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ABSTRACT The comparative straightforwardness of PSO to many other evo-

Simplified forms of the particle swarm algorithm are very benefi- lutionary optimization algorithms makes it a good choice for this

cial in contributing to understanding of what makes a PSO swarm PurPose, and further modifications were applied in order to sim-
function in the way that it does. One of these forms, PSO with dis- Plify it éven further and to introduce concepts from recombinant

crete recombination, is analyzed in depth, demonstrating not just €volutionary techniques. The resulting algorithm, which can be
improvements in performance to a standard PSO algorithm, but mplement_ed using only addition and sgb_tractlon oper_ators and a
also significantly different behavior with a reduction in bursting SimPle 1-bit random number generator, is ideal for dedicated hard-

patterns due to the removal of stochastic components from the up-Vare settings. L . e
date equations. This altered behavior accompanied by equal and Despite this rather specific original design specification, PSO-

improved performance leads to conjectures that bursts are not gen 2R Nas shown to be a robust optimizer in its own right, equalling
erally efficacious in the optimization process. or surpassing a more common PSO implementation on a few tested

benchmarks [7]. In this paper we extend the original work of Pena
. . . at al by considering alternative topologies and parameter settings,
Categories and Subject Descriptors running comparisons over a more comprehensive test suite and sub-

1.2.8 [Artificial Intelligence ]: Problem Solving, Control Methods ~ jecting the model to a burst analysis.

and Search
2. PSOWITHDISCRETE RECOMBINATION

General Terms The velocity update for particlein standard PSO (SPSO) in the

Optimisation inertia weight formalism is

Keywords IW v = woly + %ul(pid — Tia) + gW(Pnd —zia) (1)
Particle swarms, swarm optimisation whered labels components of the position and velocity vectors,
p; is the personal best position achieved: by, is the best position
1. INTRODUCTION of informers ini’s social neighborhood angh > ~ U(0, 1) [2].
Originally conceived as a modification to the standard PSO al- A recombinant position vectatis defined by
gorithm for use on self-reconfigurable adaptive systems used in on-
chip hardware processes, PSO with discrete recombination (PSO-
DR) introduces several appealing and effective modifications, re-
sulting in a simpler variant of the original [7]. Arguably it is one wheren, = U{0, 1} andp;, are immediate left and right neigh-
of the more significant advances in PSO research over the last fewbors ofi in a ring topology. Note that separate random numbgrs
years because these simplifications apparently do not degrade perare used for each dimensieh This places?; at a corner of the
formance yet they remove various issues associated with the sto-smallest hypercube which hasandp, at its corners.
chasticity of the PSO acceleration parameters that hinders theoret- Pena at al introduced a recombinant version of PSO by replacing
ical analysis of PSO. either the personal best or the neighborhood best position by the
Physical creation of hardware-based optimizers is a substantially recombinant position [7]. We focus here on the first replacement for
more intricate undertaking than software implementations, so fast, reasons of improved performance and the more interesting social
simple algorithms are desirable in order to minimize complexity. aspect. The velocity update for PSO-DR is

Tia = Napia + (1 — 1Na)Prd 2

DR = wrls+ Lria—at) + Sona—ola) @
Permission to make digital or hard copies of all or part of this work for . . .
personal or classroom use is granted without fee provided that copies are  1he authors of [7], in a search for a very efficient implementa-
not made or distributed for profit or commercial advantage and that copies tion, argued for the removal of the random numbers and para-
bear this notice and the full citation on the first page. To copy otherwise, to meter settingg) = 2 andw = 0.5. The choice ofp was based on
republish, to post on servers or to redistribute to lists, requires prior specific the gbservation thap ~ 4.0 in standard PSO (SPS0), but, since

permission and/or a fee. : : . . )
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Copyright 2007 ACM 978-1-59593-698-1/07/000%5.00. thermore, the multiplication by can be implemented in hardware
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by a right shift operation. However efficiency need not conaes
here in this study of Eq. 3 and it is one aim of this paper toystud
PSO-DR for arbitrary parameter values.

