
Transgenetic Algorithm: A New Evolutionary Perspective
for Heuristics Design

Elizabeth F. G. Goldbarg
Federal University of Rio Grande do

Norte
Natal, RN, Brazil

+55 – 84 21353814

beth@dimap.ufrn.br

Marco C. Goldbarg
Federal University of Rio Grande do

Norte
Natal, RN, Brazil

+55 – 84 21353814

gold@dimap.ufrn.br

Ligia B. Bagi
Federal University of Rio Grande do

Norte
Natal, RN, Brazil

+55 – 84 21353814

ligiabagi@yahoo.com.br

ABSTRACT
Transgenetic algorithms are evolutionary computing techniques
based on living processes where cooperation is the main
evolutionary strategy. Those processes contain the movement of
genetic material between living beings and endosymbiotic
interactions. With the objective of having a better approximation
between the proposed metaphor and the reality the algorithm also
considers intracellular mechanisms of genetic information
transposition and the quorum sensing, that is, the bacteria’s ability
for communicating and coordinating actions. To illustrate the
application of a transgenetic algorithm to a difficult combinatorial
optimization problem, an example is provided for the Traveling
Purchaser Problem. The introduced approach is compared with
two recent heuristics proposed for the same problem. The results
of a computational experiment are reported and 9 new best
solutions for benchmark instances are presented.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search – heuristic methods.

General Terms
Algorithms, Design.

Keywords
Transgenetic Algorithm, Horizontal Gene Transfer, Transposon,
Quorum Sensing.

1. INTRODUCTION
Transgenetic algorithms are evolutionary algorithms whose
metaphor is based on the endosymbiotic theory and on properties
of the intracellular flow [11]. The endosymbiotic theory was
popularized by Margulis [23] and states that a new organism can

emerge from the fusion of two or more independent beings. The
term "endosymbiosis" specifies the relationship between
organisms which live one within another (symbiont within host).
That theory suggests that competition is not the unique way to
promote genetic improvement. She states that “Life did not take
over the globe by combat, but by networking”. The approach
suggests also that sexual reproduction was originated on a variant
of endosymbiosis and that this reproduction mean was a way to
prevent the perpetuation of genetic alterations caused by
microbial transcriptions.

Evidences for the Margulis’ proposal have been provided by
successive discoveries concerning evolutionary mechanisms that
yield direct sharing of DNA among microorganisms and cells.
Such mechanisms are very primitive. They were constituted to
allow the occurrence of permanent alterations on the genetic code
of cells and microorganisms, facilitating the emergence of jumps
of fitness. A set of such mechanisms is called “horizontal gene
transfer”. Horizontal gene transfer is defined to be the movement
of genetic material between bacteria other than by descent in
which information travels through the generations as the cell
divides. The horizontal transfer of functional genes between
organisms is the theoretical foundation of the endosymbiotic
origin of cellular organelles, as well as the basis of genetic
therapies and the technology of genetic modification [28]. Those
mechanisms by which genetic materials are exchanged are:
transformation, transduction and conjugation. A vehicle for
genetic exchange is the plasmid. Plasmids are mobile genetic
particles, DNA rings that can be exchanged between certain cells.
The transformation is a common mode of horizontal gene transfer
in which foreign genetic material is transferred to a cell, resulting
on genetic alteration. The transduction is a method in which the
transport of DNA between organisms involves the mediation of
viruses. Finally, conjugation is the method where DNA
transference occurs between bacterial cells that are in physical
contact. During bacterial evolution, the ability of bacteria to adapt
to new environments most often results from the acquisition of
new genes through horizontal transfer rather than by the alteration
of gene functions through numerous point mutations.

Symbiont vectors are molecular structures, microorganisms or
cells, able to act on the intra or extra-cellular flow. They can
compose their information with the information of other
molecular structures. The symbiosis is a complex concept and it
may involve situations where mutual benefits are not clear [17]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-698-1/07/0007...$5.00.

2701

[21]. The endosymbiosis is directed to the symbiont absorption on
the long run. As a result of that absorption the symbiont genome
is reduced while the shared genetic material is augmented.

