
On Lookahead and Latent Learning in Simple LCS 
 
 
 
 
 

 

Larry Bull 
School of Computer Science 

University of the West of England 
Bristol, U.K. 

+44 (0)117 2383161 

Larry.Bull@uwe.ac.uk 

 
 
 
 
 

 
 
 

ABSTRACT 
Learning Classifier Systems use evolutionary algorithms to 
facilitate rule- discovery, where rule fitness is traditionally payoff 
based and assigned under a sharing scheme. Most current research 
has shifted to the use of an accuracy-based scheme where fitness 
is based on a rule’s ability to predict the expected payoff from its 
use. Learning Classifier Systems which build anticipations of the 
expected states following their actions are also a focus of current 
research. This paper presents a simple but effective learning 
classifier system of this last type, using payoff-based fitness, with 
the aim of enabling the exploration of their basic principles, i.e., 
in isolation from the many other mechanisms they usually 
contain. The system is described and modeled, before being 
implemented. Comparisons to an equivalent accuracy-based 
system show similar performance. The use of self-adaptive 
mutation in such systems in general is then considered.   

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods 
and Search – backtracking, control theory, dynamic 
programming, graph and tree search strategies, heuristic 
methods, plan execution formation and execution, scheduling. 

General Terms 
Algorithms, Experimentation. 

Keywords 
Anticipation, Genetic Algorithm, Reinforcement Learning, Self-
Adaptation. 

1. INTRODUCTION 
Holland’s Learning Classifier System (LCS) [1986] represents a 
form of machine learning which exploits evolutionary computing 
to produce inductive structures within an artificial entity. 
Typically, such systems use stimulus-response rules to form 
chains of reasoning. However, Holland’s architecture has been 
extended to include mechanisms by which higher levels of 

cognitive capabilities, along the lines of those envisaged in 
[Holland et al., 1986], can emerge; the use of predictive modeling 
within LCS has been considered through alteration to the rule 
structure [e.g., Riolo, 1991]. Using maze tasks loosely based on 
those of early animal behavior experiments, it has been found that 
LCS can learn effectively when reward is dependent upon the 
ability to accurately predict the next environment state/sensory 
input. LCS with such ’lookahead’ typically work under latent 
learning, i.e., they build a full predictive map of the environment 
without external reinforcement. LCS of this general type have 
gained renewed interest after Stolzmann presented the heuristics-
based ACS [Stolzmann, 1998]. ACS was found to produce over-
specific solutions through the workings of its heuristics and was 
later extended to include a Genetic Algorithm (GA)[Holland, 
1975] - ACS2 [Butz & Stolzmann, 2002]. Bull [2002] presented 
an extension to Wilson’s simple payoff-based LCS - ZCS 
[Wilson, 1994] - which is also able to form anticipations under 
latent learning. Significantly, this was the first anticipatory system 
to build such models through the GA alone; Riolo [1991] did not 
include a GA. Most current work in LCS has shifted to using 
accuracy as rule fitness, after Wilson presented XCS [Wilson, 
1995]. Bull [2004] presented a simple accuracy-based LCS which 
can create such anticipations using only the GA – YCSL. In this 
paper, a simple payoff-based LCS which can create anticipations 
using only the GA is presented and explored, based on the ZCS-
derived system MCS [Bull, 2005]. 

2. MCSL 
In this paper, as in ACS and its related systems such as YACS 
[Gerard & Sigaud, 2002], and in [Bull, 2002; 2004], an explicit 
representation of the expected next environmental state is used to 
create a simple payoff-based anticipatory LCS which uses 
lookahead under latent learning - MCSL. That is, rules are of the 
general form: 

<condition> : <action> : <anticipation> 
 

Generalizations (#’s) are allowed in the condition and anticipation 
strings. Where #’s occur at the same loci in both, the 
corresponding environmental input symbol ’passes through’ such 
that it occurs in the anticipated description for that input. 
Similarly, defined loci in the condition appear when a # occurs in 
the corresponding locus of the anticipation. MCSL is a Learning 
Classifier System without internal memory, where the rulebase 
consists of a number (N) of rules with the above form. Associated 
with each rule is a fitness and where the initial random population 
have this initialized to 10. 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
GECCO’07, July 7–11, 2007, London, England, United Kingdom. 
Copyright 2007 ACM 978-1-59593-698-1/07/0007…$5.00. 
 

2633



On receipt of an input message, the rulebase is scanned, and any 
rule whose condition matches the message at each position is 
tagged as a member of the current match set [M]. An action is 
then chosen from those proposed by the members of the match set 
at random and all rules proposing the selected action form an 
action set [A]. 