Although Equation 3 contains a random element in the recom-
binant position, the acceleration parameters are constiamther
words, the update rule has additive rather than multiplieatoch-
asticity [1]. This has two ramifications; first, a stabilitpradition
can be computed based on the theory of second order, fixethpara
ter, difference equations and second, recombinant PS@dtgbed
not to exhibit particle velocity bursts. The details of taeesults
are to be found in [1]. The stability condition is

lw] < 1

{0<¢<2(1+w)

It is known that decoupled PSO exhibits bursts of outlieis [5
These are temporary excursions of the particle to largamntsis
from the attractors. A burst will typically grow to a maximumnd
then return through a number of damped oscillations to th®ne
of the attractors. The origin of bursts, and of the concomiifat-
tening of the tails of the position distribution at stagoatican be
traced to the second order stochastic difference equation:

4)

2(t+1) + a(t)z(t) + ba(t — 1) = c(t)

which is equivalent to SPSO with the identification
a(t) = 2(u1 +u2) —w — 1,b=wande(t) = £(uip1 + u2p2)
for fixed attractorsp 2. Sincemax(|a|) > 0, amplification of
z(t) can occur through repeated multiplication of x(t) bgespite
the second order reduction by multiplication by the cortsbamn-
terestingly the distribution tail ofz|, by virtue of the bursts that
become increasingly less probable for increasing sizegtierfed
compared to an exponential fall-off as provided by, for egbapa
Gaussian. A theoretical justification of these power lang some
empirical tests can be found in [1].

PSO bursts differ from the random outliers generated by PSO
models which replace velocity by sampling from a distribnotiith
fat tails such as a Levy [8]. In contradistinction to the mur# of
these ‘bare bones’ formulations, the outliers from burstsuo in
sequence, and they are 1-dimensional. Bursting will tleeegfbro-
duce periods of rectilinear motion where the particle wilvé a
large velocity parallel to a coordinate axis. Furthermargé bursts
may take the particle outside the search space. Althoughniiii
not incur any penalty in lost function evaluations if padgthat
exit the feasible bounds of the problem are not evaluateis, the
common approach to this situation, they are not contrilgutinthe
search whilst in outer space. PSO-DR, which is predictedtamot
have bursts [1], therefore provides a salient comparison.

The following section describes experiments to compare-PSO
DR to standard PSO over a large set of benchmarks at Pena et al’
suggested parameter settings. Performance of PSO-DRHer ot
parameter settings is also investigated. Section 4 exarimesting
and its relevance to performance.

®)

3. PERFORMANCE EXPERIMENTS

Algorithms were tested over a series of 14 benchmark funstio
chosen for their variety, shown in Table 1. Functighs— f5 are
unimodal functions with a single minimunf, — fo are complex
high-dimensional multimodal problems, each containingiyria-
cal minima and a single global optimum, afi¢ — f14 are lower-
dimensional multimodal problems with few local minima arsira
gle global optimum apart fronfiio, which is symmetric about the
origin with two global optima.
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Particles were initialized using thegion scaling technique where
initialization takes place in an area of the search spacevknmt
to contain the global optimum [3]. To avoid initializing tleatire
swarm directly within a local minima, as could be possibléhwi
F12-F14 if initialization takes place in the bottom quartérthe
search space in each dimension (as is common), an area of ini-
tialization composed of the randomly chosen top or bottomr-qu
ter of each dimension was defined, into which all particlesewe
placed with uniform distribution. This method ensures tthegt
swarm will not be initialized within the same area for evegy o
timization run, but will still be confined to an area at most5”
of the search space, making the chance of initializatioectly on
or near the global optimum extremely unlikely. In instancdere
the global optimum was located at the center of the searatespa
(i.e. f1, f2, fs — f7), the function washifted by a random vector
with maximum magnitude of a tenth of the size of the searchespa
in each dimension for each run to remove any chance of a sentri
bias [6].

This investigation tested PSO-DR using both a global (ad use
in the originally proposed algorithm) and a local ring tagm} for
selecting the neighborhood operaggr. The parameter settings
were Pena et al’s, so the velocity update has the simple form

viit = 0.50{q + (ria — iq) + (Pna — Tia)

For comparison, results are presented for the Standard B8O a
rithm (SPSO), which operates using the constricted velagitiate
equation withp = 4.1, x = 0.72984 and with 50 particles [2].
PSO-DR tests were carried out using 50 particles as welloAlg
rithm performance was measured as the minimum error
|f (z) — f (z*)| found over the trial wher¢g (z*) is the fitness at
the global optimum for the problem. Results were averaged 8
independent trials, and are displayed, with standard,arrdiable
2. In cases where a value was 10~ it was rounded t@.0 in
order to accommodate reproduction using programming lames!
that may not include floating point precision at smaller ealu

