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ABSTRACT
The process of development creates a phenotype from one or
more genotypes of an individual through interaction with an
environment. The opportunity for development to choose a
phenotype from a set of alternatives made possible by the
individual’s genotype(s) has not been widely considered in
evolutionary computation. We briefly review recent research
on developmental learning, dominance, and hybrid genetic
algorithms that has investigated the role of choice in de-
velopment. A new model of probabilistic development is
presented based upon genotypes that encode the probabili-
ties that the various alleles are expressed in the phenotype.
The model outperforms a standard, binary haploid model
on two families of single-peaked fitness functions in terms
of average fitness. The standard model performed better
on multi-peaked MAXSAT environments. More research is
needed to fully evaluate the new model.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Problem Solving, Search

General Terms: Algorithms

Keywords: genetic algorithms, development, choice, learn-
ing, dominance

1. INTRODUCTION
The process of development, whereby a phenotype is cre-

ated from one or more genotypes of a given individual, has
received relatively limited attention in evolutionary compu-
tation. A phenotype is that aspect of an individual that
is evaluated by an environment. In the vast majority of
evolutionary computation applications, a genotype is either
evaluated directly or is mapped to a unique phenotype by a
deterministic function, this mapping being a reformulation
or expansion of a linear genotype to make evaluation easier
to perform. This second form of development is often dis-
cussed in genetic programming applications, where linear,
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compressed encodings of programs are expanded into com-
putation trees, cellular automata, or other program forms
[17]. In other cases, grammatical or rule -based encodings
of complex structures, such as neural networks, have been
used, e.g., [27], [9]. These approaches represent a minimal
perspective on the development process that only addresses
issues of genotype form and can just as well be considered
to be part of the evaluation process.

In particular, the possibility for development to select as-
pects of a phenotype from a set of alternatives made possi-
ble by an individual’s genotype(s) has not been widely con-
sidered. One thread of research where this issue has been
addressed is the investigation of the impact of adaptive indi-
viduals in evolving populations [5]. Research considering the
effects of developmental learning on population dynamics,
including investigations into the existence or nonexistence of
a facilitative Baldwin Effect, has included interaction with
an environment to direct choice as part of the development
process. Baldwin proposed that learning during develop-
ment should speed the fixation of adaptive alleles [2]. In
recent simulation studies, a local search process during de-
velopment identifies an improved, learned phenotype based
upon a given innate genotype. To be consistent with the
central dogma of biological genetics [21], the learned phe-
notype is used to determine an individual’s fitness, but the
innate genotype is recombined to form the next generation
should the individual be selected as parent.

Hinton and Nowlan [13] were among the first to employ
simulation as a means for investigating the impacts of learn-
ing during development. They introduced ? loci in haploid
genotypes, which loci were considered to be learnable. Given
a genotype, their learning method tried all combinations of
0, 1 values for these loci, searching for improvements in fit-
ness of the phenotype. Their research demonstrated a pos-
itive impact of developmental learning on average fitness in
an extreme environment having only one phenotype with
increased fitness, all other phenotypes being equal. Mayley
[18] used a binary haploid genotype and developed a pheno-
type by initially setting it to the genotype and then sequen-
tially trying alternative allele values for all loci, changing
the allele that gave the largest increase in fitness; this pro-
cess continued for some number of cycles, each cycle being
termed a learning operation. Mayley found a negative, or
hiding, effect on average innate fitness in an environment
having no epistatic interaction among gene loci and a posi-
tive impact when such interactions were introduced. Recent
research has investigated which conditions give rise to the
faciitative Baldwin Effect and which to the hiding effect [29].
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Figure 1: Modified-Basic Differences in Step Aver-
age Fitness and Percent Homozygotes for stepSizes
4 and 8.