Although the use of fitness sharing for externally received payoff 
was fundamental to Holland’s bucket brigade algorithm, it was 
not until Wilson introduced the action set-based scheme in ZCS 
that simple but effective fitness sharing in LCS became possible. 
MCSL, like MCS, uses the fitness sharing mechanism of ZCS, 
i.e., within action sets. Reinforcement consists of updating the 
fitness f of each member of the current [A] using the Widrow-
Hoff delta rule with learning rate β: 

fj    fj + β (  (P / |[A]|)  -  fj )   (1) 
 

MCSL employs two discovery mechanisms, a GA and a covering 
operator. On each time-step there is a probability g of GA 
invocation. When called, the GA uses roulette wheel selection to 
determine two parent rules from the population based on their 
fitness. Offspring are produced via mutation (probability μ, turned 
into a wildcard at rate p#) and crossover (single point with 
probability χ), inheriting the parents’ fitness values or their 
average if crossover is invoked. Replacement of existing members 
of the rulebase is inversely proportional to fitness, i.e., 1/(fj +1), 
using roulette wheel selection. If no rules match on a given time 
step, then a covering operator is used which creates a rule with the 
message as its condition (augmented with wildcards at the rate p#) 
and a random action and anticipation, which then replaces an 
existing member of the rulebase in the usual way. It is assigned 
the default fitness f0. 
 

Hence MCSL represents a simple anticipatory LCS which relies 
solely upon the GA to search the space of possible 
generalizations; other heuristics need not be considered as pre-
requisites for the effective use of a payoff-based fitness scheme. 
Here the term effective is taken to mean able to solve problems of 
low complexity whilst remaining open to close modeling; the 
canonical GA may be defined in much the same way. The 
mechanisms of MCSL are now modeled, in keeping with its 
philosophy, in a simple way. 

3. A SIMPLE MODEL OF MCSL 
The evolutionary algorithm in MCSL is a steady-state GA. A 
simple steady-state GA without genetic operators can be 
expressed in the form: 

 
n(k, t+1) = n(k, t) + n(k, t) R(k, t)  - n(k, t) D(k, t)      (2) 
 
where n(k, t) refers to the number of individuals of type k in the 
population at time t, R(k, t) refers to their probability of 
reproductive selection and R(k, t) to their probability of deletion. 
Roulette-wheel selection is used, i.e., R(k, t) = f(k, t)/f(K, t), where 
f(k, t) is the fitness of individuals of type k (Equation 1) and f(K, t) 
is the total population (K) fitness. Replacement is inversely 
proportional to fitness as described above. 

Table 1 shows the error ’rewards’ for each of the rules considered. 
Those rules which experience two rewards have the average 
shown. Figure 1 shows the maze environment from which the 
errors are drawn. The maze contains two locations, one providing 
the LCS with input ’0’ and the other with input’1’. In both 
locations an action ’0’ means no move and action ’1’ means a 
move to the other location. 
 

Table 1: Rewards for the modelled maze task. 
 

C:A:An Reward C:A:An Reward C:A:An Rewad 
0:0:0 1000 1:0:0   0 #:0:0 500 
0:0:1    0 1:0:1 1000 #:0:1 500 
0:0:# 1000 1:0:# 1000 #:0:# 1000 
0:1:0   0 1:1:0 1000 #:1:0 500 
0:1:1 1000 1:1:1   0 #:1:1 500 
0:1:#   0 1:1:#   0 #:#:#   0 
 

The rulebase is of size N=400 and the initial proportions of each 
rule in the population are equal (N/18), and β=0.2. It is assumed 
that both inputs are presented with equal frequency, that both 
actions are chosen with equal frequency and that the GA fires 
once every four cycles (i.e., g=0.25). The rules’ parameters are 
updated according to Equation 1 on each cycle. 

 

Figure 1: Simple two location maze considered. 
 
Figure 2 shows the behaviour of the modelled MCSL on the 
simple maze task. Figure 2(a) shows how only the rules which 
accurately anticipate the next state (i.e., following their action 
being taken in the locations they match) exist in the final 
population. The rulebase is roughly divided between rules with 
action ’0’ and those with action ’1’ but there is no explicit 
pressure for a maximally general solution. Figure 2(b) shows the 
corresponding trajectories of the rules’ fitnesses with all accurate 
anticipators having the same – highest - fitness. Therefore the 
simple payoff-based fitness scheme of MCSL results in a rulebase 
which completely maps the maze environment under a latent 
learning scenario. 

This performance is roughly equivalent to, or actually slightly 
faster than, that produced by the simple accuracy-based system 
YCSL, as presented in [Bull, 2004]. 

