
Learning and Exploiting Knowledge in Multi-Agent Task
Allocation Problems

Adam Campbell
School of EECS

University of Central Florida
Orlando, FL 32816-2362, USA

acampbel@cs.ucf.edu

Annie S. Wu
School of EECS

University of Central Florida
Orlando, FL 32816-2362, USA

aswu@cs.ucf.edu

ABSTRACT
Imagine a group of cooperating agents attempting to allo-
cate tasks amongst themselves without knowledge of their
own capabilities. Over time, they develop a belief of their
own skill levels through failed attempts at completing the
tasks they are assigned. How will various task allocation
approaches perform when there exists this added level of
complexity? In particular, we compare two task allocation
strategies: a greedy, first-come-first-serve approach, and a
more intelligent, best-fit method. By varying the number
of tasks along with the amount of time it takes to complete
those tasks, we find that the different task allocation meth-
ods work better in different situations. Because of the way
the tasks are allocated by the two methods, the greedy ap-
proach does a better job of giving agents opportunities to
learn their capabilities. Thus, the greedy approach allows
for quicker learning and performs better on problems where
the task durations are short, whereas the best-fit method
performs better on problems where the task quantity and
durations are large. What is needed is a hybrid method that
balances between the exploration of the greedy approach and
the exploitation of the best-fit method.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—multiagent systems

General Terms
Experimentation

Keywords
multi-agent systems, task allocation

1. INTRODUCTION
Given a group of cooperative agents, each with a different

task completion ability and a set of tasks that vary with dif-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-698-1/07/0007 ...$5.00.

ficulty, how can the agents learn their own abilities so that
when new tasks arrive they are assigned to agents in the
most efficient manner? To answer this question, we develop
a simple model that allows us to compare different task al-
location methods in the presence and absence of learning.
When learning is used, agents will be able to estimate their
skill level through a series of trial-and-error tests. Because
agents do not know their true skill level, they are unable
to perfectly discern their ability to complete any particular
task. In this paper, we look to discover how two types of
task allocation methods perform under this type of scenario.
The first task allocation method is a first-come-first-serve,
greedy approach that assigns the task to a randomly chosen
available agent that believes it can complete the task. The
second approach attempts to assign the agents to tasks in a
more intelligent manner by giving the tasks to agents that
are believed to be best fit for the task.
We find that the method of task allocation has a large

effect on the learning capabilities of the agents. Because of
the way the best-fit task allocation method assigns tasks to
agents, it does a poor job of distributing the learning to the
agents, whereas the randomness of the greedy method allows
for very quick learning. However, the best-fit method has
the upper hand when the agents have an accurate estimation
of their abilities. Agents with little skill take on the easier
tasks, which frees up the highly skilled agents to take on
the difficult tasks. What would be best is a hybrid method
that allows agents to quickly learn their skills early on and
then later exploits this knowledge through an efficient task
allocation procedure.

2. RELATED WORK
Social insects are typically used as the canonical example

of massively distributed problem solving because of their
ability to manage task distributions without the need for
centralized control [1]. As an example of how social insects
allocate tasks, Franks [2] shows that ants of different sizes
take on tasks of different difficulties. Foragers that are larger
are apt to carry larger food, while the smaller ants take on
more manageable tasks.
Work on task allocation within the multi-agent research

field is a subset of the distributed problem solving work
in the Artificial Intelligence community. In [8], Smith and
Davis describe task-sharing, where processing nodes decom-
pose tasks into subtasks and then send the subtasks off to
other nodes. Difficulty arises when deciding which nodes
should take which tasks so as to minimize processing time.

2637

Early multi-robot architectures that were focused on solv-
ing the task decomposition and allocation problems were
designed to be flexible, fault tolerant, and decentralized [7,
5]. To determine task allocations, negotiations take place
through bidding systems, where available agents place higher
“bids” on tasks they are well suited to work on. Agents with
higher bids are then assigned to these tasks. Tasks can be
dynamically created, decomposed into smaller tasks, and as-
signed at run-time. These early architectures paved the way
for the more recent research.
As claimed by Gerkey and Matarić in [3], most of the task

