
Observing the Swarm Behaviour during Its Evolutionary
Design

Laura Diosan, Mihai Oltean
Department of Computer Science

Faculty of Mathematics and Computer Science
Babes-Bolyai University

Kog–alniceanu 1, Cluj-Napoca, 400084
Romania.

lauras, moltean@cs.ubbcluj.ro

ABSTRACT

Evolutionary Algorithms (EAs) can be used for designing
Particle Swarm Optimization (PSO) algorithms that work,
in some cases, considerably better than the human-designed
ones. By analyzing the evolutionary process of design PSO
algorithm we can identify different swarm phenomena (such
as patterns or rules) that can give us deep insights about the
swarm’s behaviours. The observed rules can help us to de-
sign better PSO algorithms for optimization. In this paper
we investigate and analyze swarm phenomena by looking to
process of evolving PSO algorithms. Several interesting facts
are inferred from the strategy evolution process (the particle
quality could influence the update order, some particles are
updated more frequently than others are, the initial swarm
size is not always optimal).

Categories and Subject Descriptors

I.2.6 [Learning]; I.2.8 [Problem Solving, Control Meth-
ods and Search]

General Terms

Algorithms

Keywords

Particle Swarm Optimization, Swarm Rules, Evolutionary
Computation, Function Optimization, Meta Genetic Algo-
rithms

1. INTRODUCTION
Various evolutionary and non-evolutionary methods were

proposed for solving complex search and optimization pro-
blems. Among these methods, a special place is occupied by
Evolutionary Algorithms (EAs) [9, 7] and techniques based
on Swarm Intelligence (such as Particle Swarm Optimization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-698-1/07/0007 ...$5.00.

(PSO) [6] and Ant Colony Optimisation [5]). The main
advantage of these methods is given by the possibility of u-
sing them for searching in various spaces without performing
big changes in the algorithm’s structure. They can be easily
adapted (by the human or by itself) to the particularities of
the problem being solved.

PSO is a population based stochastic optimization tech-
nique proposed by Kennedy and Eberhart [12, 13, 14]. Stan-
dard PSO algorithm randomly initializes a group of particles
(solutions) and then searches for optima by updating all par-
ticles along a number of iterations. In any iteration, each
particle is updated by following few simple rules [11, 22].

Standard model implies that particles are updated syn-
chronously [13]. This means that the current position and
speed for a particle are computed taking into account only
the information from the previous iteration of particles.

The model investigated in this paper is a more general one.
We focus our analysis on an asynchronous version of the PSO
algorithm. This variant has the following characteristics:

• When a particle is updated the current state of the
swarm (the position and the velocities of all particles)
is taken into account. The best global and local va-
lues are computed for each particle which is about to
be updated, because the previous modifications could
affect these two values. This is different from the stan-
dard PSO algorithm (or synchronous PSO algorithm
[13]) where the particles were updated taking into ac-
count only the information from the previous iteration
(modifications performed so far by a standard PSO in
the current iteration had no influence over the modifi-
cations performed further in the current iteration) and
it is more closely to the asynchronous PSO algorithm
[1, 15] that updates particle positions and velocities
continuously, based on currently available information.

• In our model the particles are updated based on their
quality. This fitness-based update is important be-
cause it could be better to firstly modify the best par-
ticles of the swarm and than the worst particles (or vice
versa). This is again different from the standard asyn-
chronous PSO algorithm [1, 15] which updates particle
positions and velocities using always the same prede-
fined order: first particle, second particle and so on
(there are no relationships between the update order
and the particle’s quality).

2667

• Some particles may be updated more often than other
particles. For instance, in some cases, is more im-
portant to update the best particles several times per
iteration than to update the worst particles.

• During the evolution, the swarm size can be modified
due to at least two reasons: some particles perform
more moves (for improving their quality), while other
particles are never updated. This is why the weak-
est particles are eliminating from the swarm. Unlike
the standard PSO algorithm, which works with a pre-
established swarm size, the current model finds by it-
self the optimal size of the swarm along the evolution.

