

GAUGUIN: Generating Art Using
Genetic Algorithms and User Input Naturally

Thomas Cook
Colby College

7530 Mayflower Hill
 Waterville, ME 04901

thomas.cook@colby.edu

ABSTRACT
This paper outlines an undergraduate research project
demonstrating an application of evolutionary computation in the
context of computer art. The project combines the visual impact
of modern computer graphics with the computational power of
genetic algorithms. GAUGUIN allows the user to become a
creator of art, without requiring any technical or artistic training.
By using an intuitive and easily comprehensible process like
evolution to create the composition, all the user needs to do is
evaluate a number of possible “solutions”, which trains the system
to recognize his or her specific taste. The act of evaluating and
scoring is inherent in all of us; this project simply takes advantage
of that behavior in a creative way.

Categories and Subject Descriptors
J.5 [Arts & Humanities]: Fine Arts.

General Terms
Algorithms, Experimentation, Human Factors.

Keywords
Computer art, evolutionary art, genetic algorithms, graphics,
OpenGL, GAUL, interactive art.

1. INTRODUCTION
1.1 Motivation
For the most part, computer art is a highly refined production by
the artist. While the user’s experience of art may be interactive,
he rarely participates in the creative process. Similarly, there are
many excellent tools that an artist can use to create impressive
computer-based art. However, these tools require a high degree of
both technical sophistication and artistic ability.
Genetic algorithms are a powerful computational tool for a wide
variety of applications. Some of their greatest benefits include
their adaptability, and how they can be used with anything that
can be parameterized. Yet another advantage is that they operate
based on comprehensible principles separate from the realm of
computer science. Every high school graduate understands the
fundamental principles of evolution, which makes them able to
use an evolutionary system like GAUGUIN.

1.2 Project Goals
1.2.1 Primary Objective
The aim of this project was to present the user with a simple
means of producing art that is aesthetically pleasing to them—
regardless of their previous technical and artistic training. The
user only needs to decide how positively he or she responds to
the “solutions” proposed by the system.

1.2.2 Constraints
While each person has a different idea of what constitutes an
attractive image, allowing too much variety would make it
difficult for the user to effectively compare the images the system
presents to them. The intuition for this is that it is much easier to
be critical of differences between two similar objects than two
objects than have nothing in common.

1.2.3 Style
To limit the range of outcomes without compromising artistic
integrity, all solutions are (very) loosely based on an established
style of art called Suprematism. This Russian avant-garde
movement from the early 20th century is highly geometric, and
thus, well-suited for simple computer graphics. A secondary goal
of this project was translating the Suprematist style from canvas
into three-dimensional computer graphics, and to enhance it with
interactivity.

Figure 1. Malevich, Suprematism Muzeul de Artă, 1916

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-698-1/07/0007...$5.00.

2647

2. BACKGROUND
Though a precise definition of art is difficult if not impossible, it
is not unreasonable to adopt an “I’d recognize it if I saw it”
approach. Most people can agree that art has both a form, which
stimulates the senses, and a function, which stimulates the mind.
This provides a framework to indentify and compare various
works in the field.

2.1 Computer Art
Some of the most cutting-edge ideas and techniques in computer-
based fine art can be seen at the San Francisco Museum of
Modern Art’s exhibit entitled 010101: Art in Technological
Times. [1] These highly creative works are accompanied by an
artist statement, detailing their intent. For example, one web
project by Erik Adigard called Timelocator claims to, “explore the
notion of local and remote time.” It accomplishes this by
displaying the timestamps from when a viewer first opens the
page. The background color changes over time from light to dark
in sync with the sun at the host server’s location. Erik Adigard is
a well-established professional artist, like all the people whose
works are shown in this exhibit. Together, these artists provide a
representative sampling of contemporary computer art.

2.2 Evolutionary Art
Within the broad context of computer art, an entire genre bases
itself on the process of evolution. Some works use a genetic
algorithm to create finished products that are then presented to the
viewer. These types of works frequently make use of the fractal, a
recursive shape that is well suited to evolution. Others, like
GenTree, utilize user input to evolve realistic looking
representations of natural objects, such as trees. [2] GenTree is an
excellent example of a system that established clear goals for what
it is designed to produce, but still allows flexibility in determining
what sort of tree the user like best. Open-ended systems that
allow users to decide what it is they hope to achieve without
limitation are less common. One example of such a system is
Kandid. [3] This program allows the user to select from a number
of different styles, color spaces, and other variables, and then
evolves images in that style that the user scores. While it is not
truly “open-ended” it does offer such a diversity of styles that it is
possible to create almost anything with it.