There are other possibilities that result on genetic alterations in
microorganisms and cells, such as the mechanisms of
transposition or transposons [34]. Transposons are DNA
sequences that are part of other genetic elements such as
chromosomes or plasmids. They move from one location to
another inside the DNA of a given cell characterizing a
transposition (permutation). The insertion sequence is encoded on
a cellular enzyme, the Transposase. The transposon action
comprises two distinct mechanisms of DNA edition. The first
mechanism allows cutting and pasting DNA fragments. The
second mechanism executes a copy and paste. The composition of
those two mechanisms results on an effect that is similar to
permute restricted DNA fragments. The permutations may occur
exclusively on the information inside the chromosome or in a
composition with the information of an environment (for instance,
in composition with information encoded on plasmids). The
transposons are intracellular flow vehicles.

The transgenetic algorithms adapt the concepts of endosymbiosis
and other properties of the intracellular flow for the computational
context. They propose the execution of evolution by means of a
process of information sharing among a population of
endosymbionts within a host. The evolution of the population of
symbionts and its integration with the host information is
intermediate by horizontal gene transfer and transposition
mechanisms. Those genetic exchange mechanisms are operated
by means of agents named “transgenetic vectors”. The
transgenetic vectors mimic natural vehicles, such as plasmids and
transposons. The evolution of the population of symbionts utilizes
the information within the host’s cytoplasm. That information is
composed and transported by the transgenetic vectors. It is done
in accordance with the “quorum sensing” paradigm, the ability of
bacteria to communicate, which proposes the possibility to direct
and guide the action of a microbial population in the cellular
context.

The first work that presented the elements of a symbiotic
approach in the computational context is due to Hillis [15]. The
first work of the Evolutionary Computation that mimics the
endosymbiosis was presented by Bull and Fogarty [5]. Kim et al.
[19] proposed a co-evolutionary algorithm that introduced the
concept of endosymbiotic individuals – formed by the union of
two individuals. Other algorithms based on that metaphor where
co-evolution or symbiosis were emphasized (not properly
endosymbiosis) were presented by Tsujimura et al. [37], Pagie
and Mitchell [27], Rosin and Belew [33], Husbands [16], De La
Cal Marín et al. [7], Kim et al. [20], and Michaelian [24]. A
correlated approach based upon evolutionary interactions between
individuals of different natures was presented by Kubota et al.
[22]. Horizontal gene transfer mechanisms inspired some genetic
algorithms operators: transduction [22], conjugation [25] [26], and
transformation [35]. Operators of genetic algorithms inspired in
transposons are presented by Simões and Costa [36] and Chan et
al. [6].

Section 2 presents the transgenetic algorithms. To illustrate the
application of a transgenetic algorithm to an NP-hard
Combinatorial Optimization problem, the proposed approach is
applied to the Traveling Purchaser Problem in section 3. Section 4

presents the results of a computational experiment. Finally, some
conclusions and remarks are presented in section 5.

2. THE TRANSGENETIC ALGORITHM
This paper presents an algorithm with fundamentals on the
process of endosymbiosis, and also able to consider other genetic
alterations that occur in the intracellular context. Besides
employing the concept of agglutination of genetic information of
more than one individual, the algorithm allows considering
intracellular interactions of gene transposition. Once the metaphor
is based on the evolution of primitive beings, crossover and
mutation operations are not considered.

The recent discovery of microbiology that bacteria communicate
is also a source of inspiration for the transgenetic algorithms.
Bacterial communication is called “quorum sensing” because it is
a density-dependent process that functions when a population is
of sufficient size [38]. Quorum sensing systems are very
widespread and modulate many processes in bacteria that are
associated with humans, plants, animals, and which occur in the
natural environment. It is known that quorum sensing also
regulates a wide range of physiological processes and involves a
variety of different signal molecules [18].

The evolutionary process of a transgenetic algorithm is done with
the interaction of the information contained in a host and a
population of symbiont chromosomes by means of the
transgenetic vectors. A transgenetic vector, λ, is a pair λ = (I, φ),
where I is an information string and φ is a manipulation method,
φ = (p1,...,ps), pj, j=1,...,s, are procedures that define the vector’s
action. The insertion of an information string, I, transported by a
transgenetic vector, λ, on a chromosome C, will probably alter C
and its fitness.

In analogy with the terminology employed by microbiologists,
there are four types of transgenetic vectors: plasmid, virus,
recombined plasmid and transposon. Table 1 summarizes the
procedures that compose the manipulation methods of those
transgenetic vectors.

