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ABSTRACT
Simplified forms of the particle swarm algorithm are very benefi-
cial in contributing to understanding of what makes a PSO swarm
function in the way that it does. One of these forms, PSO with dis-
crete recombination, is analyzed in depth, demonstrating not just
improvements in performance to a standard PSO algorithm, but
also significantly different behavior with a reduction in bursting
patterns due to the removal of stochastic components from the up-
date equations. This altered behavior accompanied by equal and
improved performance leads to conjectures that bursts are not gen-
erally efficacious in the optimization process.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence ]: Problem Solving, Control Methods
and Search

General Terms
Optimisation

Keywords
Particle swarms, swarm optimisation

1. INTRODUCTION
Originally conceived as a modification to the standard PSO al-

gorithm for use on self-reconfigurable adaptive systems used in on-
chip hardware processes, PSO with discrete recombination (PSO-
DR) introduces several appealing and effective modifications, re-
sulting in a simpler variant of the original [7]. Arguably it is one
of the more significant advances in PSO research over the last few
years because these simplifications apparently do not degrade per-
formance yet they remove various issues associated with the sto-
chasticity of the PSO acceleration parameters that hinders theoret-
ical analysis of PSO.

Physical creation of hardware-based optimizers is a substantially
more intricate undertaking than software implementations, so fast,
simple algorithms are desirable in order to minimize complexity.
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The comparative straightforwardness of PSO to many other evo-
lutionary optimization algorithms makes it a good choice for this
purpose, and further modifications were applied in order to sim-
plify it even further and to introduce concepts from recombinant
evolutionary techniques. The resulting algorithm, which can be
implemented using only addition and subtraction operators and a
simple 1-bit random number generator, is ideal for dedicated hard-
ware settings.

Despite this rather specific original design specification, PSO-
DR has shown to be a robust optimizer in its own right, equalling
or surpassing a more common PSO implementation on a few tested
benchmarks [7]. In this paper we extend the original work of Pena
at al by considering alternative topologies and parameter settings,
running comparisons over a more comprehensive test suite and sub-
jecting the model to a burst analysis.

2. PSO WITH DISCRETE RECOMBINATION
The velocity update for particlei in standard PSO (SPSO) in the

inertia weight formalism is

IW : v
t+1

id = wv
t
id +

φ

2
u1(pid − x

t
id) +

φ

2
u2(pnd − x

t
id) (1)

whered labels components of the position and velocity vectors,
~pi is the personal best position achieved byi, ~pn is the best position
of informers ini’s social neighborhood andu1,2 ∼ U(0, 1) [2].

A recombinant position vector~r is defined by

rid = ηdpld + (1 − ηd)prd (2)

whereηd = U{0, 1} and~pl,r are immediate left and right neigh-
bors ofi in a ring topology. Note that separate random numbersηd

are used for each dimensiond. This places~ri at a corner of the
smallest hypercube which haspl andpr at its corners.

Pena at al introduced a recombinant version of PSO by replacing
either the personal best or the neighborhood best position by the
recombinant position [7]. We focus here on the first replacement for
reasons of improved performance and the more interesting social
aspect. The velocity update for PSO-DR is

DR : v
t+1

id = wv
t
id +

φ

2
(rid − x

t
id) +

φ

2
(pnd − x

t
id) (3)

The authors of [7], in a search for a very efficient implementa-
tion, argued for the removal of the random numbersu1,2 and para-
meter settingsφ = 2 andw = 0.5. The choice ofφ was based on
the observation thatφ ≈ 4.0 in standard PSO (SPSO), but, since
u1,2 are uniform in[0, 1], the expectation value ofφ

u 1,2
is 2.0. Fur-

thermore, the multiplication byw can be implemented in hardware
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by a right shift operation. However efficiency need not concern us
here in this study of Eq. 3 and it is one aim of this paper to study
PSO-DR for arbitrary parameter values.