 

 

  State 0                      State 1 

   action 0 

 action 0 

    action 1 

2634



(a) 

 (b) 

 

Figure 2: Behaviour of model MCSL on the maze task, 
showing numerosity (a) and fitness (b). 

  

4. MCSL IN T-MAZES 
MCSL has been implemented and investigated using the T-maze 
presented in [Bull, 2002] – Woods 10. As noted above, 
motivation for exploring the use of learning without external 
reinforcement comes from early experiments in animal behaviour. 
Typically, rats were allowed to run around a T-maze, as shown in 
Figure 3, where the food cell would be empty but a different 
colour to the rest of the maze. The rats would then be fed in the 
marked location. Finally, the rats were placed at the start location 
and their ability to take the shortest path (go left at the T-junction 
in Figure 3) to the food recorded. It was found that rats could do 
this with around 90% efficiency. Those which were not given the 
prior experience without food were only 50% efficient, as 
expected [e.g., Seward, 1949]. 

Following from the model, the LCS is placed randomly in the 
maze and a matchset is formed. Sensory input in each location of 
the maze is encoded as a 16-bit binary string with two bits 
representing each cardinal direction. A blank cell is represented 
by 00, the food location (F) by 11 and trees (T) by 10 (01 has no 
meaning). The message is ordered with the cell directly above the 
LCS represented by the first bit-pair and then proceeds clockwise 
around it. An action is chosen at random from the matchset where 
there are eight possible actions (cardinal moves) and the LCS can 
move into any one of the surrounding eight cells on each discrete 
time step, unless occupied by a tree or it is the food location (this 
avoids creating a sensory ambiguity). All rules which propose the 
chosen action are updated. One further mechanism is incorporated 
for this harder task (after [Bull, 2002]): the first N random rules of 

the rulebase have their anticipation created using cover (with #’s 
included as usual) in the first [A] of which they become a 
member. This goes some way to make " ... good use of the large 
flow of (non-performance) information supplied by the 
environment." [Holland, 1990]. Rules created under the cover 
operator also receive this treatment. In this way the GA explores 
the generalization space of the anticipations created by the simple 
heuristic. 

 
Figure 3: Woods 10 maze. 

 

Initial results with N=5000, p#=0.6, β=1.0, g=1.0, χ=0.5 and 
μ=0.04 (after [Bull, 2004]) find MCSL is unable to produce a full 
model of Woods 10 (not shown). Indeed, the system appears to 
predict a low number of actions, with increasing specificity, and 
the rule with the highest numerosity in those few [A] rarely 
anticipates the next state correctly. 
 
Under the operations of the GA within ZCS there is a 
reproduction cost such that parents give half of their fitness to 
their offspring. No explanation for this mechanism is given in 
[Wilson, 1994] but it has been suggested that it produces a 
generalization pressure within such systems. That is, once a rule 
has reproduced, it and its offspring are much less likely to be 
picked again under the global GA until their niche occurs, at 
which point they are assigned a new fitness appropriate for the 
current numerosity. The more general rule is updated faster. The 
first point is fundamental to the way in which fitness sharing 
avoids overgeneral rules since it removes any advantage in 
difference between niche payoff levels [Bull, 2005]; the payoff 
available to individual rules becomes the same in all niches once 
numerosities have been adjusted appropriately by the GA. 
 

Figure 4 shows how the mechanism works well within MCSL, 
after [Bull, 2002]. Eight actions were maintained throughout in 
this case (not shown).  

 

 

 

 

 

 

 

Figure 4: Behaviour of MCSL in Woods 10, equal to that of 
an equivalent accuracy-based system in [Bull, 2004]. 

2635



5. SELF-ADAPTIVE MUTATION 
In previous work [e.g., Bull et al., 2000], a single self-adapting 
mutation rate parameter was added to each rule in LCS. That is, 
each rule has its own mutation rate μ, stored as a real number and 
initially seeded uniform randomly in the range [0.0,1.0]. This 
parameter is passed to its offspring either under recombination or 
directly. The offspring then applies its mutation rate to itself using 
a Gaussian distribution, i.e., μi

' = μi eN(0,1), before mutating the rest 
of the rule at the resulting rate. Figure 5(a) shows how the 
approach can be successfully used within MCSL in Woods 10 
using all others the parameters as before. There is a significant 
rise (T-test, P<0.05) in the specificity of the solution produced 
however compared with the fixed single mutation rate of μ=0.04. 
 

 

 

 

 

 

 

(a) 

(b) 

Figure 5: Behaviour of MCSL in Woods 10 with a single 
self-adapting mutation rate (a) and three (b). 

