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ABSTRACT
This paper shows that the evolutionary design of digital cir-
cuits which is conducted at the gate level is able to produce
human-competitive circuits at the transistor level. In addi-
tion to standard gates, we utilize unconventional gates (such
as the NAND/NOR gate and NOR/NAND gate) that con-
sist of a few transistors but exhibit non-trivial 3-input logic
functions. Novel implementations of adders and majority
circuits evolved using these gates contain fewer transistors
than the smallest existing implementations of these circuits.
Moreover, it was shown that the use of these gates signifi-
cantly improves the success rate of the search process.

Categories and Subject Descriptors
B.6.1 [Hardware]: Design Styles—Combinational
logic; B.6.3 [Hardware]: Logic Design—Design Aids; I.2.m
[Artificial Intelligence]: Miscellaneous

General Terms
Algorithms

Keywords
digital circuits, evolvable hardware, evolutionary design

1. INTRODUCTION
In the context of the evolutionary circuit design, the scal-

ability problem is often mentioned in literature [15, 18, 4].
The main implication of the scalability problem is that only
relatively simple circuits have been evolved so far. Basi-
cally, there are two reasons for this problem: Firstly, com-
plex solutions require long chromosomes to be represented
but these long chromosomes imply large search spaces that
are usually difficult to search. Secondly, in order to evaluate
a complex candidate circuit, a relatively complex procedure
has to be undertaken – which is time consuming and makes
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the evolutionary search very slow. Stoica et al. noted [12]:
“From the evolvable hardware perspective, it is interesting
to have programmable granularity, allowing the sampling of
novel architectures together with the possibility of imple-
menting standard ones. The optimal choice of elementary
block type and granularity is task dependent.” Therefore,
its designer’s challenge to define the representational bias
in order to obtain a suitable search space within the entire
space of possible solutions.

While the evolutionary design conducted at a certain level
is able to provide optimized solutions for the particular level
(e.g. the transistor level), it is very difficult to evolve at the
particular level more complicated circuits that are typically
designed at a higher level (e.g. the gate level). On the other
hand, when the evolution is conducted at the higher level
then a particular complex solution might be found; however,
it is not usually optimal from the perspective of lower levels
that have to be taken into account when the evolved circuit
has to be fabricated.

This fact is also visible in the standard design process of
digital circuits. Complex digital circuits are designed at the
RT-level (register transfer level) or at the gate level. Various
optimization techniques are utilized to obtain an optimized
gate-level circuit. This solution is then implemented us-
ing well-known transistor-level implementations of standard
logic gates which are available in the so-called cell library.
However, the final transistor-level solution might not be op-
timal at all.

For example, the logic expression Y = (AB + CD)′ (a
corresponding circuit is shown in Fig. 1a) seems to be op-
timized at the gate level. It requires two AND gates, a
single OR gate and inverter, which costs 20 transistors (see
Fig. 1c). However, Y can be implemented using 8 transis-
tors only when a special AND-OR-Invert circuit is employed
(see Fig. 1b). The reason is that the transistor level allows
implementing this particular circuit much easier than a stan-
dard gate-level optimization suggests. As circuit designers
know this fact, they do map RT-level designs to the elemen-
tary components of the cell library that are optimized for a
particular fabrication process.

Unfortunately, in the field of evolutionary design of dig-
ital circuits, designers do usually optimize the number of
standard gates (and/or delay), ignoring thus the real circuit
cost on a chip [9, 15, 2, 20] (perhaps with an exception [1]).
Although the evolutionary circuit design has proven that is
able to generate the gate-level circuits that lie beyond the
scope of human designs [9, 7, 5], these benefits have not

245



c)

A

B

C

D

Y

AND

OR

a)

C

A

A

B D

C
Y

B

D

b)

A

B

D

C
Y

Figure 1: And-Or-Invert Circuit: a) at the gate
level, b) CMOS implementation, c) a naive gate level
implementation

been demonstrated so far for nontrivial digital circuits con-
sidered at the transistor level. Note that some implementa-
tions of simple gates were evolved at the transistor level [5,
8, 19]; however, as mentioned above, the evolutionary design
of more complicated digital circuits directly at the transistor
level is currently outside the capabilities of commonly avail-
able computers. In particular, Langeheine [8] argues that
the evolutionary design of the XOR gate is difficult.