Although Equation 3 contains a random element in the recom-
binant position, the acceleration parameters are constant. In other
words, the update rule has additive rather than multiplicative stoch-
asticity [1]. This has two ramifications; first, a stability condition
can be computed based on the theory of second order, fixed parame-
ter, difference equations and second, recombinant PSO is predicted
not to exhibit particle velocity bursts. The details of these results
are to be found in [1]. The stability condition is

�
|w| < 1

0 < φ < 2(1 + w)
(4)

It is known that decoupled PSO exhibits bursts of outliers [5].
These are temporary excursions of the particle to large distances
from the attractors. A burst will typically grow to a maximumand
then return through a number of damped oscillations to the region
of the attractors. The origin of bursts, and of the concomitant fat-
tening of the tails of the position distribution at stagnation, can be
traced to the second order stochastic difference equation:

x(t + 1) + a(t)x(t) + bx(t − 1) = c(t) (5)

which is equivalent to SPSO with the identification
a(t) = φ

2
(u1 + u2) − w − 1, b = w andc(t) = φ

2
(u1p1 + u2p2)

for fixed attractorsp1,2. Sincemax(|a|) > 0, amplification of
x(t) can occur through repeated multiplication of x(t) bya despite
the second order reduction by multiplication by the constant b. In-
terestingly the distribution tail of|x|, by virtue of the bursts that
become increasingly less probable for increasing size, is fattened
compared to an exponential fall-off as provided by, for example, a
Gaussian. A theoretical justification of these power laws and some
empirical tests can be found in [1].

PSO bursts differ from the random outliers generated by PSO
models which replace velocity by sampling from a distribution with
fat tails such as a Levy [8]. In contradistinction to the outliers of
these ‘bare bones’ formulations, the outliers from bursts occur in
sequence, and they are 1-dimensional. Bursting will therefore pro-
duce periods of rectilinear motion where the particle will have a
large velocity parallel to a coordinate axis. Furthermore large bursts
may take the particle outside the search space. Although this will
not incur any penalty in lost function evaluations if particles that
exit the feasible bounds of the problem are not evaluated, asis the
common approach to this situation, they are not contributing to the
search whilst in outer space. PSO-DR, which is predicted notto
have bursts [1], therefore provides a salient comparison.

The following section describes experiments to compare PSO-
DR to standard PSO over a large set of benchmarks at Pena et al’s
suggested parameter settings. Performance of PSO-DR for other
parameter settings is also investigated. Section 4 examines bursting
and its relevance to performance.

3. PERFORMANCE EXPERIMENTS
Algorithms were tested over a series of 14 benchmark functions

chosen for their variety, shown in Table 1. Functionsf1 − f3 are
unimodal functions with a single minimum,f4 − f9 are complex
high-dimensional multimodal problems, each containing many lo-
cal minima and a single global optimum, andf10 − f14 are lower-
dimensional multimodal problems with few local minima and asin-
gle global optimum apart fromf10, which is symmetric about the
origin with two global optima.

Particles were initialized using theregion scaling technique where
initialization takes place in an area of the search space known not
to contain the global optimum [3]. To avoid initializing theentire
swarm directly within a local minima, as could be possible with
F12-F14 if initialization takes place in the bottom quarterof the
search space in each dimension (as is common), an area of ini-
tialization composed of the randomly chosen top or bottom quar-
ter of each dimension was defined, into which all particles were
placed with uniform distribution. This method ensures thatthe
swarm will not be initialized within the same area for every op-
timization run, but will still be confined to an area at most0.25D

of the search space, making the chance of initialization directly on
or near the global optimum extremely unlikely. In instanceswhere
the global optimum was located at the center of the search space
(i.e. f1, f2, f5 − f7), the function wasshifted by a random vector
with maximum magnitude of a tenth of the size of the search space
in each dimension for each run to remove any chance of a centrist
bias [6].

This investigation tested PSO-DR using both a global (as used
in the originally proposed algorithm) and a local ring topology for
selecting the neighborhood operatorpn. The parameter settings
were Pena et al’s, so the velocity update has the simple form

v
t+1

id = 0.5v
t
id + (rid − x

t
id) + (pnd − x

t
id)

For comparison, results are presented for the Standard PSO algo-
rithm (SPSO), which operates using the constricted velocity update
equation withφ = 4.1, χ = 0.72984 and with 50 particles [2].
PSO-DR tests were carried out using 50 particles as well. Algo-
rithm performance was measured as the minimum error
|f (x) − f (x?)| found over the trial wheref (x?) is the fitness at
the global optimum for the problem. Results were averaged over 30
independent trials, and are displayed, with standard error, in Table
2. In cases where a value was< 10−15 it was rounded to0.0 in
order to accommodate reproduction using programming languages
that may not include floating point precision at smaller values.