Diploid representations necessarily give rise to choice dur-
ing development. At heterozygotes (i.e., loci of the two geno-
types where corresponding alleles differ), development must
choose which allele to express in the resultant phenotype.
An uninformed choice is one that randomly selects either
allele with equal probability, which we will term the Basic
Model of development. In earlier research [6], we contrast
population dynamics generated under the Basic Model with
that generated by a Learning Model. The Learning Model
sets the phenotype to one of the two genotypes, and then
for each heterozygote, considers the other allele for possi-
ble expression. If this allele improves fitness, it replaces the
original allele in the phenotype. A parameterized family of
single-peaked fitness functions, Step(stepSize), were used as
environments. Each fitness function compares a given phe-
notype to a random phenotype called the point. With a
stepSize of k ≥ 1, k consecutive locations must equal the
corresponding point locations to match a step; there are
genSize/k non-overlapping steps. The fitness function re-
turns the percentage of steps that match. The Step func-
tions represent fitness landscapes having a single peak (i.e.,
the point) with plateaus determined by the steps. Increas-
ing the stepSize adds difficulty, as the evolutionary process
must accumulate all of a stepSize group of alleles before
an individual’s fitness improves above a current plateau. A
stepSize corresponds to the degree of epistatic interaction
between successive gene loci [15].

Figures 1 shows the impacts of developmental learning

on the average fitness and genetic diversity of a population
of size 1000 given Step fitness functions with stepSizes of 4
and 8. For purposes of comparing the Learning Model to the
Basic Model, uninformed development is used to generate a
phenotype i.e., a Modified Model. The plots show the values
under the Modified Model minus the values under the Basic
Model, where stepSize is indicated by the last legend ele-
ment; cases with mutations are shown in bold. We observe a
phase transition in the impact of developmental learning in
these single-peaked environments. With low stepSizes, the
environmental is conquerable by evolution under the Basic
Model, as the population reaches near optimal average fit-
ness. In these cases, developmental learning has a Blurring
Effect on evolution, slowing both gain in average fitness and
loss of genetic diversity. With higher degrees of epistatic
interaction, the environment proves to be unconquerable by
the Basic Model. In these cases, developmental learning
exhibits the Baldwin Effect, yielding a faster increase in av-
erage fitness and loss of genetic diversity.

From an evolutionary computation perspective, the addi-
tional evaluations of the fitness function during developmen-
tal learning impact overall genetic algorithm performance
and must be considered when comparing overall algorithm
efficiency. Hybrid genetic algorithms are optimization meth-
ods that introduce local optimization methods, some being
specific to a given problem domain, that are applied to the
individual genotypes determined by evolutionary search [10].
In some cases, local methods are used to fine tune the re-
sults determined by the genetic algorithm In others, these
methods are applied to all genotypes, with the improved
genotypes selected and passed on by the genetic algorithm.
These approaches bear close resemblance to the develop-
mental learning research discussed above, though the latter
represents a Lamarckian perspective on evolution, passing
along genotypes that include acquired adaptations. There
has been a significant range of problems to which hybrid
algorithms have been applied. In one experiment investi-
gating automated feature selection for learning algorithms,
the hybrid approach was found to outperform simple hill
climbing and genetic algorithms [23]. Other applications of
hybrid algorithms include the traveling salesman and graph
partitioning problems [5], [14].

One area of research in evolutionary computing that has
successfully employed hybrid genetic algorithms has been in
the creation of artificial neural networks [31]. As such a net-
work is created, both its architecture (i.e., the connections)
and weights must be determined. One approach has been to
evolve fairly good weights for a given architecture and then
use standard neural network training methods, such as back-
propagation, to refine the weights and improve ultimate per-
formance [16]. The idea is that evolution efficiently gets the
network near a good fitness peak and then standard network
training finds that peak. Another approach uses evolution
to evolve architectures and then standard network training
methods determine the weights [24]. In either case, develop-
mental learning that improves weights through interaction
with an environment is a key component of the process.