Table 1. Procedures of transgenetic vectors

Procedures Description

p1 - Attack

Defines a criterion that establishes
whether a chromosome C is susceptible to
the information of a transgenetic vector λ
A: C, λ → {false,true}

p2 - Transcription
If A(C, λ) = “true”, the procedure defines
how the information I is transferred from
λ to C

p3– Blocking/
 Unblocking

Establishes a period of time (e.g. number
of iterations) in which the transcribed
information cannot be altered in C

p4 - Identification Identifies the positions in C that will be
utilized to limit λ’s operation

p5 - Recombination
Identifies the origin and the length of two
or more information strings and composes
them in λ

2702

A vector is called plasmid when its information string is translated
on a genetic code – a DNA substring – and its method utilizes
only procedures p1 and p2. If the vector’s information string is a
genetic code and the vector utilizes procedures p1, p2 and p3, then
λ is called virus. A vector is called transposon when its method
utilizes procedures p1, p2 and p4. Finally, a vector is called
recombined plasmid when its information is a composition of two
or more information strings and the vector utilizes procedures p1,
p2, p4 and p5.

There are three interacting contexts in a transgenetic algorithm:

i) A population of chromosomes (cells or prokaryotes);

ii) A population of transgenetic vectors representing vehicles for
transferring and editing the genetic information;

iii) The extra-cellular context, that is, the interior of the host, rich
in information which can influence the symbionts.

The algorithm utilizes a host database with the information
contained in the host’s cytoplasm. It is a general repository of
information. That base may contain information obtained a priori
and information found out during the execution of the
evolutionary process. The information may be encoded either on a
genetic format, such as partial solutions of a given problem, or on
an abstract format such as procedures or rules for genetic sharing.

The evolutionary process of transgenetic algorithms is
accomplished by a structure of rules that simulate the natural
mechanisms of quorum sensing. Those rules are called
transgenetic rules. The control of the evolution of the population
of chromosomes, transgenetic vectors, and the information of the
host database is done by three classes of transgenetic rules.

Type 1 rules direct the construction of the information string I that
is transported by the transgenetic vectors. Type 1 rules may
utilize any type of knowledge stored in the host database. Type 2
rules define how the information I is transcribed in a chromosome
– the operator utilized by λ. The transcription rules may evolve in
conformity with the resistance shown by the chromosomes. A
number of type 1 and type 2 rules may exist in an algorithm.
Figure 1 shows that type 3 rules direct the whole process playing
part of the role of the quorum sensing. Type 3 rules define which
vectors are utilized, the number of chromosomes that are attacked
at a given iteration, the number of vectors that are created, the
stopping criterion, etc.

Figure 2 presents a general framework of a transgenetic
algorithm. The transgenetic rules are not detailed in the algorithm
description to avoid overloading the text. Initially, a population of
chromosomes is generated. It is done in the same manner other
evolutionary algorithms do. Then, the parameters of the
transgenetic rules are loaded. The information of the host
database can be obtained from theoretical or heuristic knowledge
about the problem that is being tackled. It can be updated during
the execution of the algorithm. The information sharing between
the population of chromosomes and the transgenetic vectors is
done until a stopping criterion be satisfied.

Transgenetic algorithms were proposed by Gouvêa [14] who
applied them to the Quadratic Assignment Problem. Two initial
contexts were proposed for those algorithms: an extra-
intracellular context [10] and a purely intracellular context [9]
where only plasmids were utilized as transgenetic vectors. The

latter class of algorithms was called ProtoG. ProtoG algorithms
were more promising than the former class being utilized to tackle
a number of real world problems [2] [8] [12] [13]. Ramos et al.
[31] applied logistic regression for parameter tuning of ProtoG
algorithms. An application of ProtoG algorithms for the
Travelling Salesman Problem is reported in the work of Ramos
[30].