3. SYSTEM DESIGN
3.1 Overview
3.1.1 OpenGL
Since the nature of this project is primarily graphical, deciding
which graphics library to use was a an important design concern.
OpenGL was selected based on its community support and the
amount of documentation available. While capable of highly
advanced three-dimensional graphics, OpenGL has a core of
simple specifications that permit novice programmers to create
graphics with ease. Additionally, a number of libraries like GLU
and GLUT extend the functionality of OpenGL by providing
simplified interfaces for advanced graphics operations like
quadrics and texture-mapping. [4]

3.1.2 GAUL
Another important aspect of this project is the evolutionary
system. GAUL, or Genetic Algorithm Utility Library, is an open-

source programming library designed to “assist in the
development of code that requires evolutionary algorithms.” [5]
GUAL features a highly developed set of functions and data
structures for setting up an evolutionary system, while offering a
very simple and intuitive interface that allows for quick
integration.

3.2 Graphics
3.2.1 Primitives
GAUGUIN defines a solution as a blank canvas that contains a
dozen “primitives”. A primitive is a data structure that defines a
shape and all its attributes. Each primitive contains a series of
integers to define these characteristics. Permitted shapes are
quadrilaterals, triangles or circles. Other values include the
coordinates of the vertices, the color, and alpha (transparency).
Having shapes appear in a logical and discernable pattern adds
visual interest, so there is a value that determines if the shape will
be repeated one or more times along an axis.

Figure 2- GAUGUIN Primitives

3.2.2 Perspective
Users have the ability to manipulate the point of view in a solution
to find the perspective they like best. This effect is controlled
simply and intuitively by clicking and dragging the mouse cursor
around in the window. The point of view is treated as an integral
part of the solution, so whenever this value changes, it is stored
along with all of the primitives in the chromosome.

3.2.3 Color
While a variety of hues (colors) add interest to a composition,
arbitrary hues are more likely to clash than complement one
another. However, giving users flexibility with regards to color
would allow them to create a more pleasing composition than
simply fixing the palette in advance. To this end, the user is first
prompted to choose hues that will form their palette. These colors
are permuted, but only within a limited range, ensuring a
reasonably consistent look.

2648

3.3 GA System
3.3.1 Evolution
By default, GAUL sets up an initial population, and then proceeds
to run an entire life cycle with that population. While this
behavior is acceptable with a “static” fitness function, the user is
actually the fitness function in GAUGUIN. In order to overcome
this obstacle, two changes were made to the GAUL source. First,
a function was added that performs all the GA optimization
operations to a single generation, rather than a complete life-
cycle. This function performs three basic operations on the
population: crossover, mutation, and survival of the fittest.
Secondly, the default fitness function was removed; instead, the
user’s input directly affects the entity’s score in the chromosome.
This allows the user to treat each generation as discrete, reviewing
each solution as many times as they desire, and then decide when
to move on to the next generation.

3.3.2 Chromosome
Each entity is composed of a number of chromosomes equal to the
maximum number of shapes in the composition. This maximum is
usually set around ten to prevent the viewer from being
overwhelmed by too many overlapping shapes. Each chromosome
defines a shape with sixteen alleles. Each allele is an integer with
a value from one to ten. Appropriate conversions are performed
where appropriate, such as converting the alleles for color to
floats. For simplicity, each chromosome has the same allele
structure, even though each primitive takes different parameters.
This means that some alleles are ignored for certain primitives.
For example, the circle requires three coordinates and a diameter,
so it ignores alleles [5] through [12].