Choice is seen to be an active component of biological de-
velopment in a variety of circumstances. These occurrences
are said to represent the presence of phenotypic plasticity [1].
Research in biology indicates that a significant amount of an
individual’s genotype encodes information for control of phe-
notype development based upon available gene alleles. The
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Figure 2: Dominance Differences in Average Fitness
and Genetic Diversity

effect of this developmental information can be seen in tis-
sue and organ differentiation throughout a body. Changes in
this developmental information can lead to changes in phe-
notype characteristics even without changes in gene makeup.
Of interest is that certain natural systems seem to act to
limit this choice by fixing a preference for one allele over
another. Canalization is the notion that developmental re-
actions can be adjusted so that they bring about a nearly
same outcome regardless of small variations in environmen-
tal conditions [28] This concept is supported by the observed
constancy of the wild type across similar environments [25].

A related evolutionary phenomenon is dominance, which
has been an element of the theory of evolution since first
being identified by Mendel in his classic study of pea pop-
ulations over 140 years ago [22]. What Mendel noticed was
that almost all developed phenotypes for a pure hybrid trait
exhibited a single trait value, yet the hidden trait value reap-
peared in about one-fourth of offspring from those hybrids.
Mendel proposed this was due to the non-uniform expres-
sion of gene alleles occurring at heterozygous genotype loci,
reflecting dominance of the preferred allele over other the
possible allele(s). We define dominance to be the preferen-
tial expression of certain gene alleles at heterozygous diploid
loci during phenotype development. The preferred alleles
are referred to as dominant alleles and the others as reces-
sive alleles. Dominance can be understood as a form of
developmental canalization, where despite the occurrence of
a recessive gene at a heterozygote, the dominant gene is (al-
most) always expressed [25]. From a biological perspective,
dominance can been understood as a narrowing of the reac-
tion range of development [26] at particular gene locations,
resulting in stable development patterns.

Dominance that is well-aligned with the environment, i.e.,
that prefers alleles maximizing fitness, exhibits an Adaptive

Effect, improving average fitness and maintaining greater ge-
netic diversity over that provided under the Basic Model [7].
Two models for the acquisition of well-aligned dominance
in diploid individuals were considered, one based solely on
homozygote occurrence in ancestors and one involving de-
velopmental learning. This form of developmental learning
tries alternative alleles for heterozygotes only when there is
no dominance preference for the gene locus. By this model,
developmental learning does not affect dominance prefer-
ences directly. In conquerable environments, this form of
developmental learning had no appreciable effect on domi-
nance acquisition or average fitness as the method based on
homozygote occurrence already realized well-aligned dom-
inance and near optimal fitness levels. In unconquerable
environments, however, developmental learning resulted in
more complete acquisition of a well-aligned dominance pat-
tern, which in turn had a Baldwin Effect on population dy-
namics, improving average fitness with greater loss of genetic
diversity. Figure 2 shows results for a Step environment with
stepSize of 8. We see that the Domin model, which acquires
dominance solely on the basis of prior homozygotes, results
in average fitness that is less than the Basic Model in the
long term, though facilitating improvement initially. Under
the LearnedDomin model, improvements in average fitness
are greater initially, these increases are persistent through
the long-term, asymptotic phase of evolution.

The above results demonstrate that the availability of de-
velopmental choice can have positive effects on the rate of
improvement in average fitness. In the research reported
here, we investigate a probabilistic haploid model that is
based upon developmental choice wherein genes reflect the
distribution of ancestral development choices.

2. A PROBABILISTIC HAPLOID MODEL
We consider a generational genetic algorithm acting upon

haploid individuals. We represent haploid individuals in
terms of a single genotype, being a sequence of genes, each
gene having a value chosen from a set of possible alleles.
Each gene of a binary genotype has two possible alleles,
which we represent as the set {0, 1}. A binary haploid indi-
vidual holds a single binary genotype inherited from a sin-
gle parent or created as a recombination of genotypes from
two parents of the previous generation. We also consider
binary probability individuals that are haploid individuals,
each holding a binary probability genotype. In such a geno-
type, each gene locus has as its value a probability p0 (be-
tween 0.0 and 1.0) that the gene will be expressed as a 0
by development. The probability that the gene will be ex-
pressed as a 1 is implicit, i.e., 1− p0.