Vectors

Symbiont
ChromosomesType 1 RulesType 1 RulesType 1 RulesType 1 Rules Type 2 RulesType 2 RulesType 2 RulesType 2 Rules

Host Database

Type 3 RulesType 3 RulesType 3 RulesType 3 Rules

A priori
information

Regulation
Information Flow
InterventionHost’s Cytoplasm

Figure 1. Transgenetic evolution

1. Generate an initial population
2. Load transgenetic rules (TR)
3. Load the host database (HB)
4. Repeat
5. Generate extra-intracellular vectors
6. Select chromosomes for manipulation
7. Manipulate chromosomes in conformity with TR
8. Update TR and HB
9. until a stopping criterion is satisfied

Figure 2. General framework of a transgenetic algorithm

3. A TRANSGENETIC ALGORITHM FOR
THE TPP
The proposed approach is applied to the NP-hard problem named
Traveling Purchaser Problem (TPP), a generalization of the
Traveling Salesman Problem. In this variant there is a set of m
markets, vertices of a graph G, and a set of n products that must
be purchased. Each product is available, with different quantities,
on a subset of markets and the unit cost of a product depends on
the market where it is available. The objective of the purchaser is
to buy all the products, departing and returning to a domicile
(location v0), with the least possible cost. The cost is defined as
the summation of the weights of the edges in the tour plus the
price paid to acquire the products. Thus, there is no need of
including all the markets in the tour. The first work where the
TPP is introduced as it is presently known is due to Ramesh [29].
The problem can be stated as follows. Given a domicile, v0, a set
of markets M = {v1,v2,..., vm}and a set of products K={f1,f2,..., fn},
the problem is represented in a graph G = (V,E) where
V = {v0}∪M and E = {[i,j]: vi, vj ∈ V, i<j}. A demand dk is

2703

assigned to each product fk. The number of units of product fk at
market vi is denoted by qki and Mk denotes the set of markets
where the product fk is available, Mk ⊆ M. The cost of product fk
at market vi is denoted by bki and the cost of traveling from market
vi to market vj is given by cij. The objective is to determine a
minimum cost tour in G such that v0 is the starting and the ending
point and the fk products are purchased, completely satisfying the
demand. In this paper the uncapacitated version of the TPP
(UTPP) is tackled by a Transgenetic Algorithm. For the UTPP it
is assumed that if a product is available at a given market, its
quantity is sufficient to satisfy the demand [3]. In this problem
variant, it can be considered that dk=1 and qki∈{0,1}, 1 ≤ k ≤ n,
1 ≤ i ≤ m.

A general framework of the algorithm proposed for the UTPP is
shown on figure 3. Four input parameters are passed to the
algorithm: #sizeP, the population size; k, the number of plasmids
generated on each iteration; β, the number of iterations of the
inner loop; and η, the total number of iterations.

1. Generate_population(P={C1,…,C#sizeP })
2. Load the host database, HD
3. j ←β;
4. repeat
5. i ←1
6. repeat
7. u ← random(η)
8. if (u ≥j) then
9. Generate k plasmids and choose the best one, λ
10. for each individual C of P
11. C´← attack_plas(C,λ)
12. else
13. Generate a transposon
14. for each individual C of the population
15. C´← attack_trans(C,λ)
16. if C’ is better than C then
17. C ← C’
18. if C is better than the current best solution then
19. Include C in HD
20. Remove the worse chromosome of HD
21. i ←i+1
22. until (β = i)
23. j ←j+β
24. until (j>η)

Figure 3. Transgenetic algorithm for the TPP

The chromosomes represent TPP solutions and are defined as a
sequence of markets, beginning and ending at the domicile, v0.
The fitness is given by the cost of the tour represented in the
chromosome plus the lowest costs of acquisition of all products
on the markets of the tour.

At first, a population of chromosomes is generated. To construct a
chromosome, random markets, with no repetition, are iteratively
included until a feasible solution is built. Then the Lin and
Kernighan algorithm version of Applegate et al. [1] is applied to
optimize the tour.

The host database is organized with information to be utilized by
the plasmids. It contains a priori information and information

obtained during the evolutionary process. The a priori
information is a Hamiltonian cycle of G obtained with the LK
algorithm of Applegate et al. [1]. The information of the
evolutionary process is represented by the four best current
solutions.