Tests were performed on the PSO-DR algorithm to determine
the relationship between thew andφ variables - although PSO-DR
was designed to remove these variables from the algorithm, this
was done based on the restrictions of hardware implementations.
We faced no such restrictions here, so an examination of these in-
fluences is beneficial to better understanding. Contour plots of the
performance landscape are shown in Figure 1, with improved per-
formance levels indicated inside of the contours. This tuning was
done solely for these tests, however; the variables were setto de-
fault values ofw = 0.5 andφ = 2.0 for the other investigations
that are detailed here. The contour plots confirm these values to be
within the optimal ranges of all four of the tested problems,though
barely so onf5. Finding ideal values for these variables across all
problems will be explored in future work, but it is interesting to
note that for values ofφ approx 1.6, the optimal range includes an
inertia weight setting ofw = 0.0 for all four sample benchmarks.
This has implications for the velocity term that warrant consider-
able attention, but are currently beyond the scope of this paper.

Performance results in Table 2 for PSO-DR vs SPSO clearly
indicate that it is an extremely competitive variant, especially on
highly complex problems such asf5 (Rastrigin). Statistical tests
were performed on these results to determine the significance of
the performance differences between the two algorithms. Toavoid
the problem of the probabilistic nature of t-tests potentially affect-
ing results when conducting multiple significance tests, a modified
Bonferroni procedure was applied to values ofα for successive
tests [4]. This procedure involves inversely ranking observations
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Figure 1: Contour plots of PSO-DR performance for multiple combinations of w and φ.
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Table 1: Benchmark Functions

Equation Name D Feasible Bounds

f1 = �D

i=1
x2

i Sphere/Parabola 30 (−100, 100)D

f2 = �D

i=1
(� i

j=1
xj)

2 Schwefel 1.2 30 (−100, 100)D

f3 = �D−1

i=1

�
100 �xi+1 − x2

i �2 + (xi − 1)2� Generalized Rosenbrock 30 (−30, 30)D

f4 = −�D

i=1
xi sin (

√
xi) Generalized Schwefel 2.6 30 (−500, 500)D

f5 = �D

i=1 �x2
i − 10 cos (2πxi) + 10� Generalized Rastrigin 30 (−5.12, 5.12)D

f6 = −20 exp �−0.2� 1

D
�D

i=1
x2

i 	− exp
�

1

D
�D

i=1
cos (2πxi)

�+ 20 + e Ackley 30 (−32, 32)D

f7 = 1

4000
�D

i=1
x2

i − 
D

i=1
cos �xi√

i� + 1 Generalized Griewank 30 (−600, 600)D

f8 = π
D

�
10 sin2 (πyi) + �D−1

i=1
(yi − 1)2 �1 + 10 sin2 (πyi+1)�+ (yD − 1)2� Penalized Function P8 30 (−50, 50)D

+�D

i=1
µ (xi, 10, 100, 4)

yi = 1 + 1

4
(xi + 1)

µ (xi, a, k, m) = ����
k (xi − a)m

xi > a

0 −a ≤ xi ≤ a

k (−xi − a)m
xi < −a

f9 = 0.1
�
sin2 (3πxi) + �D−1

i=1
(xi − 1)2 �1 + sin2 (3πxi+1)�+ (xD − 1)2 × Penalized Function P16 30 (−50, 50)D

�1 + sin2 (2πxD)��+ �D

i=1
µ (xi, 5, 100, 4)

f10 = 4x2
1 − 2.1x4

1 + 1

3
x6

1 + x1x2 − 4x2
2 + 4x4

2 Six-hump Camel-back 2 (−5, 5)D

f11 = �1 + (x1 + x2 + 1)2 �19 − 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2� �× Goldstein-Price 2 (−2, 2)D

�30 + (2x1 − 3x2)
2 �18 − 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2� �

f12 = −� 5

i=1

�� 4

j=1
(xj − aij)

2 + ci
�−1

Shekel 5 4 (0, 10)D

f13 = −� 7

i=1

�� 4

j=1
(xj − aij)

2 + ci
�−1

Shekel 7 4 (0, 10)D

f14 = −� 10

i=1

�� 4

j=1
(xj − aij)

2 + ci
�−1

Shekel 10 4 (0, 10)D

by ascending values ofp, then setting:

α
′ =

α

inverse rank
(6)

Results for these statistical tests are shown in Table 3 and con-
firm that the results are significantly improved on 4 of the 14 tested
functions, equal for 9 functions, and worsened for 1 function for
PSO-DR vs SPSO with ring topology. These tests were limited to
the ring topology due to its exclusive use in all other comparison
tests performed. Perhaps the most impressive improvement comes
for f5 (Rastrigin), a notoriously difficult multimodal problem that
PSO algorithms often perform poorly on in high dimensionality.

