coevolution  with  sparse  fitness  evaluation  is 
successful  because  it  samples  the  problem  domain  more 
efficiently.

Hillis[1] already noted that the coevolutionary process improved 
in a spatial  environment.  Pagie and Hogeweg[3]  used a spatial 
model  for  function  approximation.  Their  results  are  repeated 
several times  and the role of space is more and more accepted as 
an effective method to improve coevolutionary computation[4,5]. 

How spatiality exactly contributes to this success is unknown. In 
contrast  of  the  believe  that  the  persisting  diversity  and  the 
targeting of  weak spots  in the “host”  population  are the  main 
reason  for  superior  performance[6],  we  will  conclude  that  the 
success  crucially  depends  on  the  selforganizing  dynamics  of 
spatial patterns.

Coevolution  is  not  always  successful.  Because  of   local 
competition  and  sparse  fitness  evaluation   the  'arms  races'  can 
lead to  red queen evolution when the host continuously adapts  to 
the  presented  problem  set  and  is  unable  to  maintain  the 
information.

We will investigate the role of spatial pattern formation in keeping 
the appropriate  timescales  and  on  the order  of   presenting  the 
problems.

2. METHODS
2.1 The model
We will describe the role of spatial pattern formation, comparing 
it with a well mixed system.

Both systems are modeled in Cellular Automata and in the same 
general setup used by Pagie and Hogeweg[3].  This CA consists 
of a 2-D toroidal square lattice, with one host and one parasite per 
grid  cell.  The size  of  the lattice  is  50 x  50 cells,  defining  the 
population size at 2500. Competition for growth is local in space. 
Each individual has to compete within his 3 x 3 neighborhood for 
reproduction. A selected individual will grow into the central cell 
of  the  nine  cells  under  consideration.  In  our  well  mixed 
counterpart the whole population of hosts and parasites is mixed 
after  each  timestep  in  order  to  test  without  spatial  pattern 
formation. Note that this well mixed model differs only in spatial 
pattern  formation.  Competition  is  still  local,  evaluation  is 
asymmetric and sparse.

2.2 Target
We use 2 different functions as evolutionary target:

function 1:

Target x , y =x3 y35 x2x
function 2:

Target x , y = 1

1x−4 
 1

1 y−4 
First  we  describe  our  results  with  a  system  approximating 
function 1(further referred to as model #1). In the next section we 
will extend our research with the second function, first proposed 
by Pagie and Hogeweg[3].
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3.2.2.3 Fitness
The problems on which fitness of the host is  evaluated, are based 
on X,Y-values.  For  both  functions  there are 26  x 26 problems 
regularly distributed over the corresponding domain. For function 
1 the domain is X =0.2, 5.0 and Y = 0.2, 5.0 with an interval of 
0.2. For function 2 the distribution is in the domain X= -5.0, 5.0 
and Y= -5.0,5,0 with an interval of 0.4. The coevolving parasites 
can only adopt these values.

The  fitness  of   a  host  is  based  on  minimizing  the  distance 
between the function solution and the target of the nine parasites 
in  it  is  neighborhood.  The  parasite  fitness  is  defined  on 
maximizing the distance between target function and solution of 
just one host. This asymmetry is found to give better results with 
respect to optimization than a symmetric evaluation[3]. The host 
fitness  is  less  affected  by  changes  in  a  parasite,  the  parasite 
however can react directly to fluctuations in the host.  Note also 
that  the sparse  fitness  evaluation  has  in this  way  an  important 
extra feature. Because each host has his own neighborhood with 
corresponding parasites, competition is between hosts which have 
a fitness assigned from a different subset of the problem space. 
This increases the effectiveness of sparse fitness evaluation by, in 
a  way,  comparing  the  different  parasites  on  distinguishing 
capability.

The selection  of  hosts  is   proportional.  Each  fitness  of  all  the 
hosts  in  a  neighborhood  are  summed  and  a  random  value  in 
between  is  generated,  selecting  the  corresponding  host  for 
reproduction.  With  this  method  the  chance  of  reproduction  is 
increased proportional with the fitness and the selection pressure 
can be conveniently adjusted by using  an exponential factor.

Parasites are ranked according to their fitness and the ith ranked 

parasite is selected with probability
1
2

i

.

The fitness for the host is defined as:

Fitnesshost =e−n∗d

where the distance d is defined as:

d=∑i=1

9 ∣T  pi−h pi∣
M

with M = 1 for absolute evaluation and M = T( pi  ) for relative 
evaluation and  n normalizes the distance. In all our experiments 
n = ¾.