Two types of vectors were utilized: plasmids and transposons.
Mimicking the biological process, the transgenetic algorithm
employs the information obtained in the host context at the
beginning of the evolutionary process. Then, as the population
evolves, endogenous information is increasingly privileged.
Interactions among the population of chromosomes and the
transgenetic vectors occur while a stop criterion is not satisfied.
At each iteration, a vector λ, plasmid or transposon, is chosen
with a probability depends on the evolutionary process stage.
Once the symbiogenesis metaphor suggests that the infiltration of
host information is more useful at the initial steps of a symbiotic
evolutionary process, the likelihood of choosing a given type of
vector varies during the iterations. At the beginning, extra-cellular
information is privileged. Thus, plasmids attacks are more likely
to occur. At the end of the process, the probability of transposon
attacks is higher. The counter j controls that tendency, being
initialized on step 3 and updated on step 23. Its effect is
determined on the comparison of step 8.

If a plasmid is selected, k vectors are generated. They are
evaluated in accordance with a criterion that will be described
further. Then, the best of the k plasmids is chosen to attack the
chromosomes, as shown on step 11. To form the plasmid’s string,
one element of the environmental data base is randomly chosen as
the source of information, according to a uniform distribution.
The string length, r, is also chosen randomly in the interval [3,
⎣m/8⎦]. An initial point of the selected element is randomly
chosen, then starting on that point, r successive markets form the
vector’s string. One can observe that a genetic fragment
transported by a plasmid corresponds to a path (of markets). At
each iteration where the plasmid is chosen as the manipulation
vector, k = 30 plasmids are generated. Those plasmids are
evaluated in order to choose one of them, the best one, to
manipulate the chromosomes. Once their strings are partial
solutions, they are evaluated with basis on the summation of three
parcels:

1. The weights of the edges of the correspondent path

2. The lowest prices of the products available on some market of
the string

3. The highest prices of the products not available in any market
of the string

The plasmid with the lowest associated value is chosen to attack
all chromosomes of the current population.

The pseudo-code of the procedure attack_plas() is shown on
figure 4. The input parameters are chromosome C, and the chosen
plasmid λ. First, the procedure verifies which markets are
simultaneously in the chromosome and in the plasmid and remove
such markets from the chromosome (step 1). The loop checks the
insertion of the string between each pair of markets of the cycle
represented on C, preserving the best insertion regarding the cost
of the tour (steps 3-7). The solution cost after inserting λ’s string
in C in position j is set to variable c. If that cost is better than the
best cost of the tested insertions, the best infiltration position is

2704

kept in variable index. The transcription is done in the best
position, that is the one with the lowest tour cost (step 8), and the
markets where no products are purchased are removed (step 9).
The Lin and Kernighan procedure is called to optimize the tour.

1. C’← remove(C, λ)

2. c_best ← ∞; index ← 1
3. for each possible infiltration position j in C

4. c = cost_infilt(C, j, λ)
5. if (c < c_best) then

6. c ← c_best; index ← j
7. end_for

8. C” ← transcription (λ,C, index)

9. C” ← remove_empty_market(C”)

10. C” ← Lin_Kern(C”)

11. if C” is better than C’ then C’← C”

12. return(C’)

Figure 4. Pseudo-code of procedure attack_plas

Figure 5 illustrates the infiltration process of a plasmid. Observe
that the rectangles of figure 5 represent the markets and the
sequence of rectangles maps the sequence of visits of a given
tour. The traced arrows show the positions where it is possible to
infiltrate the plasmid’s string. The resultant tour after the
plasmid’s manipulation are (4,3,1,2,6,5), (2,4,3,1,6,5),
(2,6,4,3,1,5) and (2,6,5,4,3,1). The infiltration position which
results on a chromosome with the lowest cost is finally chosen.

4 2 1 6 5

4 3 1

4 4 3 1 2 1 6 5

Plasmid
Infiltration
positions

Chromosome

Transcription
Figure 5. Transcription of a plasmid

The second vector utilized by the transgenetic algorithm is the
transposon. The pseudo-code of procedure attack_trans() is
shown on figure 6. The transposon’s string is formed by indices
that mark parcels of the chromosome to be rearranged by the
vector’s operator. In this work, this string is a pair indicating the
initial and final positions of a sequence of markets in the
chromosome. Those indices are randomly selected. A fragment of
the chromosome is, then, determined by those two positions. The
markets of that sequence are the elements of set X (step 1). The
procedure verifies, iteratively, if each market of that sequence can
be removed (steps 2-16). The market removal may result in a
chromosome that represents an unfeasible solution. In this case,
new markets will be added to the chromosome until feasibility is
reached again (steps 7 and 12). That market addition is described