We simulate the processes of evolution by a generational
genetic algorithm, defined as follows: [8] [19]:

Generational Evolution(pSize, gSize, f, m)

{p = GenerateInitialPopulation(pSize, gSize);

Develop(p);

Evaluate(p, f);

until(done())

{p = GenerateNextPopulation(p, m);

Develop(p);

Evaluate(p, f);

}

}
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A current population p consists of a set of individuals. We
use a fixed-size population model; each successive generation
of p will have the same number pSize of individuals. The
process GenerateInitialPopulation(pSize, genSize) creates a
random set of individuals of size pSize. In a random binary
haploid population, each individual is given a binary geno-
type with equal probability of a 0 or 1 for each gene locaus.
In a random binary probability population, each individual
holds a single binary probability genotype with each gene lo-
cus indicating a 50% chance of being developed as a 0. The
function done() returns true if a desired halting condition is
met, e.g., some number of generations have been generated
or some number of successive generations of the population
do not differ significantly. Each of the capitalized processes
can be implemented in a number of different ways, which
differences serve as the bases for possible experiments.

The process Develop(p) acts on each individual in pop-
ulation p, creating a phenotype from its genotype. In our
model, a binary phenotype is the same size as the genotype
and represents which of the two possible alleles is expressed
for each gene locus in the developed individual. Under Hap-
loidDevelopment, each locus of the binary genotype of a
haploid individual is merely copied to its phenotype, i.e., an
identity mapping. Under ProbabilisticDevelopment, each
gene locus is developed as a 0 according to the probability
found in the binary probability genotype or is developed as
a 1, otherwise. ProbabilisticDevelopment impacts an indi-
vidual’s genotype, modifying the underlying genetic content
of the individual. If a 0 is expressed at a given gene locus, p0

is increased; if a 1 is expressed, it is decreased. How much of
an increase or decrease is left as an open degree of freedom
under this general model. We compare three possibilities in
an experiment reported below.

An environment is represented as a binary fitness func-
tion, which is an arbitrary function mapping from a binary
phenotype to a real value in the range 0.0 to 1.0. The value
of a fitness function when applied to an individual’s pheno-
type indicates the individual’s degree of adaptation to the
environment, i.e., the higher the value the better adapted is
the individual. The process Evaluate(p, f) applies a binary
fitness function f to the phenotype of each individual in
population p and associates the resulting fitness value with
the individual.

The process GenerateNextPopulation(p, m) creates a new
generation of population p, as follows:

GenerateNextPopulation(p, m)

{parents = SelectParents(p);

p = Recombine(parents);

return Mutate(p, m);

}

The process SelectParents(p) is that aspect of our model
where notions of natural selection and selective pressure are
captured. It selects pairs of parents whose offspring will form
the next generation. We use FitPropSelection whereby an
individual i is selected to be a parent with probability fi/Fp,
where fi is the fitness value of individual i and Fp is the
sum of fitness values of all individuals in population p. This
has been called fitness proportionate selection in the genetic
algorithm literature [19]. The process Recombine(parents),
considers each pair of parents and creates a new individual
having two genotypes, one inherited from each parent as a
result of recombining each parent’s two genotypes. We use

UniformRecombination(parents) where one of the two values
from the genotypes of the two parents is selected with equal
probability at each location. This recombination method
has been called uniform crossover [8]. Finally, the genotype
of each individual in the new population may be altered
by mutation, implemented as Mutate(p). Each binary gene
of the genotype of each individual in new population p is
changed to the other allele according to a given, per locus
mutation probability m. In the case of a binary probability
genotype, probability p0 is changed to 1− p0.