We intend to study how we can obtain better PSO algo-
rithms. For achieving this goal we employ an evolutionary
approach: we start with a population of randomly generated
PSO algorithms and we try to improve them along with a
fixed number of generations. During the evolution we try
to discover new swarm phenomena such as the special rela-
tionships between particles, their quality and their update
order, the optimal swarm size or some rules in the update
strategy of the swarm during the evolution process. These
rules can be repeatedly applied for obtaining better approxi-
mations of the solution. The process of particle update is
influenced by these rules.

Because a PSO is a complex algorithm, we cannot evolve
all its aspects. We are taking into account only the next im-
portant one: the order in which the particles are updated.
Other aspects, such s the equation used for updating a par-
ticle have been analyzed in [21]. The new swarm phenomena
investigated in this paper are:

• update frequencies - how many times a particle is up-
dated,

• order of updates - the order of particles that is taken
into account for modifying the position and velocity of
a particle

• optimal swarm size.

These information can help us to design better PSO algo-
rithms for optimization.

The paper is structured as follows: Section 2 provides a
brief review of the work on PSO parameters optimization.
Section 3 describes the model for evolving the PSO update
strategy. In Section 4.1 an analysis of the optimal swarm
size detected during the evolution is presented. In addition,
the frequency of updates performed into the swarm is inves-
tigated. Several rules identified in the PSO update strategy
are presented in Section 4.3. Section 4.4 summarizes the
most important ideas of this analysis and the main features
of the developed model. Conclusions and further work di-
rections are suggested in Section 5.

2. RELATED WORK
Many improvements to the basic form of PSO have been

proposed and tested in the literature [3, 10, 18]. Also,
several analysis of the PSO algorithm behaviour were per-
formed [2, 17, 19, 21]. Much of this work is focused on the
convergence.

Ozcan and Mohan [19] analyzed the trajectory of a par-
ticle in the “original” PSO algorithm (without an inertia
weight or a constrict coefficient) and van der Bergh carried

out the first PSO convergence study [23]. Later, Clerc and
Kennedy [2] proposed the model based on the constrict co-
efficient.

Langdon et al. [17] evolved kernel functions which des-
cribe the average behaviour of a swarm of particles as if
it was responding as a single point moving on a landscape
transformed by the kernel. The evolved functions (obtained
with Genetic Programming technique) give another land-
scape, which is ”perceived” by a simple hill climber. The
goal for the Genetic Programming is to evolve a kernel,
which causes the hill climber to move to resemble movement
of the whole PSO swarm.

Several approaches [8, 16, 20, 21, 25, 26] proposed various
hybrid evolutionary algorithm that combines the concepts
of EA and PSO.

For instance, Poli [21] studied the possibility of evolving,
through the use of Genetic Programming, the optimal force
generating equations to control the particles in a PSO (forces
that stimulate each particle to fly back both towards the best
point sampled by it an towards the swarm’s best).

3. THE MODEL FOR EVOLVING THE UP-

DATE STRATEGY OF PARTICLES
The main idea of the model proposed in [4] is to evolve

arrays of integers, which provide a meaning for updating the
individuals within a PSO algorithm during iteration. The
model is a hybrid technique that works at two levels: the
first (macro) level consists in a steady-state genetic algo-
rithm (GA) whose chromosomes encode the update strat-
egy of PSO algorithms. In order to compute the quality of
a GA chromosome a PSO algorithm (whose update order
is encoded into that chromosome) is run. Thus, the sec-
ond (micro) level consists in a modified PSO algorithm that
computes the quality for a GA chromosome.

3.1 Representation
Standard PSO algorithm works with a group of particles

(solutions) and then searches for optima by updating them
during iteration.

During iteration, following two ”best” values, each par-
ticle is updated. The first one is the location of the best
solution that a particle has achieved so far. This value is
called pBest. Another ”best” value is the location of the
best solution that any neighbour of a particle has achieved
so far. This best value is a neighbourhood best and called
nBest.