In this paper we utilize the evolutionary algorithm to
evolve gate-level combinational circuits with the aim to min-
imize the number of transistors in target designs. The goal
of this paper is to show that by using special elementary cir-
cuit components (unconventional gates) that are optimized
for the transistor level we can reduce the number of tran-
sistors in some digital circuits. The adders and majority
circuits are used as benchmark circuits.

2. GATE LEVEL VS. TRANSISTOR LEVEL
DESIGNS

2.1 The 1-bit Full Adder
Consider a 1-bit full adder. This circuit has two operands,

A and B, and an input carry, Cin. It generates the sum

S = A ⊕ B ⊕ Cin (1)

and the output carry

Cout = AB + BC + AC (2)

These equations were derived from the truth table of this
circuit and optimized using standard operations of Boolean
algebra [16]. As the circuit contains a 3-input XOR gate,
three 2-input AND gates and a 3-input OR gate, it costs 38
transistors. In order to calculate the number of transistors,
we have to look at Table 1 which gives transistor costs of
standard gates.

However, a standard static CMOS VLSI implementation
of the 1-bit full adder costs only 24 transistors [17] (see
Fig. 2). The number of transistors can even be reduced to
22 when so-called transmission gates are utilized [21]. Zim-
mermann and Gupta compared different implementations
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Figure 2: A standard 24-transistor implementation
of a static 1-bit full adder

of full adders in terms of area, delay and power consump-
tion [22]. The implementation cost of adders is strongly
connected with the cost of the XOR gate. While a stan-
dard static CMOS 2-input XOR gate is implemented using
10 transistors, only 8 transistors are sufficient when trans-
mission gates can be utilized. Cheng and Hsieh compared
various implementations of 3-input XOR gate [3]. Their pa-
per also shows that the 3-input gate can be implemented
using 12 transistors.

Miller et al evolved a very unconventional implementa-
tion of the 1-bit full adder [9]. Although Miller et al have
not optimized the number of transistors, Figure 6a shows
that evolved circuit can be implemented using 22 transis-
tors only as it contains two 2-input XOR gates and a single
multiplexer.

Table 1: Logic gates and their implementation cost
Gate Inputs Symbol Transistors
AND 2 AND2 6

3 AND3 8
OR 2 OR2 6

3 OR3 8
NOT 1 NOT 2
XOR 2 XOR2 8/10

3 XOR3 12/16
NAND 2 NAND2 4

3 NAND3 6
NOR 2 NOR2 4

3 NOR3 6
MX 2+1 MX 6
NAND/NOR 2+1 NAND/NOR 10
NOR/NAND 2+1 NOR/NAND 8

2.2 Unconventional Gates: NAND/NOR and
NOR/NAND

This section presents two unconventional three-input gates
that are not usually considered by circuit designers. It will
be shown in next sections that the evolutionary design ap-
proach is able to effectively utilize them as building blocks
of more complex circuits.

The NAND/NOR gate as well as the NOR/NAND gate
has three inputs A,B and Sel and operates according to
Table 2. As Figure 3 shows, these gates perform multiplex-
ing the NAND logic function and the NOR logic function
according to Sel. Table 1 suggests that their implementa-
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Figure 3: Gate-level implementation a)
NAND/NOR gate, b) NOR/NAND gate

tion should cost 14 transistors (6 transistors for the multi-
plexer, 4 transistors for the NAND and 4 transistors for the
NOR). However, as the NAND/NOR gate is identical with
an inverted majority function, it can be implemented using
10 transistors only (see Fig. 4). An implementation of the
NOR/NAND gate costs 8 transistors.