allocation work up to the point of the writing of their paper
had been empirical and contained little theoretical founda-
tion. In their work, Gerkey and Matarić present a formal
framework for task allocation. Their taxonomy of the multi-
robot task allocation problem uses three criteria, with each
criteria containing two values, thus, creating eight classes
of task allocation problems. The complexity of each classi-
fication is analyzed separately, so that once new problems
arrive, they can be classified, and their theoretical complex-
ity will be already known. Lau and Zhang [4] present a
similar work that gives a taxonomy for what they call the
Task Allocation Coalition Formation problem.
Matarić et al. [6] describe a multi-robot task allocation

problem where the cooperating robots receive noisy data
from the environment; thus, causing the robots to bid in-
correctly on tasks. Four task allocation methods were de-
scribed in [6], and the authors found that the best allocation
method was dependent upon the type of noise in the robots’
sensor information. If agents are ignorant of their capabil-
ities, then they too will produce erred bids on tasks. Our
goal is to get a better understanding of a system where a
group of autonomous agents are working together, allocat-
ing tasks based on what they believe their skill levels to be
and not on what the actual skill levels are.

3. METHOD
To understand how a group of agents, ignorant of their

own capabilities, can allocate tasks efficiently, a simulation
model was constructed. The simulation consists of a set of
agents and a set of tasks. Each agent contains the follow-
ing three variables: actualSkillLevel, estSkillLevel, and time-
Busy. The actualSkillLevel is a randomly chosen, floating
point number in the range of 0.0 to 1.0. The estSkillLevel
(estimated skill level) is initialized to 1.0 and represents
what the agent believes its actualSkillLevel to be. If learn-
ing is present it will be updated by the agent through a series
of trial-and-error tests. The timeBusy value of an agent rep-
resents the amount of time that the agent is occupied with
its current task. When an agent’s timeBusy value is greater
than zero, it cannot be assigned a new task.
Each task has a difficulty and a duration. An agent can

only complete a task if its actualSkillLevel is greater than or
equal to the difficulty of the task. As a practical considera-
tion, difficulty ranges from 0.0 to 0.9 in order to reduce the
possibility of a task being too difficult for any agent to com-
plete. The duration is a positive integer that indicates the
amount of time an agent will be occupied when it has been
assigned a task. One may wonder why the duration and dif-
ficulty of tasks are not related. It would seem to make sense
that the difficulty of a task would define its duration; how-
ever, this is not necessarily the case. In a foraging scenario
where the tasks are the retrieval and transportation of tar-

get items back to a home base, the difficulty could represent
how heavy or big the target object is, whereas the duration
of the task would be a function of the distance between the
object and the home base. Since we assume that it will take
any agent the same amount of time to complete some task,
T, we can ignore T ’s duration when computing an agent’s
ability to complete it. Also, because we are interested in
the general, behavioral trends that occur when the previ-
ously mentioned parameters are varied, our model does not
take into account the mobility of agents and the problems
that agent-agent interference creates.
Algorithm 1 shows the basic outline of the simulation

model:

Algorithm 1: Model(AGENTS, TASKS, learning)
(1) t := 0
(2) if TASKS = ∅ then
(3) return t+max{Ai.timeBusy : Ai ∈ AGENTS}
(4) ∀Ai ∈ AGENTS : Ai.timeBusy > 0
(5) Ai.timeBusy := Ai.timeBusy − 1
(6) AV AIL = {Ai : Ai ∈ AGENTS &&

Ai.timeBusy = 0}
(7) if AV AIL = ∅ then
(8) GOTO Line 18
(9) select random task T from TASKS
(10) if @Ai : Ai ∈ AV AIL&&

Ai.estSkillLevel > T.difficulty then
(11) GOTO Line 18
(12) find an agent A to complete task T
(13) if A.actualSkillLevel >= T.difficulty then
(14) TASKS = TASKS − T
(15) A.timeBusy := T.duration
(16) else if learning = true then
(17) A.estSkillLevel := T.difficulty
(18) t := t+ 1
(19) GOTO Line 2