To prevent the solutions of the hosts getting too large, we added a 
small  size  penalty.  When the length  of  the solution  passes  65 
nodes(which  is  far  above  the  necessary  nodes  in  a  correct 
solution)  an  exponential  penalty  is  subtracted  from  the fitness. 
This  penalty  has  a  maximum  of  1/9th  of  the maximal  fitness. 

This is sufficient to highly improve calculation time and keep the 
solutions short.

2.4 Genetic representation
The genetic  representation  of  the solutions  is  based  on  genetic 
programming  and is essentially the same as  proposed by Pagie 
and  Hogeweg[3].  The  genotype  of  the  host  is  a  (LISP)  list-
representation of a function tree. The  function set consists of the 
operators  {+,-,*,%} where we use the protected division operator 
% ,such that division by zero gives 1.0. The possible terminals are 
{x,y,R},  where  R is  a  constant.  This  constant  is  defined  at 
declaration as a  random constant between -1.0 and 1.0. Note that 
almost  in  all  cases  the  system  prefers  to  make  a  constant  by 
dividing one variable by itself. Constants are kept as a possibility 
to  extend  the  possibilities  of  the  system  and  maintain  the 
'freedom' of the evolutionary process.

The genotype of the parasite represents one problem in problem 
space, specified by only one X,Y-value.

Hosts selected after evaluation are subject to point mutations and 
crossover, with a 20% and 40% chance, respectively. In order to 
use an ancestor trace (explained below), the crossover is internal. 
Internal  crossover  replaces  a  randomly  chosen  sub-tree  in  the 
selected host with a randomly chosen subtree of a copy of itself. 
In our experiments  we observed that this internal crossover has 
the same success rate as external crossover. Next to the fact that 
the fundamental mechanism is the same, deletion and duplication 
in combination  with point  mutation  seem powerful  enough  for 
fully integrating the necessary information in an evolutionary run. 
In this way we can easily examine the information flow within 
the  genomes through evolution.

Every time step also 10% of the parasite-population are mutated. 
This  means  that  one  of  the  variable  values  is  changed  into  a 
adjacent value(i.e. plus or minus 0.4). The genotypic space is not 
toroidal.  When  a  value  of  a  parasite  is  on  the  border  of  the 
problem domain, it can only mutate  in one direction.

A solution  is  considered  completely  'correct'  if  the sum  of  the 
absolute differences with the target in evaluating all 676 problems 
in the domain  is less  than  0.01.  A solution  is only  marked  as 
'correct' when the solution stays in the population for at least 50 
time  steps.  In  practice  we  observed  a  total  domination  of  the 
solution, causing it to spread through the whole population in  a 
couple of generations.

Each  run is  started with small,  randomly  created functions  for 
hosts  of  maximum  depth 3.  Because initialization with random 
values for the parasites gives considerably better results, this will 
be the case when not mentioned otherwise. When no solution is 
found  within  a  1000 timesteps  the  simulation  will  be  stopped, 
otherwise simulations are stopped after reaching the solution and 
staying  in the population 50 time steps.

2.5 Observables 
In  order to observe the spatial  pattern formation  we output  the 
different values present in each grid-cell of our CA with a color 
palette. We can plot the fitness of the parasite, the fitness of the 
host and the  X,Y value of each parasite (divided in 2 separate 
plots) in space.

In our comparison between coevolution with and without pattern 
formation, we use an ancestor trace. All new individuals entering 
the population, originating by mutation, get an identifier and a list 
of  its  ancestors.  In  this  way  it  is  possible  to  trace  back  all 
differentiation and speciation leading to an individual in a time 

Figure 1:  function 1 
landscape

Figure 2: function 2 
landscape
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step.   Every time step 60 % (40% internal  crossover  and  20% 
point)  of  the  whole  population  mutates,  so  constructing  a  tree 
with all the mutations in one time step gives a representative view 
on  the  mutational  branches  leading  to  all  the  hosts  in  that 
population.

4.  RESULTS
3.1 Efficacy of the optimization

As in most spatial coevolutionary processes, pattern formation is 
an important feature[3, 7, 8].

figure  3  visualizes  the  pattern  formation  from  parasites  in  our 
model #1, showing waves of parasites with alternating high X,Y 
values.  This  pattern  formation  is  the  driving  force  in  the 
dynamics.

Table 1. Success rates of both models

Model #1 Success rate

Spatial patterns 27/30(90%)

Well mixed 3/30(10%)

The results in table 1 show that the well-mixed system fails  in 
almost all simulations in finding a correct solution. In our system 
with pattern formation however, 90 % of the runs gives a correct 
solution, almost always within the 300 time steps.  This dramatic 
difference  in  performance  can  be  totally  attributed  to  the 
occurrence of pattern formation.