In a standard PSO algorithm, all particles will be updated
once during the course of iteration. In real-world swarm
(such as flock of birds), not all birds update their position
and velocity in the same time. Some of them update these
values more often and others update its later or not at all. In
this case it is interesting to discover (evolve) a model which
can tell us which particles/birds must be updated and which
is the optimal order for updating them.

A GA [7] is used (in [4]) for evolving the update strategy
of a PSO algorithm. Each GA individual is a fixed-length
string of genes. Each gene is an integer number, in the
interval [0, SwarmSize− 1]. These values represent indexes
of the particles that will be updated during PSO iterations.
Some particles could be updated more often and some of
them are not updated at all. Therefore, a GA chromosome
must be transformed so that it has to contain only the va-

2668

lues from 0 to Max, where Max represents the number of
different genes within the current array.

Suppose that we want to evolve the update strategy of a
PSO algorithm with eight particles. This means that the
SwarmSize = 8 and all chromosomes of the macro level
algorithm will have eight genes whose values are in the [0, 7]
range. A GA individual with eight genes can be:

C1 = (2, 0, 4, 1, 7, 5, 6, 3).

For computing the fitness of this chromosome it is used a
swarm with eight individuals and, during iteration, the fol-
lowing updates are performed:

update(Swarm[2]),
update(Swarm[0]),
update(Swarm[4]),
update(Swarm[1]),
update(Swarm[7]),
update(Swarm[5]),
update(Swarm[6]),
update(Swarm[3]).

In this example all the eight particles have been updated
once per iteration.

Let us consider another example which consists of a chro-
mosome C2 with 8 genes that contain only 5 different values.

C2 = (6, 2, 1, 4, 7, 1, 6, 2)

In this case, particles 1, 2 and 6 are updated two times each
and particles 0, 3 and 5 are not updated at all. Because of
that it is necessary to remove the useless particles and to
scale the genes of the GA chromosome to the set {0, . . . 4}.
The obtained chromosome is:

C
′

2 = (3, 1, 0, 2, 4, 0, 3, 1).

The quality for this chromosome will be computed using
a swarm of size five (five swarm particles), performing the
following eight updates:

update(Swarm[3]),
update(Swarm[1]),
update(Swarm[0]),
update(Swarm[2]),
update(Swarm[4]),
update(Swarm[0]),
update(Swarm[3]),
update(Swarm[1]).

Performing this transformation, we can obtain another
swarm, which has a new size. The described model evolves
only the update strategy for a PSO algorithm, but it can
find the optimal swarm size in the same time, even if this
parameter is not directly evolved.

We evolve an array of indexes based on the information
taken from a function to be optimised. With other words, we
evolve an array that contains the update order for the PSO
algorithm. This algorithm is used for finding the optimal
value(s) of a function. The quality of the update strategy is
given by the performance of the PSO algorithm.

Note that the mentioned mechanism should not be based
only on the index of the particles in the Swarm array. This
means that it would not be interested in updating a par-
ticular position since that position can contain (in one run)
a very good individual and the same position could hold a

very poor individual (during another run). For instance it
is easy to see that all GA chromosomes, encoding permuta-
tions, perform similarly when averaged over (let’s say) 1000
runs.

In order to avoid this problem the Swarm array is sorted
ascending (after each iteration) based on the fitness value.
The first position will always hold the best particle at the
beginning of iteration. The last particle in this array will
always hold the worst particle found at the beginning of
iteration. In this way it is known that update(Swarm[0])
will mean that the respective particle is not updated, but
the best particle at the beginning of the current iteration
will.

3.2 Fitness assignment
The model for evolving PSO update strategy is structured

on two levels: a macro level and a micro level. The macro-
level is a GA that evolves the update strategy of a PSO
algorithm. For this purpose, a particular function is used
as training problem. The micro level is a PSO algorithm
used for computing the quality of a GA chromosome from
the macro level.