4. EXAMINATION OF BURSTING
Additional tests were performed to measure particle speed on

both SPSO and PSO-DR with ring topologies, using a normalised
measure

z =
|~v|

|~p1 − ~p2|
(7)

where~p1 = ~pn for the particle being measured,~p2 = ~pi under
SPSO, and~p2 = ~ri (the recombinant term) under PSO-DR. Per-
centile plots of particle velocity at updates topi for both algorithms
are shown in Figure 2.

Examination of the percentile plots shows thatpi is updated by
particles with higher velocities only very rarely for both algorithms.

However, it is important to note that speed for this particular exper-
iment will include particles with very high velocities in only a few
dimensions and low velocities in other dimensions, as well as par-
ticles with moderately high velocities in most or all dimensions.
In order to investigate bursting behavior a further measurewas de-
vised.

This bursting measure was implemented to highlight when a par-
ticle had a velocity in a single dimension that was considerably
higher than the next highest dimensional velocity. Bursting pat-
terns of behavior were detected by reporting every time particle
velocity in a single dimension was a set amountλ times higher
than velocity in the next highest dimension. Bursting behavior is
demonstrated in Figure 3, where the velocity of a single particle
in a 10-dimensional problem is shown. On the plot of the multi-
dimensional velocity of the SPSO particle, it can be seen that ve-
locity in a single dimension increases suddenly and dramatically
while remaining relatively level and low in all other dimensions.
This is an example of a velocity burst. While the figure shows ve-
locity for a single particle on a single run, examination of velocity
plots for hundreds of particles over dozens of runs confirmedthis
to be representative of general particle behavior.

Velocity for a PSO-DR particle is also shown in Figure 3, and
demonstrates the absence of bursts. Similarly to the SPSO plot,
examination of a large number of plots confirmed this to be repre-
sentative of general behavior for PSO-DR.

Examination of these empirical analyses show that PSO-DR clearly
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Table 2: Mean fitness after 30 trials of 300000 evaluations
Algorithm f1 f2 f3 f4 f5 f6 f7

SPSO Ring 0.0±0.0 0.12±0.01 6.18±1.07 3385±40 163.50±5.64 18.28±0.85 0.0±0.0

func evals 97063±377 - - - - - 110616±3320

PSO-DR Ring 0.0±0.0 0.01±0.002 16.79±0.49 2697±36 44.64±2.71 0.68±0.67 0.0±0.0

59322±125 - - - - - 101526±9227

SPSO Global 0.0±0.0 0.0±0.0 8.37±2.26 3522±32 140.16±5.87 12.93±1.59 0.019±0.004

46897±421 297645±848 - - - - -

PSO-DR Global 0.0±0.0 0.0±0.0 0.80±0.29 3754±48 115.51±7.03 18.51±0.90 0.008±0.002

33290±170 168852±1205 - - - - -

Algorithm f8 f9 f10 f11 f12 f13 f14

SPSO Ring 0.0035±0.0034 0.0±0.0 0.0±0.0 0.0±0.0 0.59±0.33 1.09±0.45 0.96±0.45

func evals - 106163±537 9348±190 8258±104 - - -

PSO-DR Ring 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.17±0.17 0.0±0.0 0.0±0.0

61370±249 61793±221 44577±7608 4772±47 - 13433±249 12760±1386

SPSO Global 0.15±0.05 0.003±0.0009 0.0±0.0 0.0±0.0 4.61±0.54 4.40±0.60 3.24±0.66

- - 11808±445 7080±108 - - -

PSO-DR Global 0.05±0.02 0.002±0.0007 0.0±0.0 0.0±0.0 4.34±0.59 2.55±0.62 3.13±0.66