The variable t is returned by the model and represents the
amount of time it took for the agents to complete all tasks.
Lines 2 and 3 of Algorithm 1 are used to check if the task
set is empty. If it is empty, then the program returns the
number of iterations it has run in addition to the maximum
timeBusy value that any agent currently has. To simulate
the agents working on their tasks, the timeBusy value for
each unavailable agent is decremented by one in Lines 4
and 5. Line 6 is where the set of available agents, AVAIL,
is created. Lines 7 and 8 are used to check if AVAIL is
empty, and if so, then the program jumps to Line 18 where
t is incremented by one and then the process starts again
through the jump at Line 19. Next, Line 9 selects a random
task T from TASKS. If there does not exist an available
agent that has an estSkillLevel greater than the difficulty of
T, then the program jumps to Line 18. In Line 12, an agent
A is chosen to complete T. If the agent finds it can complete
the task (ie. its actualSkillLevel is at least as large as the
difficulty of T), then T is removed from TASKS and A has
its timeBusy value set to the duration of T (Lines 13, 14,
and 15). If learning is true and A’s actualSkillLevel is below
the difficulty of T, then A adjusts its estSkillLevel to equal
the difficulty of T. This trial-and-error process is how the
agents learn their own skill level over time. Line 12 is where
the task allocation method comes into play and is where the
remainder of the paper will be focused.

2638

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 2000 4000 6000 8000 10000

tim
e

number of tasks

Learning vs. Non-Learning with greedy allocation, duration 10

No learning
With learning

Figure 1: These two plots show the comparison be-
tween the average completion times of the learning
and non-learning, greedy task allocation methods
when the duration of each task is 10.

Each task allocation method is given AVAIL and T as
parameters and returns an agent to complete T. It should
be noted here that the order of the agents in AVAIL is ran-
domized before the task allocation method is called so that
there is no implicit bias towards any of the agents.
The greedy task allocation method works by looping through

each agent in AVAIL and returning the first one that has an
estSkillLevel greater than the difficulty of T. Because Lines
10 and 11 of Algorithm 1 ensure that at least one agent in
AVAIL believes it can complete T, we know that at least
one agent in AVAIL will have an estSkilLevel greater than
T ’s difficulty. Notice that the estSkillLevel must be strictly
greater than the task’s difficulty. Because an agent’s estSkil-
lLevel is equal to the difficulty of the least difficult task it
could not complete (Line 17 of Algorithm 1), we know that
the agent cannot complete a task with a difficulty equal to
its estSkillLevel.
The best-fit method loops through all agents in AVAIL

and returns the agent A that has the minimum, positive
value for A.estSkillLevel - T.difficulty. The agent that esti-
mates its skill level to be closest to that of the task, without
being below or equal to the task difficulty, takes the task.
Whether or not it can actually perform the task is not known
to the agent, but our belief is that with enough trials the
agents can begin to get a good estimate of their capability
and allocate themselves to tasks that best suit their ability.

4. EXPERIMENTS
To determine the behaviors of the task allocation meth-

ods with and without learning, the task quantity and task
duration time will be varied. By modifying these two pa-
rameters, different problem domains can be modelled.
The first set of experiments will compare the non-learning

greedy approach to the learning greedy approach. The non-
learning greedy task allocation method will serve as a base-
line comparison and allow us to see the effects learning has
on the task allocation procedure. In each of the following
experiments, the number of agents remains at 100 and the
plots are obtained by averaging the time-to-complete val-
ues over 100 runs. Figure 1 shows the comparison between
the learning and non-learning methods when the duration
of each task is 10 time units. As the number of tasks in-

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 2000 4000 6000 8000 10000

tim
e

number of tasks

Learning vs. Non-Learning with greedy allocation, duration 500

No learning
With learning

Figure 2: These two plots show the comparison be-
tween the average completion times of the learning
and non-learning, greedy task allocation methods
when the duration of each task is 500.

num. tasks 10 ticks 100 ticks 500 ticks
20 1.085 1.055 .997
100 1.308 1.414 1.233
200 1.585 1.630 1.198
1000 2.170 2.172 2.174
5000 2.558 2.430 1.251
10000 2.692 2.378 1.260

Table 1: Ratio of non-learning times to learning
times: timewithoutLearning/timewithLearning.

creases, the difference between the two lines in the plot also
increases, indicating that the benefits of using the learning
method are also increasing. Figure 2 shows what happens
when the duration of the tasks increases. Because the du-
ration of each task is much longer than those in the previ-
ous experiments, agents are occupied with tasks for a much
longer time. Thus, it becomes more costly to assign an agent
with a high skill level to a simple task since that agent will
not be able to complete the more difficult tasks that come
along during those 500 time steps it is working on the simpler
task. The two lines in Figure 2 are closer together than the
ones in Figure 1, indicating that the learning method pro-
vides a smaller benefit over the non-learning method when
task duration increases.
Table 1 shows the ratio of non-learning to learning times