The array of integers encoded into a GA chromosome re-
presents the update order for the particles used by a PSO al-
gorithm for solving a particular problem. The evolved order
is embedded within a modified Particle Swarm Optimization
algorithm as described in section 3.3.

Roughly speaking, the fitness of a GA individual is equal
to the fitness of the best solution generated by the PSO
algorithm encoded into that GA chromosome. But, since
the PSO algorithm uses pseudo-random numbers, it is very
likely that successive runs of the same algorithm will ge-
nerate completely different solutions. This problem can be
handled in a standard manner: the PSO algorithm encoded
by the GA individual is run multiple times (50 runs in fact)
and the fitness of the GA chromosome is averaged over all
runs.

3.3 The algorithms
The algorithms used for evolving the PSO update strategy

are described in this section. Because the hybrid technique
from [4] combines a GA and a PSO algorithm within a two-
level model, two algorithms are described: one for macro-
level (GA) and another for micro-level (PSO algorithm).

3.3.1 The macro-level algorithm.

The macro level algorithm is a standard GA [7] used for
evolving the update order of particles. We use steady-state
evolutionary model as underlying mechanism for our GA
implementation.

3.3.2 The micro-level algorithm

The micro level algorithm is a modified PSO algorithm
[11] used for computing the fitness of a GA individual from
the macro level.

The algorithm is quite different from the standard sychro-
nous PSO algorithm [11] and from the asynchronous PSO
algorithm [1, 15].

Standard PSO algorithm works on two stages: one stage
that establishes the fitness, pBest and nBest values for each
particle and another stage that determines the velocity and
makes update for each particle. Standard PSO usually works
with two populations/swarms. Individuals are updated by

2669

computing the pBest and nBest value using the information
from the previous population. The newly obtained indivi-
duals are added to the current population.

Asynchronous PSO algorithm works only in one stage:
the fitness, pBest, nBest, velocities and positions for each
particle are continuously updated. The particles are con-
sidered one by one for these modifications, following a pre-
established order: the first particle, the second particle and
so on.

The developed algorithm performs all operations in one
stage only: determines the fitness, pBest, nBest and velo-
city values only when a particle is about to be updated. In
this manner, the update of the current particle takes into
account the previous updates in the current iteration. This
PSO algorithm uses only one population/swarm. Each up-
dated particle will automatically replace its parent. More,
the genes of GA chromosome indicate the update order of
the particles. The PSO individuals are not modified one by
one following the initial order (1, 2, 3 ...), but following the
sequence encoded into the GA chromosome.

In [4] were presented some numerical experiments for evol-
ving the PSO update strategies. The obtained results have
proved the effectiveness of this approached.

4. LESSONS LEARNT DURING THE EVO-

LUTION
We will try to identify some rules in the update strategy of

the swarm during the evolving process. We want to identify
these rules because they can help us to design better PSO
algorithms. Before we detail our analysis, we will give a
briefly definition for the swarm rule.

A swarm rule is a sequence of operations, which can be
repeatedly used to generate new swarm or sub-swarms. The
set of rules regards the order of updates (for instance this or-
der could be correlated with particle quality: update firstly
the best particles of the swarm and than, the weaker parti-
cles), the frequency of updates (some particles are updated
more frequently than others particles are during the search
process), the swarm size. These rules could emphasize some
lessons learnt by particles during the evolutionary process.

All the numerical experiments performed in this paper
are based on a PSO algorithm that optimizes the function

f(x) =
nP

i=1

(i · x2

i), where xi ∈ [−10, 10]n and n = 5.

4.1 Determining the optimal swarm size
First of all we analyzed the evolution of the swarm size

along with the number of GA generations. In Figure 1 we
depicted the evolution of the swarm size (swarm whose up-
date strategy is encoded into the GA chromosome) for se-
veral particular GA generations.

We can observe that the smallest swarm from the first
GA generation contains only four particles and the biggest
swarm contains eight particles. These statistics are repeated
during the next two generations. Starting with the fourth
generation, the smallest swarm is composed by five particles
and the biggest swarm by six particles. During the rest of
generations, all swarms contain six particles, this size re-
presenting, probably, the optimal swarm size for the current
problem.