Figure 3- GA String

0 1 2 3 4 5 6 7 8 9

Type X1 Y1 Z1
X2
or

Diameter
Y2 Z2 X3 Y3 Z3

3.3.3 GA Parameters
GAUL allows the customization of evolutionary systems through
a number of different parameters. The population size determines
how many solutions the user will score before moving on to the
next generation; for GAUGUIN the population is usually set
around ten. This size ensures a reasonably diverse population
while acknowledging that evaluating too many solutions without
demonstrable progress quickly becomes tiresome for many users.
While GAUL supports both Baldwin and Lamarkian evolution,
this project uses a simple Darwinian evolution strategy, and allow
a single parent with the highest fitness to pass to the next
generation. The single parent allows a user to become attached to
a particular composition, and evaluate other solutions in relation
to it, without too many solutions becoming repetitive. GAUGUIN
uses pairwise tournament selection to choose members of the
population for crossover and mutation, which occur at rates of
60% and 30% respectively.

4. RESULTS
4.1 Hypothetical Use Case
Sally is a 14-year old girl with a penchant for mischief. Invited to
test drive this system, she sits down in front of the screen.
Prompted to pick a color, she decides on her favorite, green. She
is then presented with an image, along with instructions to press
one button repeatedly if she likes an image, and a different button
if she doesn’t. In Figure 4, sally likes the image on the left the
best. Giving it the highest score, Sally repeats the process for four
generations, ending up with the image on the right. Satisfied with
her work, Sally leaves happy.

Figure 4- Use Case Compositions

4.2 Limitations
While GAUGUIN offers a unique way of creating visually
stimulating images, it trades ease of use flexibility in many
respects. The types of images that can be created are limited to a
specific style, and a single palette. While the images can be very
diverse in the first several generations, under consistent scoring
conditions they can eventually become very similar. At this point,
the images begin to converge, as seen in Figure 5.

Figure 5- Population Approaching Convergence

10 11 12 13 14 15 16

X4 Y4 Z4 ∆Red ∆Green ∆Blue ∆Alpha

2649

The appearance of convergence is both a positive and a negative.
While it means that the system no longer presents a diversity of
solutions, it does allow a finer grain of discrimination among
compositions. Additionally, it serves to provide a sense of closure
for the user. GAUGUIN does not have any built-in termination
criteria; it is up to the user to decide when they are satisfied.
While this behavior makes the system more flexible, it can be
frustrating for people expecting a more conclusive finale.
Convergence is a natural ending point, as it becomes virtually
impossible to achieve significant results thereafter.

5. Conclusions
5.1 Success
GAUGUIN has been successful in presenting the user with a
simple and intuitive interface for generating visually stimulating
compositions. While the controls are simple enough for children
to understand, the computational horsepower provided by the GA
system allows a sophisticated method of optimization. While the
images created by GAUGUIN bear only a passing resemblance to
the Suprematist works which motivate them, they do a good job of
taking that style into three dimensions. The ability to view a
composition from any angle adds a completely new dynamic.

5.2 Future Work
Like any project, there are a number of aspects of GAUGUIN that
could use refinement. The graphics are interesting, but can be very
repetitive. It would be nice to add some variety by allowing
multiple colors in the palette, as well as adding texture to the
background so that the shapes seem to “pop” out at the viewer

less. It would also be interesting to constrict the shapes more, so
that they line up more on an axis. On the evolution side, a better
approach would tailor each chromosome to the data it contains.
For example, it would be better to have a float with a constricted
range for the color, and an integer from one to four for the shape.
Another possibility would be to implement some degree of
eugenics, where the user would be able to manually edit the
composition throughout the course of evolution. This feature is
seen in previous works like GenTree [2]. While this would make
the system more complicated to use, it would dramatically
increase its flexibility and the spectrum of its output.

6. ACKNOWLEDGMENTS
Thanks to Clare Bates Congdon for her support and advice, and
the open source community for providing the code base without
which this project would not be possible.

7. REFERENCES
[1] 010101: Art in Technological Time, San Francisco Museum

of Modern Art. http://010101.sfmoma.org/
[2] C. B. Congdon and R. H. Mazza III, "GenTree: An

Interactive Genetic Algorithms System for Designing 3D
Polygonal Tree Models" GECCO-2003, Chicago, IL, July
2003.

[3] Jourdan, Thomas. Kandid. http://kandid.sourceforge.net/
[4] http://www.opengl.org/resources/libraries/
[5] Adock, Stewart. Genetic Algorithm Utility Library.

http://gaul.sourcegorge.net

2650