Tests were performed on the PSO-DR algorithm to determine
the relationship between theand¢ variables - although PSO-DR
was designed to remove these variables from the algorithis, t
was done based on the restrictions of hardware implementati
We faced no such restrictions here, so an examination oé times
fluences is beneficial to better understanding. Contous mibthe
performance landscape are shown in Figure 1, with improeegd p
formance levels indicated inside of the contours. Thisrtignvas
done solely for these tests, however; the variables werto sid-
fault values ofw = 0.5 and¢ = 2.0 for the other investigations
that are detailed here. The contour plots confirm these satube
within the optimal ranges of all four of the tested problethsugh
barely so onfs. Finding ideal values for these variables across all
problems will be explored in future work, but it is interegito
note that for values op approx 1.6, the optimal range includes an
inertia weight setting ofv = 0.0 for all four sample benchmarks.
This has implications for the velocity term that warrant sider-
able attention, but are currently beyond the scope of thpepa

Performance results in Table 2 for PSO-DR vs SPSO clearly
indicate that it is an extremely competitive variant, esgécon
highly complex problems such g5 (Rastrigin). Statistical tests
were performed on these results to determine the signiféicafc
the performance differences between the two algorithmsavéad
the problem of the probabilistic nature of t-tests potdiytiaffect-
ing results when conducting multiple significance testspdifred
Bonferroni procedure was applied to valuescoffor successive
tests [4]. This procedure involves inversely ranking obagons



5.0

4.0

Contour plot for PSODR performance on FO1
T T

@ (phi)

5.0

Contour plot for performance on FO3

4.0

0.0 0.25 0.50 0.75 1.0 0.0 0.25 0.50 0.75
w w
(a) f1 (Sphere/Parabola) (b) f3 (Generalized Rosenbrock)
5.0 Contour plot for PSODR performance on F05 Contour plot for PSODR performance on F12
A T T T 5.0 T T T
a0t -
3.0

@ (phi)

0.25

0.50 0.75
w

@ (phi)

(c) f5 (Generalized Rastrigin)

0.5

(d) f12 (Shekel 5)

Figure 1: Contour plots of PSO-DR performance for multiple combinations ofw and ¢.
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Table 1: Benchmark Functions

Equation Name D | Feasible Bounds
fi=02 a? Sphere/Parabola | 30 | (—100,100)"
=2 () Schwefel 1.2 30| (-100,100)"
fo =071 {100 (zit1 —a?)° + (i — 1)2} Generalized Rosenbrock 30 | (—30,30)"
fi=—=30 zisin (V7) Generalized Schwefel 2.630 |  (—500,500)"
fs =2 {z? — 10cos (2rz;) + 10} Generalized Rastrigin | 30 | (—5.12,5.12)"
f6 = —20exp {—0.21 /532, xf} —exp {% >P, cos (27rzi)} +20+e Ackley 30| (—32,32)°
fr= 105 22 a7 — 12, cos (%) +1 Generalized Griewank | 30 | (—600, 600)"
fo=% {1051112 (mys) + 25" (e — 1)* {1+ 10sin® (wyig1) } + (yp — 1)2} Penalized Function P8 | 30 |  (—50,50)"
+ 32, 1w, 10,100, 4)
yi=1+7(zi+1)
k(x;—a)™  xi>a
p(xi,ak,m)=4¢ 0 —a<z;<a
k(—z; —a)™ =< —a
fo=0.1 {sm2 (3mai) + 20" (2 — 1) {1 +sin? (3nwi41)} + (vp — 1) x | Penalized Function P16[ 30 |  (—50,50)"
{1 +sin® (272p)}} + 2, p (i, 5,100, 4)
10 =4x] — 2.1x7 + 327 + T122 — 425 + 42 IXx-hum amel-bac 5,5
fro = 4a? 1+ 329 4z} + 43 Six-hump Camel-back | 2 ,5)"
fir = {1+ (z1+ 22+ 1) (19 — 141 + 327 — 14x2 + 62122 + 323) } ¥ Goldstein-Price 2 -2,2)”
{30 + (221 — 332)? (18 — 3231 + 1227 + 4822 — 367122 + 2773) }
-1
fr2 = =50 {1 (5 = a) + i} Shekel 5 4 (0,10)?
N7 VIR B D
fis= =322 120521 (@5 —aiz)” +e Shekel 7 4 (0,10)
—1
fra == {0 (w5 - ai)? + i} Shekel 10 4 (0,10)P

by ascending values g@f then setting:

’ «
@ = inverse rank ©)

Results for these statistical tests are shown in Table 3 and ¢
firm that the results are significantly improved on 4 of thedsted
functions, equal for 9 functions, and worsened for 1 functior
PSO-DR vs SPSO with ring topology. These tests were limibed t
the ring topology due to its exclusive use in all other corrgmar
tests performed. Perhaps the most impressive improverems
for f5 (Rastrigin), a notoriously difficult multimodal problemath
PSO algorithms often perform poorly on in high dimensidayali

4. EXAMINATION OF BURSTING

Additional tests were performed to measure particle speed o
both SPSO and PSO-DR with ring topologies, using a nornlise
measure

|7]

-7l @

wherep: = p, for the particle being measuregh = p; under
SPSO, angy> = 7; (the recombinant term) under PSO-DR. Per-
centile plots of particle velocity at updatesptofor both algorithms
are shown in Figure 2.

Examination of the percentile plots shows tpais updated by
particles with higher velocities only very rarely for botlgarithms.

z
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However, it is important to note that speed for this particeixper-
iment will include particles with very high velocities in lgra few
dimensions and low velocities in other dimensions, as wepa-
ticles with moderately high velocities in most or all dimems.
In order to investigate bursting behavior a further measwre de-
vised.

This bursting measure was implemented to highlight wherra pa
ticle had a velocity in a single dimension that was consiolgra
higher than the next highest dimensional velocity. Bursiiat-
terns of behavior were detected by reporting every timeigart
velocity in a single dimension was a set amountimes higher
than velocity in the next highest dimension. Bursting bédrais
demonstrated in Figure 3, where the velocity of a singleigart
in a 10-dimensional problem is shown. On the plot of the multi
dimensional velocity of the SPSO particle, it can be seehwba
locity in a single dimension increases suddenly and draalbti
while remaining relatively level and low in all other dimémss.
This is an example of a velocity burst. While the figure shoas v
locity for a single particle on a single run, examination efocity
plots for hundreds of particles over dozens of runs confirthéesd
to be representative of general particle behavior.

Velocity for a PSO-DR particle is also shown in Figure 3, and
demonstrates the absence of bursts. Similarly to the SP8O pl
examination of a large number of plots confirmed this to beeep
sentative of general behavior for PSO-DR.

Examination of these empirical analyses show that PSO-Bétlgl



Table 2: Mean fitness after 30 trials of 300000 evaluations

Algorithm fi f2 f3 fa fs fe fr
SPSO Ring 0.0+0.0 0.12+0.01 6.18+1.07 3385+40 | 163.50:5.64 | 18.28+0.85 0.0+0.0
func evals 97063+377 - - - - - 1106163320
PSO-DR Ring 0.0+0.0 0.01+0.002 16.79:0.49 | 2697436 | 44.64+2.71 | 0.68+0.67 0.0+0.0
59322+125 - - - - - 101526£9227
SPSO Global 0.0+0.0 0.0+0.0 8.37+2.26 3522432 | 140.16£5.87 | 12.93:1.59 | 0.019+0.004
468974421 297645848 - - - - -
PSO-DR Global 0.0+0.0 0.0+0.0 0.80+0.29 3754+48 | 115.54H-7.03 | 18.51-0.90 | 0.008+0.002
3329G£170 1688521205 - - - - -
Algorithm fs fo fio fu1 fi2 fis J1a
SPSO Ring 0.0035:0.0034 0.0+£0.0 0.0+£0.0 0.0+£0.0 0.59+0.33 1.09+0.45 0.964+0.45
func evals - 106163t537 9348+190 | 8258+104 - - -
PSO-DR Ring 0.0+0.0 0.0+£0.0 0.0+£0.0 0.0+£0.0 0.1740.17 0.0+0.0 0.0+£0.0
613706249 61793:221 | 4457H7608 | 4772+47 - 13433+:249 | 127601386
SPSO Global 0.15+0.05 0.003+£0.0009 0.0+£0.0 0.0+£0.0 4.61+0.54 4.40+0.60 3.24+0.66
- - 11808445 | 7080+108 - - -
PSO-DR Global 0.05+0.02 0.002+0.0007 0.0+0.0 0.0+0.0 4.34+0.59 2.55+0.62 3.13+0.66
- - 40015+4483 | 3968+27 - - -

anism is not possible in SPSO which does not possess a natural
frequency due to the stochastic acceleration parameters.
Analysis performed on statistics of several functions shtvat