Table 2: Truth tables of NAND/NOR and
NOR/NAND gates

Sel A B NAND/NOR NOR/NAND
0 0 0 1 1
0 0 1 1 0
0 1 0 1 0
0 1 1 0 0
1 0 0 1 1
1 0 1 0 1
1 1 0 0 1
1 1 1 0 0

3. EVOLUTIONARY ALGORITHM
Various approaches have been proposed to evolve digital

circuits [9, 2, 20, 14, 13]. In this work, we will use the evolu-
tionary algorithm (EA) inspired by Cartesian Genetic Pro-
gramming [9, 10]. A candidate digital circuit is represented
using a one-dimensional array of programmable nodes. Each
programmable node has three inputs, a single output and
can be programmed to implement one of functions specified
in function set Γ. The role of EA is to find the intercon-
nection of nodes and functions performed by the nodes for a
given specification expressed by means of a truth table. Cir-
cuits are encoded as arrays of integers of the size 4n + no,
where n is the number of nodes and no is the number of
circuit outputs. Figure 5 shows a circuit consisting of three
inputs, two outputs and five programmable nodes. Note
that only nodes 3, 5 and 7 are utilized in this example (i.e.
in the phenotype). As only combinational circuits will be
evolved, no feedback links are allowed in candidate circuits.
Hence a node input can be connected either to an output of
a node with smaller index or to a primary circuit input. EA
uses a single genetic operator – mutation – which modifies
m1 (typically, m1 = 3) integers of the chromosome. Either a

Figure 4: CMOS implementation a) NAND/NOR
gate, b) NOR/NAND gate
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Figure 5: Example of encoding of a 3-input/2-
output circuit. Chromosome: 0220 1323 0212 1530
3121 75. Logic functions are encoded as 0 (OR), 1
(AND), 2 (XOR), 3 (MX).

node or an output connection is modified. The EA operates
with the population of λ individuals (typically, λ = 15).
The initial population is randomly generated. Every new
population consists of a parent (the fittest individual from
the previous population) and its mutants. In case that two
or more individuals have received the same fitness score in
the previous generation, the individual which did not serve
as the parent in the previous population will be selected as
a new parent. This strategy was proven to be very useful [9,
15].

In case of the combinational circuit evolution, the fitness
function is constructed to minimize the Hamming distance
between the output vectors of a candidate circuit and the
required output vectors. All possible input vectors are ap-
plied to obtain the set of output vectors. In addition to
maximizing functionality, we minimize the number of tran-
sistors, the number of gates and delay (at the gate level).
This is achieved by using a simple multicriteria fitness func-
tion whose value has to be minimized here:

fitness = 1 + a.g3 + b.g2 + c.g1 + d.g0, (3)

where a denotes the number of wrong bits computed by
the candidate circuit (which is the highest priority), b is the
number of transistors, c is the number of gates and d denotes
delay of the circuit (which is the lowest priority). Constants
g0, g1, g2 and g3 are defined as follows:

g0 = 1, (4)

g1 = (dmax + 1).g0, (5)

g2 = (cmax + 1).g1, (6)

g3 = (bmax + 1).g2, (7)

where bmax, cmax and dmax are maximum possible values for
b, c and d. Typically, bmax = 16n, cmax = n and dmax = n.
The number of transistors is calculated for the nodes used
in the phenotype according to Table 1.

4. EXPERIMENTAL RESULTS
This section reports the experimental results obtained for

four target circuits: 1-bit full adder, 2-bit adder, 5-input
majority circuit and 7-input majority circuit.

4.1 The 1-bit Full Adder
In order to evolve a 1-bit full adder, we utilized the fol-

lowing setup of EA: λ = 15, n = 20, m1 = 3 and 1,000,000
generations were produced. Note that we do modify the mu-
tation rate after achieving a perfect functionality, i.e. before
the number of transistors is optimized. The second muta-
tion parameter is denoted as m2. We modified 7 integers
on average of the chromosome, i.e. m2 = 7. We tested
different combinations of gates in Γ and different transistor
costs for those gates. We run 50 independent experiments
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Figure 6: Evolved 1-bit full adders

for each setup. Table 3 lists the gates included into Γ, the
average number of generations (AvrG) needed to find a fully
functional solution (not necessarily optimized for transistor
count) and examples of best-evolved implementations. We
can observe that the 22-transistor implementation was found
for all combinations of parameters. Figure 6 shows examples
of the best implementations.