In Figure 2 we depicted the evolution of the minim, maxim
and average of the swarm size along with the number of GA

generations. The average of swarm size in a particular ge-
neration is computed as the sum of swarms size (the swarms
encoded into all GA chromosomes) over the number of indi-
viduals from the GA population. We can observe that the
average of the swarm size decrease from 6.15 in first genera-
tion to 5.95 in the second generation and to 5.85 in the third
generation. Starting with the next generation, the mean of
the swarm size increases and it is stabilized at level six -
this value seams to represent the optimal size of the swarm.
Note that in the forth generation there are more swarms
that contain only five particles than in the fifth generation
and this fact determines the diminution of the mean swarm
size.

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

gen 1 gen 2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

gen 9 gen 10

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

gen 3 gen 6

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

gen 11 gen 12

Figure 1: The evolution of the swarm size during
the first two generations (top-left image), during the
third and the sixth generations (top-right image),
during the ninth and the tenth generations (bottom-
left image) and during the eleventh and twelfth gen-
erations (bottom-right image). On each ray is de-
picted the size of a swarm whose update order is
encoded into a GA chromosome (we have 20 rays
because we work with a GA population composed
by 20 chromosomes)

4.2 Which particles are updated more often?
The evolution of update frequencies for each particle along

with the number of generations is presented in Figure 3. For
computing this statistic, we calculated the average number
of updates for each particle in all GA chromosomes. For
instance, it is possible to update the best particle (which
is the first particle from the swarm because they are sorted
based on their quality) for two times in a GA chromosome
and for three times in other GA chromosome. With other

2670

4.00

4.50

5.00

5.50

6.00

6.50

7.00

7.50

8.00

8.50

0 5 10 15 20 25 30 35 40 45 50

Number of generations

S
w

ar
m

si
ze

min

max

avg

Figure 2: The evolution of the minim, maxim and
average of the swarm size along with the number of
generations.

words, the first particle is updated for an average of 2.5
times (supposing that we have only two GA chromosomes
for this example). For obtaining a general synthesis during
all the evolution process, this average is computed for each
particle that can be in a swarm (in our case it is possible
to have maxim ten particles) over all individuals from GA
population (20 chromosome in this experiment).

-0.2

0.3

0.8

1.3

1.8

2.3

2.8

3.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Generations

U
p
d
at

e
F

re
q
u
en

cy

p_0 p_1 p_2 p_3 p_4

p_5 p_6 p_7 p_8 p_9

Figure 3: The evolution of the update frequency for
each particle during the GA generations.

Taking into account the frequency of updates performed
for a particle, we can observe in Figure 3 that most frequent
updated particle is the first one. The best particle is updated
for an average of 1.65 times in the first GA generation. This
average rises up to three during the next five generations and
rests at this level for the remaining generations. Note that
in the first GA generation the second and the forth particles
are updated more frequently than the first one, but taking
into account the frequencies from all generations, the first
particle is most updated.

Although the swarm particles are sorted based on the fit-
ness, the next frequent updated particle is the forth particle.
The average of update frequency for this particle starts from
1.9 times in first GA generation and increases also to three,
but this value is obtained only in the ninth generation.

Unlike the first and the fourth particles, the rest of the
particles (exception the ninth and the tenth particles) are
updated fewer times as the generation number increases.
Starting with the forth generation the seventh and the eighth
particles are not updated. Particles three and five are up-
dated only for one time starting with generation six and
particles two and six are updated for one time starting with
generation ten.

Another remark regards last two particles from the swarm:
the ninth particle and the tenth particle (the “worst birds”
of the swarm). These particles never are updated. With
other words, a smaller swarm (only with eight particles) can
solve our problem.

4.3 Analyzing the swarm update order
Several rules identified during the evolution of PSO up-

date strategy are investigated in this section.
The qualities of the particles from the PSO algorithm

whose update order is encoded into the best GA chromo-
some (into a particular generation) are presented in Figure
4.