3. EXPERIMENTAL FRAMEWORK
In addition to the Step family of fitness functions defined

above, a related NKStep family of fitness functions is con-
sidered. Rather than the non-overlapping steps of a Step fit-
ness function, an NKStep function has every bit being the
first bit of a contiguous stepSize step. Given a phenotype of
n bits, there are thus n steps that are matched to the point
of the fitness function. Again the percentage of steps that
completely match the point is the fitness value. As noted,
these environments present single-peaked fitness landscapes
of varying degrees of difficulty. To consider more complex
settings, we also investigate MAXSAT fitness where a bi-
nary phenotype represents boolean assignments to variables
and fitness of an assignment is the percentage of clauses
satisfied in randomly generated 3-Sat problems having 100
variables and 300 and 500 clauses, giving problems on dif-
ferent sides of the satisfiability threshold [11].

Two measures of a population are considered at each gen-
eration. The first corresponds to a population’s level of
adaptation to an environment as measured by its average
fitness, being the average of all individuals’ fitness function
values. Expect average fitness is 1/2k for a stepSize of k
in a random, initial population for both of our step related
fitness functions. The other measure addresses the genetic
diversity of a population. The diversity measure is percent
polymorphic, defined as the percentage of gene loci that re-
main polymorphic in a haploid population. A location is
considered polymorphic if less than 99% of its alleles are
equal [21]. Percent polymorphic is 1.0 in a random, initial
population. In the case of our BinaryProbability population,
we consider a particular location of a given individual to be
fixed if p0 < 0.01 or p0 > 0.99. A location is polymorphic if
less that 99% of its alleles are fixed and equal.

There are several parameters that will not change through-
out the experiments reported here. We have set the popula-
tion size to be 1000 for all experiments. This is a relatively
small, finite population that makes the simulation experi-
ments feasible, but that is hopefully large enough so that
results are not dominated by small population effects, such
as genetic drift [12]. Another factor that is not varied is
genotype size, i.e., number of loci or genes in a genotype.
The genotype size is set to 100, again a compromise be-
tween computational efficiency and genetic diversity. The
mutation rate is set so that an average of 10 alleles over the
whole population for each generation are modified by muta-
tion, yielding a per locus mutation probability of 10−4, given
the population and genotype sizes we have chosen. This is
in the range of observed mutation rates in nature [21]. The
experiments are run for 2000 generations; each experiment
is repeated 20 times to generate average values and stan-
dard deviations. Values for the two population measures
are gathered every 50 generations.
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Figure 3: Comparisons of Average Fitness for Three
Probabilistic Models on Step Fitness with stepSizes
4 and 8

4. RESULTS
As noted above, how to update p0 based upon a cur-

rent development choice is a key aspect of the probabilistic
model. If p0 were not changed, it would remain at 0.50,
and no evolution of the initial, random population would
occur. In our first experiment, we consider three related
approaches to p0 update. All three approaches update p0

through a common sequence of values. When a consecutive
series of 0’s is expressed, p0 increases through the sequence
of values (k − 1)/k, i.e., 0.50, 0.67, 0.75, 0.80, 0.833, etc.,
with k increasing each time that a 0 is expressed. Similarly,
if a series of 1’s is expressed, the probability p0 decreases
through the sequence of values 1/k, i.e., 0.50, 0.33, 0.25,
0.20, 0.166, etc., with k increasing each time that a 1 is
expressed. The three approaches differ as to the update
made when the currently less probable allele is expressed.
By Model1, if the less probable allele is chosen, we simply
reduce k by one, e.g., 0.80 becomes 0.75 or 0.20 becomes
0.25. By Model2, the probabilities for the two alleles are
equalized, returning to the starting, unbiased value, i.e., p0

becomes 0.50, thereby giving significantly more weight to a
recent development choice. Model3 uses the update scheme
of Model2 but in addition allows for fixation of a gene lo-
cus. If p0 reaches100/101, it is set to 1.0, thus becoming a
fixed location. Similarly, if a series of 1’s is expressed and
p0 reaches 1/101, p0 is set to 0.0, becoming a fixed loca-
tion. Results presented in Figure 3 indicate the contrasting
aspects of performance that these models produce. Model1
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Figure 4: Comparisons of Percent Polymorphic for
Three Probabilistic Models on Step Fitness with
stepSizes 4 and 8