Table 3: Significance for SPSO vs PSO-DR with ring topologies

Func | p-value | Inverse rank a’ Significant particle updates involving bursts are far less effectivantmore

fa 0 14 0.003571 Yes common non-bursting updates. For example, results shoatd t

fs 0 13 0.003846 Yes for SPSO onfs with A = 100, on average20.1% of all particle
updates involve an improvement to the particle’s best foposi-

Je 0 12 0.004167 Yes tion p;, whereas onlyl.8% of updates involving bursts result in

I3 2.02e-12 11 0.004545 Yes an improvement te;. Likewise, on averag6.9% of all particle

f 1.31e-10 10 0.005 Yes updates improve the best found swarm positioras opposed to
only 0.01% for bursting particles. Burst frequencies for values of

fis 0.021 9 0.005556 No X from 10 to 150 are shown in Figure 4.

J14 0.0414 8 0.00625 No It is also interesting to note that far fewtal updates result in

fs 0.3215 7 0.007143 No an improvedp; or g for PSO-DR when compared to SPSO, e.g. re-
sults showed that 20.1% of all updates impreydor SPSO com-

0.2663 6 0.008333 N . .

Sz ° pared with 0.64% for PSO-DR, and 0.91% impraydéor SPSO

fi 1 S 0.01 No compared with 0.02% for PSO-DR dfg for A = 100).

fr 1 4 0.0125 No

1 3 0.016667 No

fo X ; ot B 5. CONCLUSIONS

Jo : ° Simplification of the standard PSO algorithm is an importiep

fi 1 1 0.05 No toward understanding how and why it is an effective optimiBy

removing components of the algorithm and seeing how thecesf
performance, we are granted insight into what those comyene
contribute to overall particle and swarm behavior. Therstii
does not contain bursting behavior on the scale of SPSO while much to be done before questions about what exactly makes PSO
demonstrating equal or superior performance on 13 of thetdhs behave in the way that it does can be completely answered, and
mark functions, leading to the hypothesis that bursts ardéméact, it is expected that the next decade of PSO research will hesfoc
integral to the successful operation of particle swarm ritlgms. on understanding the basic algorithm that powers both thelard
The fact that a very few bursts do occur with PSO-DR indichas t and the numerous variant implementations.
it is a highly improbable feature of DR dynamics. In that light, the PSO-DR variant is important not only besmu
Although the explanation for these rare events cannot limoh of its improved performance on several benchmark functibng
tiplicative stochasticity, PSO-DR will have a resonangfrency so also because its simplified state allows us to examine wigtdres
attractor movement at this frequency, or at a multiple of fine- to the standard algorithm when pieces are modified or removed
quency could drive a particle away from the attractors. Tish- Based on the results presented here, it can be argued ttsas bur
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Figure 2: Percentile plots of update frequency tg; with particle velocity measure z on benchmark function f3
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Figure 3: Representative particle velocities for SPSO and O-DR on 10D Rastrigin
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are not generally beneficial or integral to PSO performaace,
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may possibly be detrimental. This may be because burstipg ha

pens along an axis and so differs from the exploratory astiod
bare bones particles which sample the surrounding regiomst-
rically. (However, in the coincidence that the objectivadtion has
a rectangular symmetry aligned with the axes, then burstiag

actually be fortuitous.) Furthermore, lost particles irg&abursts

cannot contribute to the search. Because of the assocHtimmst-

ing behavior with the random acceleration parameter in SRFO
we can see that this part of the algorithm may not be necessary
produce the desired optimization behavior.

Further, the replacement of the direct personal influeneeatpr

p; from SPSO with the recombinant termderived from its neigh-
borhood in PSO-DR strengthens the case for PSO being mestly r

liant on social interaction as opposed to personal expegieihe

saocial behavior occurring inside of a swarmis still a wigen area

in the field, and will hopefully constitute a great deal of theure
research devoted to the development of a better underataodi
this deceptively simple optimizer.

Another property of PSO-DR resides in attractor jigglingtth

takes place even at stagnation (no updates togghgincer; is
never fixed. This jiggling will work against convergence awdld
propel the swarm onwards. This, and other matters conagthin
nature of recombination within PSO, will be the subject otlier

study.
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