3.2 Coevolutionary dynamics depend on 
fitness evaluation
[9,  10,  11,  12]  all  describe a  ideal  trainer  as  an  trainer  which 
presents problems of increasing difficulty. This is often done with 
a learning gradient or a domain  specific  fitness  evaluation.  We 
will  demonstrate  that  spatial  pattern  formation  can  force  the 
system dynamics  in such  a  way that it can be considered as  a 
guide to ideal learning.

In  order to grasp  the full  dynamics  of  coevolutionary  function 
approximation, we first  test on model #1 in which the landscape 
is monotonously rising through the domain, slightly skewed into 
one dimension. Because of this particular landscape we can better 
follow the evolutionary process.

At first sight it seems that this function has to be far more easy to 
solve for our coevolutionary system,  but this is not the case.  It 
even  turned  out  that  the  parameters  which  give  a  90% 
performance  in  model  #2,  cannot  find  any  solution  for  this 

polynomial function. In order to get correct solutions in model #1 
the fitness evaluation has to be relative instead of absolute. This 
can be understood if we examine the parasite behavior induced by 
the  fitness  evaluation.  When  the  problem  domain  is 
monotonously  rising  and  the  evaluation  is  absolute,  all  the 
parasites clump in the highest part of the domain, X=5.0,Y=5.0. 
Here  the  absolute  fitness  advantage  for  parasites  is  highest. 
Because of this clumping,  hosts  can only evaluate one instance 
out  of  all  problems.  Variation  is  minimized  and  the  solution 
cannot  be found  through  the  coevolutionary  process.  Relative 
fitness evaluation for function 2, in contrast, will result in all the 
parasites  clumping  in  the  lowest  part  of  the  problem  domain. 
Small  inaccurate  approximations  of  the  hosts  compared  to  the 
small  target  give  a  relatively  high  fitness  advantage  for  the 
parasites.  Because  this  is  also  the  most  difficult  part  of  the 
landscape to solve, information integration is stopped. Only when 
the preferred  problems  are  solved,  the  parasites  will  evolve  to 
other regions of the problem space enabling the host to integrate 
enough  information  over  the generations  to solve the complete 
problem. This is the case for relative evaluation in the polynomial 
function and absolute for function 2.

For  similar  reasons  Pagie[10]  found  that  for  the  density 
classification  test  fitness  for  solving  easy  problems(extreme 
densities) had to be larger than for harder problems.

3.3  Parasite speciation
To truly understand the role of pattern formation in our system we 

have  to  look  at  the  parasite  behavior.  Within  model  #1   we 
observe  parasite  speciation,  originating  in  the  spatial  pattern 
formation.  A  wave  like  pattern  of  subsequent  alternating 
subpopulations travels through the whole  space. These waves are 
separated subpopulations of parasites within the population.

As can be seen in figure 4 we observe separate subpopulations of 
parasites in the population in the whole simulation until a correct 
solution is found.  Because these subpopulations  target different 
weaknesses  in  the  host  population,  they  form  the  wavelike 
patterns  and  can  in  this  way  coexist,  maintaining  parasite-
variation.  The  present  parasite  phenotypes  plotted  in  an 
intermediate time step show that the parasites have speciated into 
very  specific   regions.  These  regions  are  the  same  for  every 
simulation of  model #1.
When function 2 is the evolutionary target (and the evaluation is 
absolute),  we  also  observe  speciation  in  the  parasite 
population(fig.  5).  Again specific  regions  in problem space are 
targeted by the speciated parasites. Because of the symmetry of 
the landscape,  the regions  differ per simulation,however always 
out of a small subset of the problem space.

Figure 3: Spatial patterns in problem space.   Left for X, 
right for Y. Red denotes a high value, black denotes zero. 

Intermediate values are in between.

Figure 4: parasite speciation in evaluating function 1

2439



In  both cases  the parasites  speciate within the first  25 steps  of 
evolution  into  different  subpopulations.  The  whole  parasite 
population  exists  only  of  these  subpopulations.  Although,  the 
regions  where  the  subpopulations  linger,  differ  per  time  and 
subpopulations  do  travel  to  other  regions,  great  parts  of  the 
problem space will not ever be covered during the  simulation. 
However, correct solutions are found.