 

The creation of an anticipatory system through the GA alone 
means the evolutionary process is designing rule structures of 
increased complexity in comparison to the traditional stimulus-
response rules. It may therefore be beneficial to increase the 
freedom of the mutation operator to search the sub-spaces of the 
different parts of the rule encoding at different rates; 
improvements in performance may be possible with separate self-
adapting mutation rates for the condition, action and anticipation. 
This has been explored with each mutation rate adapting as 
before, as shown in Figure 5(b). The rate for the action 
component adapts differently to those of the condition and 
anticipation. Specificity is still higher than with the fixed rate as a 
consequence however, but less than that seen with the single 
adapting parameter. A more converged and accurate solution is 
produced than in the other two systems. No significant increase in 
learning speed is seen, again solutions appear to settle after 
around 200,000 problems, which is faster than with the fixed rate 
which typically settle to a solution after around 300,000 
problems; a slightly more specific solution is learnt more quickly.  

Results from using both mechanisms within the equivalent simple 
accuracy-based system also show an increase in specificity. This 
is to such a degree that a larger population is required to enable 
the evolution of a solution wherein the fittest rule in each [A] 
accurately predicts the next state in all states (not shown). 

A full version of this paper is available as Technical Report 
UWELCSG07-002 from http://www.cems.uwe.ac.uk/lcsg 

6. REFERENCES 
Bull, L. (2002) Lookahead and Latent Learning in ZCS. In 

W.B.Langdon et al. (eds) GECCO-2002: Proceedings of the 
Genetic and Evolutionary Computation Conference. Morgan 
Kaufmann, pp897-904.  

Bull, L. (2004) Lookahead and Latent Learning in a Simple 
Accuracy-based Learning Classifier System. In X. Yao et al. 
(eds) Parallel Problem Solving from Nature - PPSN VIII. 
Springer Verlag, pp1042-1050. 

Bull, L. (2005) Two Simple Learning Classifier Systems. In L. 
Bull & T. Kovacs (eds) Foundations of Learning Classifier 
Systems. Springer, pp63-90. 

Bull, L., Hurst, J. & Tomlinson, A. (2000) Self-Adaptive 
Mutation in Classifier System Controllers. In J-A. Meyer et 
al. (eds) From Animals to Animats 6 - The Sixth International 
Conference on the Simulation of Adaptive Behaviour, MIT 
Press 

Butz, M. & Stolzmann, W. (2002) An Algorithmic Description of 
ACS2. In P-L. Lanzi, W. Stolzmann & S.W. Wilson (eds) 
Advances in Learning Classifier Systems: IWLCS 2001. 
Springer, pp211-230. 

Gerard, P. & Sigaud, O. (2001) YACS: Combining Dynamic 
Programming with Generalization in Classifier Systems. In P-
L. Lanzi, W. Stolzmann & S.W. Wilson (eds) Advances in 
Learning Classifier Systems: Proceedings of the Third 
International Workshop. Springer, pp52-69. 

Holland, J.H. (1975) Adaptation in Natural and Artificial Systems. 
University of Michigan Press. 

Holland, J.H. (1986) Escaping Brittleness. In R.S. Michalski, J.G. 
Carbonell & T.M. Mitchell (eds) Machine Learning: An 
Artificial Intelligence Approach, 2. Morgan Kauffman, pp48-
78. 

Holland, J.H. (1990) Concerning the Emergence of Tag-Mediated 
Lookahead in Classifier Systems. Physica D 42:188-201. 

Holland, J.H., Holyoak, K.J., Nisbett, R.E. & Thagard, P.R. 
(1986) Induction: Processes of Inference, Learning and 
Discovery. MIT Press. 

Riolo, R. (1991) Lookahead Planning and Latent Learning in a 
Classifier System. In J-A. Meyer & S.W. Wilson (eds.) From 
Animals to Animats: Proceedings of the First International 
Conference on Simulation of Adaptive Behaviour. MIT Press, 
pp316-326 

Seward, J.P. (1949) An Experimental Analysis of Latent 
Learning. Journal of Experimental Psychology 39: 177-186. 

Stolzmann, W. (1998) Anticipatory Classifier Systems. In J.R. 
Koza (ed) Genetic Programming 1998: Proceedings of the 
Third Annual Conference. Morgan Kaufmann, pp658-664. 

Wilson, S.W. (1994) ZCS: A Zeroth-level Classifier System. 
Evolutionary Computation 2(1):1-18. 

Wilson, S.W. (1995) Classifier Fitness Based on Accuracy. 
Evolutionary Computation 3(2):149-177. 

 

2636