4.2 The 2-bit Adder
The 2-bit adder calculates the 2-bit sum and output carry

for two 2-bit operands and an input carry, i.e. the circuit
has 5 inputs and 3 outputs. In order to investigate which set
of gates is suitable for this problem, we compared ten dif-
ferent sets Γ (denoted as #1–#10 in the following tables).
Corresponding transistor counts per gate are taken accord-
ing to Table 1. In this experiment and in the following ex-
periments, XOR2 costs 10 transistors, XOR3 costs 12 tran-
sistors, NAND/NOR costs 10 transistors and NOR/NAND
costs 8 transistors. We utilized the following setup of EA:
λ = 15, n = 60, m1 = 3, m2 = 7 and 1,000,000 generations
were produced. We run 100 independent experiments for
each combination of gates in Γ.

The first part of Table 4 provides the average number
of gates used in the best circuits of each run. Thus, we
can observe those gates that are useful for this particular
problem. An empty space means that the gate was not
used in Γ. The second part of Table 4 gives the average
values for some parameters calculated from the best circuits
of the 100 independent runs: the number of transistors, the
number of gates, delay (measured at the gate level), fitness
value and the number of generations. “Succ. Run” denotes
the number of runs (out of 100 runs) in which a correcly
working circuit was evolved.

Figure 7 shows the best implementation of the 2-bit adder
that we evolved. By connecting two conventional 1-bit full
adders or two Miller’s 1-bit full adders [9] into the carry-
ripple adder we can obtain a solution with 44 transistors.
Evolved solution which utilizes two NOR/NAND gates, two
3-input XOR gates and an inverter costs 42 transistors.
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Table 3: Resulting implementations of the 1-bit full adder for different sets of utilized gates Γ1 . . . Γ6. The
number of transistors is given for each gate.

Gates AvrG XOR2 XOR3 MX NOT NAND/NOR NOR/NAND Best implementations
Γ1 386.9 10 12 6 2 - - 3.MX+2.NOT = 22 tr. (C1)
Γ2 334.9 10 12 6 2 10 8 NOR/NAND+XOR3+NOT = 22 tr. (C2)
Γ3 367.4 10 16 6 2 - - C1
Γ4 259.3 10 16 6 2 10 8 C1 and C2
Γ5 329.2 8 12 6 2 - - 2.XOR2+MX = 22 tr.
Γ6 394.9 8 12 6 2 10 8 C2

Table 4: The 2-bit adder circuit: Average values of some parameters calculated from 100 independent runs
for 10 different sets of gates

Γ #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

AND2 3.27 0.18 0.03 11 7.93
OR2 2.13 0.13 0.1 7.6 -

XOR2 3.95 1.55 0.44
NOT 0.69 0.99 1.22 17 2.59 2.9 2.52 -

NAND2 0.86 0.22 0.11 17.71 15.69
NOR2 0.88 0.2 0.07 17.26 15.95
AND3 0 0 4 0.12
OR3 0.01 0 0.21 -

XOR3 0.93 1.53
NAND3 0 0 1.13 1.45
NOR3 0.01 0.01 1.44 1.25
MX 3.55 0.88

NAND/NOR 0.55
NOR/NAND 1.51

Transistors 80.24 53.62 49.62 132 101 77.68 77.82 77.24 76.36
Gates 11.78 7.77 6.45 32 18.45 18.84 18.74 20.03 19.73
Delay 5.56 4.05 3.56 10 8.03 7.9 7.88 7.45 7.57
Fitness 2,535,619 2,882,840 2,867,875 22,408,827 2,166,756 5,737,087 5,452,684 5,879,844 4,878,742

Generation 38,686.8 32,793.2 21,386.8 997,862 156,150 863,785 855,925 848,595 755,830
Succ. Rate 100 100 100 1 100 31 34 29 44 0

NOR/NAND
NOR/NAND

S0

S1

Cout

Cin

A1

B1

B0

A0

Figure 7: Evolved 2-bit adder

4.3 Majority Circuits
A majority circuit returns logic 1 only if more logic 1s

than logic 0s are given at the circuit input. If only two-
input AND and two-input OR gates can be utilized, then
according to a sorting network-based implementation [6],
the 5-input majority circuit consists of 10 such gates (i.e.
60 transistors) and the 7-input majority circuit consists of
20 such gates.