(timewithoutLearning/timewithLearning) for several experiments.
The top row of the table shows the length of the task du-
rations, while the left most column denotes the number of
tasks used for the experiments. When the number of tasks
is as small as 20, there is no significant difference between
the average completion times of the two methods. How-
ever, when the task duration is small, a steady increase in
speedup can be seen, indicating that when the tasks take
little to no time to complete, a more sophisticated method
of task allocation may not be necessary. However, when the
task duration and task quantity are large, the benefits of
using the learning method decreases. This can be seen by
comparing the values in the right-most column. One possi-
ble explanation for this is due to the inefficient way resources
are allocated by the greedy method. By using a more so-
phisticated method of task allocation that assigns agents to

2639

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 2000 4000 6000 8000 10000

tim
e

number of tasks

Greedy vs. Best-fit, duration 10

Greedy
Best fit

Figure 3: These two plots show the comparison be-
tween the average completion times of the greedy
and best-fit task allocation methods when the dura-
tion of each task is 10.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 2000 4000 6000 8000 10000

tim
e

number of tasks

Greedy vs. Best-fit, duration 500

Greedy
Best fit

Figure 4: These two plots show the comparison be-
tween the average completion times of the greedy
and best-fit task allocation methods when the dura-
tion of each task is 500.

tasks in an intelligent manner, we may find a speedup when
the task durations are long and the number of tasks is large.
The second set of experiments will compare the learning

greedy task allocation method described above to the best-
fit method. In both cases, learning is used, the number of
agents is 100, and the data will be gathered by averaging
the output from 100 runs. The plots from the first set of
experiments are shown in Figure 3.
The greedy method, actually outperforms the best-fit method

when the task duration is 10 time steps. Because of the way
the best-fit method selects agents, it may actually hinder the
learning process. This hypothesis will be examined further
in an experiment below. When the duration of the tasks is
increased to 500, and the penalty for not allocating agents
efficiently is higher, the best-fit method does slightly out-
perform the greedy method, although this result does not
look to be statistically significant (Figure 4).
To determine if learning is hindered by the best-fit task

allocation method, we will look at the average difference
between estSkillLevel and actualSkillLevel throughout time.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 2000 4000 6000 8000 10000

er
ro

r
in

 b
el

ie
fs

time

Errors in beliefs using greedy and duration 10

Figure 5: In these plots, the average difference be-
tween all agents’ estSkillLevel and actualSkillLevel
are plotted over time. In each of the five runs the
following parameters are used: 100 agents, 10000
tasks, and a task duration of 10. The plot gives
an indication of how fast the learning method takes
place when greedy task allocation is used.

The idea being that when the difference between an agent’s
estimated skill level and actual skill level are small the agent
has learned its capabilities. If in fact the best-fit task alloca-
tion method is somehow slowing down the learning process,
we will see the difference between beliefs and actual skill
level getting smaller at a slower rate than when the greedy
method is used. Figures 5 and 6 show just that.
In each of these figures the data for five runs are shown;

with each run consisting of 100 agents, 10000 tasks, and
tasks with durations of 10 time units. Figure 5 shows how
fast learning occurs when the greedy method is used, and
Figure 6 shows this for the best-fit method. When the
greedy method is used, the difference between beliefs and
actual skill level drops extremely fast and then asymptot-
ically approaches zero. The learning rate for the best-fit
method is more of a linear curve. Thus, it has been shown
that the best-fit method does prevent learning from taking
place at a fast rate. What is it about the way that agents are
selected in the best-fit method that makes learning slower?
One possible explanation for why the best-fit method harms

learning could be due to scenarios similar to the following.
At the beginning of a new run, an agent, A, with an actual-
SkillLevel of 0.2 gets selected to perform a task with a diffi-
culty of 0.85. Because A cannot complete the task, it will set
its estSkillLevel to 0.85. Now, let’s imagine that in the next
time step, a task with difficulty 0.80 is chosen. When the
greedy method is used, each of the 100 agents has an equal
opportunity to take on this task since they all have their est-
SkillLevels greater than the task’s difficulty. Chances are,
that the agent that got chosen for the first task will not get
chosen for the second one. Since the agents’ actualSkillLevel
values were randomly chosen between 0.0 and 1.0, about
20% of the agents will be able to complete the task; the other
80% will not. So, it is very likely that the next agent chosen
by the greedy method will have an estSkillLevel equal to 1.0,
and an actualSkillLevel less than 0.80. The agent chosen (if
it is one that cannot complete the task) will then adjust its
estSkillLevel to 0.80. After two iterations of the simulation,