quickly leads to alleles becoming all but fixed at a particu-
lar value. If a less likely allele is chosen by development, the
probability still remains high that the more likely allele will
be selected in the future, given the individual is selected to
mate. This development pattern leads to quick convergence
at near optimal fitness values for smaller stepSizes, such as
4 in the upper plot, which environments are relatively easy
for evolution to conquer. When stepSize is increased to 8,
however, the relative inability to recover from development
choices that are not optimal leads to convergence at lower
average fitness values. Looking at the other two models,
we see that Model2, which resets allele probabilities to 0.50
when the less likely allele is chosen, has trouble converg-
ing to near optimal fitness, producing slower improvement
in average fitness. Model3, as a compromise, demonstrates
that an ability to reset probabilities based upon develop-
ment during early generations, accompanied by an ability
to fix an allele when its probability becomes high enough, is
able to realize near optimal average fitness in environments
with lower stepSize, albeit at a slower rate than Model1,
and is able to outperform the other two models as stepSize
increases, as indicated for the results with a stepSize of 8.
Figure 4 presents the corresponding percent polymorphic
results which support this analysis, as

Figure 5 compares the performance on average fitness be-
tween Model3 and the standard binary Haploid model for
Step and NKStep environments with stepSizes of 4, 8, and
10. We see Model3, while trailing the standard haploid
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Figure 5: Comparisons of Average Fitness for Hap-
loid and Probabilistic Models on Step and NKStep
Fitness Functions with stepSizes 4, 8, and 10

model for smaller stepSizes such as 4, significantly out-
performs the standard haploid model for higher stepSizes.
The environments become unconquerable for the standard
model, while Model3 is able to continue to realize near opti-
mal average fitness for the NKStep environments. The per-
formance of the standard haploid model is closely related to
that of the probabilistic Model1, which quickly fixes alelle
values within individuals.

Considering more complex, multi-peaked environment rep-
resented by the MAXSAT fitness function, we find a differ-
ent picture. Figure6 shows that the standard haploid model
consistently outperforms the probabilistic Model3 in terms
of average fitness; in the long term, the differences become
minimal.

5. CONCLUSION
We have presented a new haploid model for genetic al-

gorithms that involves the probabilistic development of in-
dividuals’ phenotypes based upon genotypes that encode
the probabilities of allele expression and reflect the impacts
of the recent history of ancestral development. Our model
bears certain resemblance to ant colony optimization algo-
rithms and related methods of swarm intelligence [4]. Both
notions are based upon a probabilistic knowledge represen-
tation that guides the generation of certain solution elements
and is altered by choices made during a generation. How-
ever, as the name implies, ant colonies and swarms combine
their knowledge into one probability matrix according to
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Figure 6: Comparison of Average Fitness for Hap-
loid and Probabilistic Models on MAXSAT Fitness
with 300 and 500 clauses.

which a next individual or next generation of individuals
is created. Under our model, individuals carry their own
history of recent, ancestral gene expression represented as
probabilities that are used for phenotype development. The
developed phenotypes are evaluated and then serve as basis
for the parental selection that drives evolution. The individ-
ual probabilistic genotypes undergo crossover and mutation
by standard, haploid genetic operations during mating and
creation of the succeeding generation.

We present examples of our model applied to single-peaked
Step and NKStep environments with varying degrees of
epistatic interaction and to multi-peaked MAXSAT envi-
ronments. As stepSize increases in the Step and NKStep
environments, the new probabilistic model outperforms the
standard binary haploid model in terms of average fitness
achieved. On the MAXSAT environments, the results are
reversed, with the probabilistic model approximating the
standard haploid model only after a significant number of
generations. More experience is needed with the new model
to better understand its behavior, to consider other methods
for genotype probability update, and to gauge its general ap-
plicability to problems of interest. Efficient encodings and
methods allowing the model to represent non-binary geno-
types are also needed.
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