- - 40015±4483 3968±27 - - -

Table 3: Significance for SPSO vs PSO-DR with ring topologies

Func p-value Inverse rank α ′ Significant

f4 0 14 0.003571 Yes

f5 0 13 0.003846 Yes

f6 0 12 0.004167 Yes

f3 2.02e-12 11 0.004545 Yes

f2 1.31e-10 10 0.005 Yes

f13 0.021 9 0.005556 No

f14 0.0414 8 0.00625 No

f8 0.3215 7 0.007143 No

f12 0.2663 6 0.008333 No

f1 1 5 0.01 No

f7 1 4 0.0125 No

f9 1 3 0.016667 No

f10 1 2 0.025 No

f11 1 1 0.05 No

does not contain bursting behavior on the scale of SPSO while
demonstrating equal or superior performance on 13 of the 14 bench-
mark functions, leading to the hypothesis that bursts are not, in fact,
integral to the successful operation of particle swarm algorithms.
The fact that a very few bursts do occur with PSO-DR indicate that
it is a highly improbable feature of DR dynamics.

Although the explanation for these rare events cannot lie onmul-
tiplicative stochasticity, PSO-DR will have a resonant frequency so
attractor movement at this frequency, or at a multiple of this fre-
quency could drive a particle away from the attractors. Thismech-

anism is not possible in SPSO which does not possess a natural
frequency due to the stochastic acceleration parameters.

Analysis performed on statistics of several functions shows that
particle updates involving bursts are far less effective than more
common non-bursting updates. For example, results showed that
for SPSO onf5 with λ = 100, on average20.1% of all particle
updates involve an improvement to the particle’s best foundposi-
tion pi, whereas only1.8% of updates involving bursts result in
an improvement topi. Likewise, on average0.9% of all particle
updates improve the best found swarm positiong, as opposed to
only 0.01% for bursting particles. Burst frequencies for values of
λ from 10 to 150 are shown in Figure 4.

It is also interesting to note that far fewertotal updates result in
an improvedpi or g for PSO-DR when compared to SPSO, e.g. re-
sults showed that 20.1% of all updates improvepi for SPSO com-
pared with 0.64% for PSO-DR, and 0.91% improveg for SPSO
compared with 0.02% for PSO-DR onf5 for λ = 100).

5. CONCLUSIONS
Simplification of the standard PSO algorithm is an importantstep

toward understanding how and why it is an effective optimizer. By
removing components of the algorithm and seeing how this affects
performance, we are granted insight into what those components
contribute to overall particle and swarm behavior. There isstill
much to be done before questions about what exactly makes PSO
behave in the way that it does can be completely answered, and
it is expected that the next decade of PSO research will be focus
on understanding the basic algorithm that powers both the standard
and the numerous variant implementations.

In that light, the PSO-DR variant is important not only because
of its improved performance on several benchmark functions, but
also because its simplified state allows us to examine what happens
to the standard algorithm when pieces are modified or removed.
Based on the results presented here, it can be argued that bursts
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Figure 2: Percentile plots of update frequency topi with particle velocity measurez on benchmark function f3
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Figure 3: Representative particle velocities for SPSO and PSO-DR on 10D Rastrigin
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are not generally beneficial or integral to PSO performance,and
may possibly be detrimental. This may be because bursting hap-
pens along an axis and so differs from the exploratory outliers of
bare bones particles which sample the surrounding region symmet-
rically. (However, in the coincidence that the objective function has
a rectangular symmetry aligned with the axes, then burstingmay
actually be fortuitous.) Furthermore, lost particles in large bursts
cannot contribute to the search. Because of the associationof burst-
ing behavior with the random acceleration parameter in SPSO[1],
we can see that this part of the algorithm may not be necessaryto
produce the desired optimization behavior.

Further, the replacement of the direct personal influence operator
pi from SPSO with the recombinant termri derived from its neigh-
borhood in PSO-DR strengthens the case for PSO being mostly re-
liant on social interaction as opposed to personal experience. The
social behavior occurring inside of a swarm is still a wide-open area
in the field, and will hopefully constitute a great deal of thefuture
research devoted to the development of a better understanding of
this deceptively simple optimizer.

Another property of PSO-DR resides in attractor jiggling that
takes place even at stagnation (no updates to anypi) sinceri is
never fixed. This jiggling will work against convergence andcould
propel the swarm onwards. This, and other matters concerning the
nature of recombination within PSO, will be the subject of further
study.
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