The values on Ox scale indicate the update order for the
particles. The Oy values indicate the quality of the particles:
less high bars indicate better particles.

The first graphic (top-left-corner image) presents the ini-
tial swarm with six different particles. Firstly, the forth
particle is initialized, then the second particle, the first par-
ticle, the fifth particle, the second particle once again, the
third particle and so on.

In the second graphic (top-middle image) the sixth par-
ticle is updated at the ninth step and than, at the tenth
step, the sixth particle is updated again. After this last
modification, the quality of the sixth particle (given by the
pBest value) is improved. For instance, this situation can
be observed also in the 26th iteration depicted in the top-
right-corner image. During the next iteration, firstly, the
second particle is updated for two times (obtaining a qual-
ity improvement) and then the first particle is modified for
two times (obtaining quality amelioration also in this case).

The quality of the second and the third particles is im-
proved in the last two iterations.

Table 1 presents the number of updates performed for each
swarm particle in a particular run of the proposed algorithm.

Table 1: The number of updates made for each
swarm particle (P). Each column represents the mo-
ment (M) of update. Each row is reserved for a
particle.

P |M M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

p0 0 10 83 11 0 11 52 19 2 32
p1 22 50 2 1 69 33 42 5 0 3
p2 21 1 9 19 3 52 0 35 26 22
p3 64 17 13 18 26 5 0 13 49 12
p4 2 16 3 53 8 2 0 27 11 16
p5 1 13 0 2 2 4 8 9 22 22
p6 0 2 0 3 2 2 5 1 0 3
p7 0 1 0 2 0 1 1 1 0 0
p8 0 0 0 1 0 0 1 0 0 0
p9 0 0 0 0 0 0 0 0 0 0

2671

As we already said, we performed ten updates inside a
swarm even that the swarm size is smaller than ten (in this
case some particles are updated for more times). For each
particle is quantified the number of updates performed at
each moment (because we performed ten evaluations for each
swarm, obvious we have ten time moments). The particles
are indexed based on the pBest value.

The most frequent updated particle is the best particle
(p0) - it was updated for 83 times, but at first update mo-
ment the fourth particle (p3 - a weaker particle) is modified.
Note that, before the best swarm particle is modified, other
two low-fitness particles are updated (p1 and p2) and after
the modification of the best particle the worst particle is
most updated.

Even that the best particle is updated for more times du-
ring PSO iteration, these best particle updates are not con-
secutively updated. Other updates (for weaker particles) are
intercalated between these updates.

4.4 Summarizing the analysis
Analyzing the evolved update order for particles and the

rules that appear during the evolution, we can conclude that:

• the proposed model is able to determine the optimal
swarm size at the end of evolutionary process,

• the evolved update order is based on the particle qua-
lity - best particles are updated, in general, before up-
dating the worst particles,

• frequency of updates - the best particles are more fre-
quently updated than the worst particles; even that
the best particle from a swarm is updated for more
times, these updates are not consecutive. There are
some updates, for other particles, performed between
two successive updates for the best particle.

5. CONCLUSION AND FURTHER WORK
In this paper we have performed an analysis of the evolu-

tion of PSO algorithms. The model of the PSO algorithm
involved in this analysis has several particular properties:

• it is different by the standard synchronous PSO were
all particles are updated simultaneously,

• it is similar with the asynchronous PSO where the par-
ticles are updated continuously, but it is more general
because it considers a dynamical update order and not
a predefined one (as in asynchronous model). More-
over, the update order takes into account the particle
quality.

Note that according to the No Free Lunch theorems [24]
we cannot expect to design a perfect PSO which performs
the best for all the optimization problems. This is why any
claim about the generalization ability of the evolved PSO
should be made only based on the results provided by nu-
merical experiments.

In addition, we tried to analyze the data generated dur-
ing the evolution of the update strategy. This will help us
to understand the nature of the PSO algorithm and to de-
sign PSO algorithms that use larger swarms. Based on the

analysis of the evolved update strategy, we can conclude se-
veral remarks. The first one is that the best particles from
the swarm are updated most frequently. More than that,
the evolution process can determine the optimal size for the
swarm.