In order to evolve the 5-input majority circuit and 7-input
majority circuit we utilized the same setup as in the previous
section. Table 5 and Table 7 summarize average values of
some circuit parameters calculated from 100 independent
runs for 10 different sets of gates. Both tables illustrate
that the use of unconventional gates significantly improves
the quality of evolved solutions (see the #3 column).

Table 6 shows basic parameters of selected 5-input ma-
jority circuits that we evolved. It can be seen in Figure 8
that the best circuit contains only 32 transistors and utilizes
three NOR/NAND gates, the NOR gate and the NAND
gate. Without the use of the unconventional gates, the EA
is able to find an implementation which costs 40 transistors.
Note that a conventional implementation of this circuit con-
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Table 5: The 5-input majority circuit: Average values of some parameters calculated from 100 independent
runs for 10 different sets of gates

Γ #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

AND2 4.59 0.55 0.06 8 3.28
OR2 4.23 0.75 0.12 2.99 8.67

XOR2 0.38 0.32 0.01
NOT 0.11 0.42 0.1 12 0 2.97 2.76 11.33

NAND2 1.17 1.47 0.27 11.36 9.23
NOR2 1.03 0.99 0.19 11.8 9.45
AND3 0.3 0.09 2 1.3
OR3 0.27 0.05 1.45 2.67

XOR3 0.33 0.01
NAND3 0.15 0 2.25 2
NOR3 0.08 0.03 2.01 2.09
MX 3.25 0.36

NAND/NOR 0.95
NOR/NAND 2.48

Transistors 65.74 51.08 36.14 88 59.62 58.94 59.26 54.86 55.86 96
Gates 11.51 8.88 4.72 22 9.02 13.61 13.81 14.2 14.31 22.67
Delay 5.49 4.51 3.18 7 4.61 5.12 5.23 5.59 5.49 7.33
Fitness 2,481,648 2,873,457 2,817,610 5,445,075 2,012,203 1,563,433 1,564,636 1,548,288 1,552,015 5,388,845

Generation 40,677.9 12,130.5 9,348.8 996,910 7,461.89 37,914.7 35,905.9 37,436.9 49,098.4 990,743
Succ. Rate 100 100 100 1 100 100 100 100 100 3

tains 60 transistors. An optimized conventional solution was
proposed which contains 38 transistors [11].

Table 6: Some properties of the best evolved 5-input
majority circuits

Circuit 1 2 3 4 5 6
# conventional gates 8 2 7 0 8 7
# NAND/NOR – 0 – 1 – –
# NOR/NAND – 3 – 3 – –
# transistors 40 32 42 34 46 48
# gates 8 5 7 4 8 7
delay 4 3 4 3 3 3

Table 8 shows basic parameters of selected 7-input ma-
jority circuits that we evolved. It can be seen that the
best circuit contains only 60 transistors and utilizes two
NOR/NAND gates, two NAND/NOR gates and three 3-
input XOR gates. The best circuit evolved using standard
gates contains 86 transistors.

Table 8: Some properties of the best evolved 7-input
majority circuits.

Circuit 1 2 3
# conventional gates 15 2 13
# NAND/NOR – 2 –
# NOR/NAND – 2 –
# transistors 86 60 96
# gates 15 6 13
delay 9 3 6

NOR/NAND

out0

in4

in3

in2

in1

in0
NOR/NAND

NOR/NAND

Figure 8: Evolved 5-input majority circuit

5. DISCUSSION
Our task was to design non-trivial digital circuits (more

complicated than a single gate) and, simultaneously, to cre-
ate such implementations of those circuits that are optimized
for the target platform, i.e. rather for the transistor level
than for the gate level. As we are not able to evolve these
circuits directly at the transistor level1, evolutionary design
of this class of circuits was performed at the gate level. How-
ever, the implementation cost of candidate circuits was eval-
uated at the transistor level.