2640

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 2000 4000 6000 8000 10000

er
ro

r
in

 b
el

ie
fs

time

Errors in beliefs using best-fit and duration 10

Figure 6: In these plots, the average difference be-
tween all agents’ estSkillLevel and actualSkillLevel
are plotted over time. In each of the five runs the
following parameters are used: 100 agents, 10000
tasks, and a task duration of 10. Here, the best-fit
method is used. When compared to Figure 5, it can
be seen that the best-fit method slows the learning
process.

one agent will have an estSkillLevel of 0.85 and the other
will have an estSkillLevel of 0.80. What would happen in
this scenario when the best-fit method is used? After the
first iteration, the chosen agent would set its estSkillLevel
to 0.85. In the second iteration, the same agent would get
chosen for the 0.80 difficulty task since it estimates its skill
level as being closest to the task difficulty (remember, all of
the other agents have an estSkillLevel of 1.0 at this point).
Therefore, after two iterations, with the best-fit method,
one agent would have an estSkillLevel of 0.80 and all oth-
ers would have 1.0 estSkillLevels. On average, two agents
would have learned with the greedy method, whereas only
one learned when the best-fit method is used. Thus, because
the greedy method allows more agents the opportunity to be
assigned tasks, it allows for quicker learning. The following
experiment will try to test the validity of this explanation.
The following experiments were set up to determine the

amount of learning that takes place over time. Each time an
agent adjusts its estSkillLevel (Line 17 of Algorithm 1), the
amount learned (estSkillLevel−difficulty) will be printed
before Line 17 is executed. If the greedy method allows
agents to adjust their estSkillLevels faster than the best-fit
method, then we should see higher values for estSkillLevel−
difficulty early on when the greedy method is used. Fig-
ures 7 and 8 show how learning takes place over time in the
greedy and best-fit methods, respectively.
Both of these plots were obtained through five runs. Each

time Line 17 of Algorithm 1 was reached, a point on the
graph was made. The point shows the current simulation
time and the estSkillLevel−difficulty value. Large values
of estSkillLevel−difficulty mean that the agent is adjust-
ing its estSkillLevel by a large amount, i.e., it is learning a
lot. Figure 7 shows that a large amount of learning takes
place early on when the greedy task allocation method is
used. When the best-fit method is used, the learning takes
place at a much slower rate (Figure 8). It is also interesting
to see the large number of points along the y=0.1 line. This
is most likely because of the way the best-fit method works
along with the fact that the highest difficulty for a task will

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 2000 4000 6000 8000 10000

am
ou

nt
 le

ar
ne

d

time

Amount learned during each trial with greedy and duration 10

Figure 7: This plot shows when a majority of the
learning takes place when the greedy task alloca-
tion method is used. A point was generated on the
graph each time Line 17 of Algorithm 1 was exe-
cuted. The point gives the difference between the
agent’s estSkillLevel and the difficulty of the task
it could not complete. Thus, points higher on the
y-axis show when an agent adapted its estSkillLevel
by a large amount. The data points were gathered
from five separate runs.

be near 0.9. When the best-fit method is used, agents that
are not selected early on will have little chance to be selected
later on because their estSkillLevel will be at 1.0 and their
estSkillLevel − difficulty values will be high. However,
when a task comes along with a high difficulty (near 0.9),
most of the adapted agents will have estSkillLevels below
0.9, so the agents to take on those tasks will most likely be
the ones with estSkillLevels at 1.0. When they are chosen,
their estSkillLevel− difficulty value will be near 0.1, and
this is why we see a lot of points around the y=0.1 line.

5. CONCLUSION
Four sets experiments were conducted so that we could

get an understanding of the behaviors in a multi-agent task
allocation problem when the agents are ignorant of their own
capabilities. The first experiment showed a comparison be-
tween a system with learning and one without learning when
a greedy, first-come-first-serve, task allocation method was
used. It was shown that the learning method outperforms
the non-learning method significantly when the duration of
the tasks is not very long. However, when the duration of
the tasks becomes longer, the benefits of using the learning
method decrease. This indicates that a more sophisticated
method of task allocation that utilizes resources efficiently
may be needed when task duration is long.
The second set of experiments compared the greedy task

allocation method to a best-fit method that assigns tasks
to agents that believe they are best for the job. When the
durations of the tasks were short, the greedy method outper-
formed the best-fit method. This indicates that the best-fit
method slows down the learning process of the agents so
much that the benefits gained from allocating resources effi-
ciently are not seen. By increasing the duration of the task,
and in so doing, increasing the need to allocate resources
efficiently, the best-fit method does begin to outperform the
greedy method.