straightforward. Let C be a chromosome and S be the set of
markets that are not in C. A value is associated with each market
of S. The value associated with a given market is calculated by
the least increase its addition will bring to the tour cost of the
solution represented in C plus the highest prices of the products
that are still not purchased. The tour cost is calculated with the
insertion of the considered market between two consecutive
markets of C. All pairs of markets are considered. Given a
chromosome, C, its tour cost, c, a pair of consecutive markets vi,
vi+1, of C, and a market vj not in C, the tour cost obtained with the
insertion of vj between vi and vi+1 in C, is given by c plus the cost
of edges [i,j] and [j,i+1] minus the cost of edge [i,i+1]. The
resultant tour is optimized with the Lin and Kernighan procedure
(steps 8 and 13). Markets where no products are purchased are
removed (step 15). Each chromosome generated by a transposon’s
action is evaluated and the best configuration is preserved. If the
manipulated chromosome is better than the original one
concerning their fitness values, then the new individual replaces
the old one in the population (steps 16 and 17 of figure 3). If the
new individual represents a solution that is better than the best
known solution, then the host database is updated with the
inclusion of that chromosome and the removal of the worst one
(steps 19 and 20 of figure 3).

1. X ← markets(C, λ)

2. for each market j ∈ X

3. C” ← C

4. C” ← remove_market(j, C”)

5. C’ ← remove_market(j+1, C”)

6. if C” is unfeasible then

7. C” ← include_new_markets(C”)

8. C” ← Lin_Kern(C”)

9. if C” is better than C then C← C”

10. else

11. if C’ is unfeasible then

12. C’ ← include_new_markets(C’)

13. C’ ← Lin_Kern(C’)

14. if C’ is better than C then C← C’

15. C ← remove_empty_market(C)
16. end_for

17. return(C)

Figure 6. Pseudo-code of the procedure attack_trans

4. COMPUTATIONAL EXPERIMENT
The purpose of the computational experiment was to evaluate the
potential of the proposed evolutionary approach in tackling an
NP-hard problem. The parameters k = 30, η = 40 and β = 4 were
fixed after preliminary experiments. The tests were run on a
Pentium IV 2.8 GHz, 512 MB of RAM, Ubuntu Linux operational
system and gcc compiler.
In this experiment 89 instances with known optimal solutions and
51 instances where the optimal solution is not known were

2705

considered. Among the instances with known optimal solutions, m
varies between 50 and 250, and n varies between 50 and 200.
A comparison of the transgenetic algorithm, TA, with the
algorithms RL-SG [32] and BF [4] for those instances is shown in
tables 2 and 3. Those results are presented in accordance with the
format utilized in the papers of Boctor et al. [3] and Riera-
Ledesma and Salazar-González [32]. The advantage of that
format is that it allows examining the results in a compact table,
since a great number of instances are tested. Classes of instances
are defined by number of markets and products. Table 2(3) shows
the results for the classes of instances grouped by number of
markets (products). For example, in table 2 the column with
m = 50 refers to all instances (with known optimal solution) with
50 markets. A number of independent runs are executed for each
instance. Then the best solution found on those runs for each
instance is kept. The result shown on that table is the average of
the best solutions of the instances of a given class. Those results
are shown in terms of percent difference from the optimal
solution.

The results shown for TA correspond to 200 independent
executions for each instance. The stopping criterion for the TA
was to find the optimal solution or a maximum of 200 iterations.
The results shown by RL-SG and BF are reported in the works of
Riera-Ledesma and Salazar-González [32] and Bountoux and
Feillet [4], respectively. The runtimes of RL-SG were obtained on
a PC Celeron 500 MHz, and BF ran on a Pentium IV 2 GHz.