3.3  host speciation
The above described parasite pattern formation is only one side of 
the coevolutionary  coin.  The wavelike patterns  of  the parasites 
force the hosts to adapt to different subpopulations, competing in 
space,  this  results  in  wavelike  patterns  of  subsequent  host-
subpopulations. In model #1 we observe subpopulations of hosts 
speciating  into  a  different  dimension  of  the  target  function,  in 
order to specialize towards one of the  parasite-subpopulations. In 
space we can again distinguish the subsequent waves of different 
subpopulations  alternating  each  other.  These  patterns  fit  the 
parasite  patterns,  each  subpopulation  almost  entirely  on  top  of 

each other, following  each other through the space.  The spatial 
patterns  we  also  observe  in  model  #2  ,  again  indicating 
speciation.  Only  the  waves  are  more  difficult  to  distinguish 
because  of  the  faster  dynamics  and  different  amount   of 
subpopulations.

 In order to verify the host-speciation in model #2, we used the 
ancestor trace. In this way we can nicely see the evolutionary path 
and the mutational  branches leading to the final  population.  To 
identify  the role of  space  in  this  process,  we constructed  trees 
from  the ancestor  traces,  both  in the pattern formation  case of 
model #2 as in the well mixed case. These trees consists of the 
whole mutated population at three different time steps, indicated 
by different colors.  Evolution takes place in the direction of the 
arrows, so the out most branches are the present population at the 
time indicated by the corresponding color. The  hosts present at 
t=1 are indicated. 

In the well mixed scheme (fig.  6) all the offspring comes from 
only  one ancestor.  If  in contrast  we look  at  (fig.  7)   the most 
striking difference is that in the spatial model, within all colored 
time  steps  there  is  offspring  traceable  back  to  two  different 
ancestors present at initialization. 

A  second  observation  here  is  that  the  different  mutational 
branches  keep expanding  in the different  time steps,  indicating 
different genetic branches present in the same subpopulation.

In  the  tree  from  the  well  mixed  model  we  observe  only  one 
sustaining  lineage  leading  to  the  final  population.  At  the 
intermediate  colored  time  steps  the  tree  seems  to  expand  its 
branches,  however  only  one  single   branch  takes  care  for  the 
whole population in the next depicted time step. This difference in 
ancestor  trees  shows  exactly  the  influence  of  spatial  pattern 

Figure 6: combined ancestor trace in well mixed system

Figure 7: combined ancestor trace with  pattern formation

Figure 5: parasite speciation in function 2
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formations. In the spatial model subpopulations adapt to different 
subpopulations  of  the  parasite,  so  that  genetic  variation  only 
diminishes when a genotype with the correct solution comes into 
existence and naturally dominates and takes over the population. 
The different branches are forced to compete with each other and 
force  the  different  subpopulations  to  adjust  to  the  parasite 
subpopulations, sustaining progressive evolution.

In the well mixed model, all variation originates from the same 
ancestor.  The differentiated branches  at  t, are gone at time step 
t=t+50 and  the whole population at t=t+50 originated out of only 
one genotype present at  t.  This is the typical pattern, known as 
Red  Queen  evolution,  which  is  observed  in  many  host/virus 
interactions like eg. Influenza in humans.

5. VARIATION
In contrast to expectation we see a higher parasite diversity in the 
well mixed model  than in the spatial  model (Shannon diversity 
is 15% higher at all levels of course graining).  Also the distance 
between  observed  parasites  at  one  location  of  the  grid  in 
subsequent time steps is higher in the mixed case. In the spatial 
model more than 50% are the same in subsequent time steps.(fig 
8), which corresponds to the observed waves of similar parasites. 
The hosts observe even less variation because they travel along 
with  the  waves.  Intuitively,  one  would  expect  this  lack  of 
information to harm the coevolutionary optimization. Our results 
show  the  opposite  effect.  The  scale  of  the  waves  is  a 
selforganizing property, which depends on the rate of adaptation. 
In  this  way  the interconnecting  subpopulations  organizes  itself 
into an ``ideal learner/trainer'' system.

6. CONCLUSION
The success of spatial coevolutionary function approximation can 
almost  entirely  be  ascribed  to  the  presence  of  spatial  pattern 
formation.  Spatial  patterns  guide  the learning  process  in  space 
and time. Chaotic waves present relevant information at multiple 
timescales and guide the coevolving subpopulations, preventing  a 
red queen race  in which the sparse information is not integrated 
into a full solution.

 Interestingly the encountered diversity of problems at a random 
position in space is higher in the well mixed system,  both at a 
very short and at the long timescale. Nevertheless the success rate 
of the spatial system is much higher.

We conclude that the influence of space cannot  be attributed to 
local competition, or higher diversity alone, but depends  on the 
selforganizing  dynamics  of  the  spatial  patterns  and  the 
appropriate timescales for adaptation generated.
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