Further work will be focused on:

• several other kinds of function optimisation problem
will be consider, to try to get more generic results, or
to try to evolve PSO to solve a much more challenging,
more interesting kind of problem,

• evolving more parameters of the PSO algorithm (in-
dependently, one by one, or synchronously),

• studying the generalization ability of the evolved PSO
algorithm (how well it will perform on some new and
difficult problems),

• designing an evolutionary algorithm able to identify by
itself the rules analyzed in this paper and studying if
these rules will actually improve the quality of a PSO
algorithm in terms of convergence speed or accuracy
of the solution.

6. REFERENCES

[1] A. Carlisle and G. Dozier. An off-the-shelf pso. In
Particle Swarm Optimization Workshop, pages 1–6,
2001.

[2] M. Clerc and J. Kennedy. The particle swarm -
explosion, stability, and convergence in a
multi-dimensional complex space. IEEE-TEVC,
6:58–73, 2002.

[3] C. A. Coello Coello and M. Salazar Lechuga. MOPSO:
A proposal for multiple objective particle swarm
optimization. In Congress on Evolutionary
Computation CEC’2002, volume 2, pages 1051–1056.
IEEE, 2002.

[4] L. Diosan and M. Oltean. Evolving the structure of
the particle swarm optimization algorithms. In
European Conference on Evolutionary Computation in
Combinatorial Optimization EcoCOP2006, volume
3906 of LNCS, pages 25–36, 2006.

[5] M. Dorigo, V. Maniezzo, and A. Colorni. Ant system:
Optimization by a colony of cooperating agents. IEEE
Trans. on Systems, Man, and Cybernetics–Part B,
26(1):29–41, 1996.

[6] R. C. Eberhart and Y. Shi. Particle swarm
optimization: Developments, applications, and
resources. In Congress on Evolutionary Computation
CEC’2001, pages 81–86. IEEE, 2001.

[7] D. E. Goldberg. Genetic algorithms in search,
optimization and machine learning. Addison Wesley,
1989.

[8] T. Hendtlass. A combined swarm differential evolution
algorithm for optimization problems. In L. Monostori,
J. Váncza, and M. Ali, editors, Proceedings of the 14th
IEA/AIE 2001, volume 2070 of LNCS, pages 11–18,
2001.

[9] J. H. Holland. Adaptation in natural and artificial
systems. University of Michigan Press, 1975.

[10] X. Hu and R. Eberhart. Multi-objective optimization
using dynamic neighborhood particle swarm

2672

PSO_iter_1

0

5

10

15

20

25

30

35

40

3 1 0 4 1 2 0 2 5 5

PSO_iter_15

0

0.5

1

1.5

2

2.5

3

3.5

4

3 1 0 4 1 2 0 2 5 5

PSO_iter_26

0

0.001

0.002

0.003

0.004

0.005

0.006

3 1 0 4 1 2 0 2 5 5

PSO_iter_27

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

3 1 0 4 1 2 0 2 5 5

PSO_iter_45

0.00E+00

2.00E-06

4.00E-06

6.00E-06

8.00E-06

1.00E-05

1.20E-05

1.40E-05

1.60E-05

1.80E-05

3 1 0 4 1 2 0 2 5 5

PSO_iter_46

0.00E+00

5.00E-06

1.00E-05

1.50E-05

3 1 0 4 1 2 0 2 5 5

PSO_iter_45

0.00E+00

5.00E-08

1.00E-07

1.50E-07

2.00E-07

3 1 0 4 1 2 0 2 5 5

PSO_iter_46

0.00E+00

2.00E-08

4.00E-08

6.00E-08

8.00E-08

1.00E-07

1.20E-07

1.40E-07

1.60E-07

1.80E-07

2.00E-07

3 1 0 4 1 2 0 2 5 5

Figure 4: The updates order encoded into the best GA chromosome from one generation of the GA. We
depicted different iterations of the PSO algorithm that updates the particles based on the order encoded into
GA chromosome. Different particles are represented with different colours and the height of the columns
represents the quality of a particle - less higher, better. Note that for a particular PSO iteration only the
swarm state at the end of that iteration is depicted here - even that the updates are performed gradually,
taking into account the previous modifications performed into the current PSO population.