Except the standard gates we utilized two unconventional
gates, well-suited as basic components for the circuits we
wanted to evolve. In most cases, evolved solutions con-
tain fewer transistors than well-optimized transistor-level
conventional as well as existing evolved implementations.
Experimental results show that the use of unconventional

1As far as we know, no similar results have been reported in
available literature. Probably because available computing
resources are not sufficient.
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Table 7: The 7-input majority circuit: Average values of some parameters calculated from 100 independent
runs for 10 different sets of gates

Γ #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

AND2 9.67 1.54 0.59 - -
OR2 8.67 1.87 1.21 - -

XOR2 1.08 1.29 0.16
NOT 0.14 0.79 0.65 - - 5 6.12 -

NAND2 0.83 1.68 0.61 17 19.6
NOR2 1.72 1.18 0.63 20.14 15.75
AND3 0.48 0.28 - - -
OR3 0.63 0.32 - -

XOR3 1.33 0.21
NAND3 0.6 0.13 7.5 4.2
NOR3 0.56 0.1 5.14 5.12
MX 7.73 1.84

NAND/OR 3.21
NOR/NAND 3.36

Transistors 131.44 124.6 97.49 113 111.43 113.6 106
Gates 22.11 19.68 13.32 24.5 25.29 28.8 27
Delay 8.44 7.55 5.68 6.5 7.86 9 8.62
Fitness 5,399,959 3,392,049 3,156,677 9,046,069 8,728,553 7,006,954 7,309,033

Generation 849,817 370,296 135,659 973,505 971,021 979,242 979,381
Succ. Rate 36 94 98 0 0 4 7 5 8 0

NAND/NOR
NOR/NAND

NAND/NOR

NOR/NAND

in6

in5

in4

in3

in2

in1

in0

out0

Figure 9: Evolved 7-input majority circuit

gates significantly helps the evolution to find good solutions
(see the averages in the #3 column of Tables 4, 5 and 7).
Table 9 summarizes the results. Therefore, identifying the
suitable transistor-level components (i.e. the gates such as
NAND/NOR, NOR/NAND, AND-OR-Invert etc.) and us-
ing them as building components at the gate level represents
a promising method for designing non-trivial digital circuits
optimized at the transistor level. As Table 3 shows, EA is
really able to optimize the number of transistors in target
circuits when different implementation costs are assigned to
gates.

Another advantage of the proposed method is that when
EA operates with gates and those gates are correctly imple-
mented using transistors then the final solution would ex-
hibit a desired electrical behavior. It often happens during
evolutionary digital circuit design conducted at the tran-

sistor level that some transistors are not used as switches
(e.g. they operate in the active region) and thus resulting
circuits exhibit undesired properties such as a high power
consumption.

Table 9: The number of transistors in the best im-
plementations of test circuits. UG denotes “uncon-
ventional gates included”

Circuit/Method Conventional EA EA(+UG)
1-bit adder 22 22 22
2-bit adder 44 44 42
5-input majority 38 40 32
7-input majority - 86 60

On the other hand, we have not considered some impor-
tant aspects in this study. Because we optimized the delay
at the gate level, the delay of evolved solutions is not nec-
essarily optimized for the transistor level. We did not deal
with the power consumption of evolved circuits. We did not
consider the placement and routing aspects of evolved cir-
cuits on a chip. These issues should be investigated as a
part of future work.

In comparison with the Koza’s highly computationally-
demanding genetic programming method [7], our approach
allowed us to design target circuits in a relatively short time.
A single run of EA which utilizes 60 programmable nodes
and produces 1,000,000 generations requires 30 sec. for the
1-bit full adder, 154 sec. for the 2-bit adder (or 5-input
majority) and 198 sec. for the 7-input majority circuit on
average when computed at a standard PC equipped with
Athlon64 X2 4800+ processor.
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6. CONCLUSIONS
In this paper we clearly demonstrated that the evolution-

ary design of digital circuits which is conducted at the gate
level is able to produce human-competitive circuits at the
transistor level. Novel implementations of adders and ma-
jority circuits that utilize unconventional NAND/NOR and
NOR/NAND gates were proposed. Future work will be de-
voted to searching for those “unconventional” components
which were overlooked in the past but which could serve
as area-efficient building blocks for the evolutionary design
conducted at the gate level.
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