Table 2. Results for instances grouped by number of markets

m Method 50 100 150 200 250
Gap 0.07 0.14 0.03 0.32 0.06 RL-SG T(s) 3 10 14 19 25
Gap 0 0 0.08 0.02 0.01 BF T(s) 2 20 172 232 154
Gap 0 0 0.01 0 0 TA T(s) 4 25 44 43 64

Table 3. Results for instances grouped by number of products

n Method
50 100 150 200

Gap 0.07 0.24 0.10 0.08 RL-SG
T(s) 5 13 20 21
Gap 0 0.05 0 0.03 BF
T(s) 37 154 96 165
Gap 0 0 0 0.01 TA
T(s) 12 37 39 50

No significance statistical tests could be done in order to compare
the three algorithms, once both algorithms, RL-SG and BF, could
not be implemented in their original forms and the details of their
computational tests are not fully available. Therefore, a
comparison is done with the published results.
Among the nine groups of instances shown on tables 2 and 3, TA
finds all the optimal solutions for seven of them and a percent gap
of 0.01 for classes m = 150 and n = 200. RL-SG does not find gap
zero for any instance class. BF finds all the optimal solutions of

four classes. Regarding quality of solution, TA is superior to RL-
SG in all groups of instances and is superior to BF in five groups.
Those algorithms did not outperformed TA in any group of
instances. BF outperforms RL-SG in eight of the nine groups.

Table 4. Results for instances with m < 300

BF TA m n Id
Sol T(s) Sol T(s)

200 150 4 2419 1216.92 2419 23.98
200 200 4 2344 527.03 2344 99.19
250 100 1 1301 33.84 1301 143.19
250 100 4 1673 10.23 1673 3.55
250 100 5 1641 550.24 1641 1.84
250 150 4 1836 45.24 1836 2.27
250 150 5 1531 21.1 1531 151.43
250 200 2 2785 1137.65 2786 246.31
250 200 3 1924 281.88 1924 16.45
250 200 4 2116 83.83 2116 3.06
250 200 5 1797 930.03 1797 38.97

Table 5. Results for instances with m = 300

BF TA
m n Id

Sol T(s) Sol T(s)
300 50 1 1477 160 1477 1.5
300 50 2 813 116.01 813 1.41
300 50 3 1117 20 1117 1.46
300 50 4 1176 2.11 1176 1.44
300 50 5 1257 276 1256 1.57
300 100 1 1035 55.54 1035 2.29
300 100 2 1179 617.22 1180 3.98
300 100 3 1498 103.42 1498 2.25
300 100 4 1749 312.16 1749 37.49
300 100 5 1774 2.74 1774 2.27
300 150 1 1457 756.71 1457 98.66
300 150 2 1656 483.32 1656 3.02
300 150 3 2485 663.24 2484 6.34
300 150 4 1801 95.93 1801 8.17
300 150 5 1816 309.25 1816 41.16
300 200 1 1815 488.15 1803 575.39
300 200 2 1791 1918.52 1790 627.73
300 200 3 2442 2852.05 2437 184
300 200 4 1815 2946.79 1815 113.82
300 200 5 2022 1577.83 2014 605.39

Tables 4, 5 and 6 show a comparison of the TA and the BF for the
remaining 51 instances where no optimal solution is known. The
results of the RL-SG are not reported because it does not present
better solutions than the other two algorithms for any instance.
The results shown for TA correspond to the best solution found in

2706

5 independent executions for each instance. The stopping criterion
was a maximum of 200 iterations. The results shown by BF are
reported by Bountoux and Feillet [4]. From those 51 instances,
the proposed algorithm found new best solutions for 9 benchmark
instances. BF reports the best known solutions for 4 benchmark
instances. Both algorithms find the same best solutions for the
remaining instances.

Table 6. Results for instances with m = 350

BF TA
m n Id

Sol. T(s) Sol. T(s)
350 50 1 723 46.04 723 1.7
350 50 2 736 25.71 736 13.02
350 50 3 942 6 942 1.82
350 50 4 805 379.39 805 5.01
350 50 5 1125 26.35 1225 1.67
350 100 1 1317 1698.48 1317 229.99
350 100 2 962 155.48 962 2.37
350 100 3 796 839.65 796 2.43
350 100 4 1059 13.94 1059 9.14
350 100 5 1566 464.86 1566 41.76
350 150 1 1457 1986.42 1459 319.67
350 150 2 1315 159.12 1315 16.31
350 150 3 2553 257.69 2558 597.74
350 150 4 1239 595.85 1239 3.06
350 150 5 2288 8.93 2288 229.27
350 200 1 1503 1033.39 1498 25.34
350 200 2 1374 3085.09 1369 56.07
350 200 3 1873 368.66 1873 59.05
350 200 4 1385 122.24 1356 32.88
350 200 5 2336 2385.65 2336 204.53