2641

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 2000 4000 6000 8000 10000

am
ou

nt
 le

ar
ne

d

time

Amount learned during each trial with best-fit and duration 10

Figure 8: Compare this plot to Figure 7 to see the
differences in learning when the best-fit method is
used instead of the greedy method.

In the third set of experiments, it was shown that the best-
fit learning method does reduce the ability for the agents
to learn. Because of the way agents were selected, they
adjusted their estSkillLevel at a much slower rate than when
the agents were using a greedy task allocation approach.
The fourth experiment supported this hypothesis.
It has been shown here that when agents are initially ig-

norant of their own capabilities, the best task allocation
method used has a drastic effect on the learning capabilities
of the agents. The greedy task allocation method does a
good job of allowing the agents to explore, and thus allows
them to quickly learn their capabilities. However, once these
agents are adapted, they can do little to exploit this knowl-
edge and allocate the resources efficiently. The best-fit task
allocation method behaves in a different manner. Because
of the way it assigns tasks to agents, it does a poor job of
allowing the agents to learn their capabilities. The best-fit
method does a better job of allocating resources efficiently,
but because it prevents the agents from learning quickly, it
provides little benefit over the simple, greedy method when
task durations are short. But, when the task durations be-
come long, we find that the benefits of the best-fit method
are noticed. What would be best is a hybrid method that
allows the agents to explore and learn early and then exploit
this knowledge later on.
Another direction for future research is to take the exist-

ing simulation and modify it so that it can model decentral-
ized decision making. For simplicity, the model presented
in this paper used centralized control. However, real multi-
agent teams work in a decentralized fashion. Due to the
dispersal of the agents throughout their environment and
the physical constraints on agent-agent communication dis-
tance, agents will only be able to communicate with their
immediate neighbors.

This will limit the number of agents that can bid on any
particular task. We believe that this may be able to be mod-
eled by limiting the size of the AVAIL set in Algorithm 1.
This modified version of the model may allow for experimen-
tation on decentralized multi-agent task allocation problems
in the presence of learning.

6. ACKNOWLEDGEMENTS
This work was sponsored, in part, by the US Army Re-

search Laboratory under Cooperative Agreement W911NF-
06-2-0041. The views and conclusions contained in this doc-
ument are those of the authors and should not be interpreted
as representing the official policies, either expressed or im-
plied, of the ARL or the US Government. The US Gov-
ernment is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright no-
tation hereon. Thanks also to Randall Shumaker and the
Institute for Simulation and Training.

7. REFERENCES
[1] C. Anderson and N. R. Franks. Teams in animal

societies. Behavioural Ecology, 12(5):534–540, 2001.
[2] N. R. Franks. Teams in social insects: group retrieval of

prey by army ants (eciton burchelli, hymenoptera:
Formicidae). Behavioral Ecology and Sociobiology,
18(6):425–429, 1986.

[3] B. P. Gerkey and M. J. Matarić. A formal analysis and
taxonomy of task allocation in multi-robot systems.
International Journal of Robotics Research,
23(9):939–954, September 2004.

[4] H. C. Lau and L. Zhang. Task allocation via
multi-agent coalition formation: Taxonomy, algorithms
and complexity. In ICTAI ’03: Proceedings of the 15th
IEEE International Conference on Tools with Artificial
Intelligence, page 346, Washington, DC, USA. IEEE
Computer Society.

[5] T. C. Lueth and T. Laengle. Task description,
decomposition and allocation in a distributed
autonomous multi-agent robot system. In Proceedings
of International Conference on Intelligent Robots and
Systems, pages 1516–1523, September 1994.

[6] M. J. Matarić, G. S. Sukhatme, and E. H. Østergaard.
Multirobot task allocation in uncertain environments.
Autonomous Robots, 14(23):255–263, 2003.

[7] F. R. Noreils. An architecture for cooperative and
autonomous mobile robots. In Proceedings of the 1992
IEEE International Conference on Robotics and
Automation, pages 2703–2710, May 1992.

[8] R. G. Smith and R. Davis. Frameworks for cooperation
in distributed problem solving. SMC-11(1):61–70,
January 1981.

2642