2673

optimization. In Congress on Evolutionary
Computation CEC’2002, volume 2, pages 1677–1681.
IEEE, 2002.

[11] X. Hu, Y. Shi, and R. Eberhart. Recent advances in
particle swarm. In Congress on Evolutionary
Computation CEC’2004, volume 1, pages 90–97.
IEEE, 2004.

[12] J. Kennedy. The behavior of particles. In V. W. Porto,
N. Saravanan, D. Waagen, and A. E. Eiben, editors,
Evolutionary Programming VII, 7th International
Conference, EP98, volume 1447 of LNCS, pages
581–589, 1998.

[13] J. Kennedy and R. C. Eberhart. Particle swarm
optimization. In IEEE International Conference on
Neural Networks, pages 1942–1948. IEEE, 1995.

[14] J. Kennedy and R. C. Eberhart. The particle swarm:
Social adaptation in information-processing systems.
In D. Corne, M. Dorigo, and F. Glaover, editors, New
Ideas in Optimization, pages 379–387. McGraw-Hill,
1999.

[15] B. Koh, A. George, R. Haftka, and B. Fregly. Parallel
asynchronous particle swarm optimization.
International Journal for Numerical Methods in
Engineering, 67(4):578–595, 2006.

[16] H. Kwong and C. Jacob. Evolutionary exploration of
dynamic swarm behaviour. In R. Sarker, R. Reynolds,
H. Abbass, K. C. Tan, B. McKay, D. Essam, and
T. Gedeon, editors, Proceedings of the 2003 Congress
on Evolutionary Computation CEC’2003, pages
367–374. IEEE, 2003.

[17] W. B. Langdon, R. Poli, and C. R. Stephens. Kernel
methods for PSOs. Technical report, Computer
Science, University of Essex, UK, 2005.

[18] C. K. Mohan and B. Al-kazemi. Discrete particle
swarm optimization. In Workshop on Particle Swarm
Optimization 2001, 2001.

[19] E. Ozcan and C. Mohan. Particle swarm optimization:
surfing the waves. In Congress on Evolutionary
Computation CEC’1999, pages 1939–1944. IEEE,
1999.

[20] K. E. Parsopoulos and M. N. Vrahatis. Recent
approaches to global optimization problems through
particle swarm optimization. Natural Computing,
1(2-3):235–306, 2002.

[21] R. Poli, W. B. Langdon, and O. Holland. Extending
particle swarm optimisation via genetic programming.
volume 3447 of LNCS, pages 291–300, 2005.

[22] Y. Shi and R. C. Eberhart. Empirical study of particle
swarm optimization. In P. J. Angeline, Z. Michalewicz,
M. Schoenauer, X. Yao, and A. Zalzala, editors,
Congress on Evolutionary Computation CEC’1999,
volume 3, pages 1945–1950. IEEE, 1999.

[23] F. van den Bergh. An Analysis of Particle Swarm
Optimizers. PhD thesis, Department of Computer
Science, University of Pretoria, South Africa, 2002.

[24] D. H. Wolpert and W. G. Macready. No free lunch
theorems for optimization. IEEE-TEVC, 1(1):67–82,
1997.

[25] A. E. M. Zavala, A. H. Aguirre, and E. R. V. Diharce.
Particle evolutionary swarm optimization algorithm
(PESO). In ENC, pages 282–289. IEEE Computer
Society, 2005.

[26] W. Zhang and X. Xie. Depso: hybrid particle swarm
with differential evolution operator. In Proceedings of
IEEE International Conference on Systems, Man and
Cybernetics,, pages 3816–3821. IEEE, 2003.

2674