5. CONCLUSION
This paper presented an efficient evolutionary method that makes
no use of crossover and mutation mechanisms in order to promote
genetic information sharing or diversity in an evolutionary
computing process. Inspired on the endosymbiotic serial theory
and other intracellular interactions, the proposed approach is
based upon powerful biological mechanisms that, in nature,
constitute the most successful survival strategy of the living
beings.
The survival strategy privileges the incorporation of information
that comes from distinct types of biological agents such as
chromosomes, plasmids and transposons. Intensification and
diversification are obtained by means of the interaction of those
agents. The idea of environment, here thought as a host’s
cytoplasm, is also considered, once the history of the evolutionary
process can be utilized on the improvement of certain transgenetic
vectors and, consequently, on the improvement of the population.
An example of application of the proposed approach is provided
for the uncapacitated version of the Traveling Purchases Problem,
an NP-hard optimization problem. The approach was very

efficient in solving instances of a known benchmark. The
proposed algorithm was compared with two other recent
heuristics and shown a superior performance, exhibiting 9 new
best solutions for the investigated instances.
Future works in transgenetic algorithms will consider conjugation
mechanisms and implementations with the recombined plasmid.
Transgenetic algorithms are being developed for the protein
folding problem, the prize collecting Steiner tree problem, the
multi-criteria minimum spanning tree and the multi-criteria
traveling purchaser problem.

6. ACKNOWLEDGMENTS
This research was partially funded by CNPq and the program
PRH-22 of the Petroleum National Agency.

7. REFERENCES
[1] Applegate, D., Bixby, R., Chvatal, V., and Cook, W. Finding

Tours in the TSP. Technical Report TR99-05. Department of
Computational and Applied Mathematics: Rice University;
1999.

[2] Barboza, A.O. Simulação e Técnicas da Computação
Evolucionária Aplicadas a Problemas de Programação Linear
Inteira Mista. Ph.D. Thesis, Universidade Tecnológica Federal
do Paraná, 2005.

[3] Boctor F.F., Laporte, G., and Renaud, J. Heuristics for the
traveling purchaser problem. Computers and Operations
Research 30, 2003, 491–504.

[4] Bontoux, B., and Feillet, D. Ant colony optimization for the
traveling purchaser problem. Computers and Operations
Research; 2007, to be published.

[5] Bull, L., and Fogarty, T.C. Artificial symbiogenesis. Artificial
Life 2, 1995, 269–292.

[6] Chan, T-M., Man, K-F., Tang, K-S., and Kwong, S.A.
Jumping gene algorithm for multiobjective resource
management in wideband CDMA. Computer Journal 48, 6,
2005, 749-768.

[7] De La Cal Marín, E.A., and Ramos, L.S. Supply estimation
using coevolutionary genetic algorithms in the Spanish
electrical market. Applied Intelligence 21, 2004, 7–24.

[8] Goldbarg, E.F.G., Castro, M.P., and Goldbarg, M.C. A
transgenetic algorithm for the gas network pipe sizing problem.
In Computational Methods, Liu, G.R., Tan, V.B.C., Han, X.
(eds.), Springer, 2006, 893-904.

[9] Goldbarg, E.F.G., and Goldbarg, M.C. ProtoG: A
computational transgenetic algorithm. In Proceedings of the
Metaheuristic International Conference (MIC 2001), 2001,
625-630.

[10] Goldbarg, M.C., and Goldbarg, E.F.G. Extra-intracellular
transgenetic algorithm. In Late Breaking at the Genetic and
Evolutionary Computation Conference (GECC0 2001), AAAI,
2001, 115-121.

[11] Goldbarg, M.C., and Goldbarg, E.F.G. Transgenética
computacional: Uma aplicação ao problema quadrático de
alocação, Pesquisa Operacional 22, 3, 2002, 359-386.

2707

[12] Goldbarg, M.C., Goldbarg, E.F.G., and Medeiros Neto, F.D.
Piston pump mobile unity tour problem: An evolutionary view.
In Late Breaking at the Genetic and Evolutionary Computation
Conference (GECC0 2002), AAAI, 2002, 185-192.

[13] Goldbarg, M.C., Medeiros Neto, F.D., and Goldbarg, E.F.G.
An evolutionary approach for the optimal configuration of
cogeneration systems. In Proceedings of the MCO'04 Fifth
International Conference on Computer Sciences, Hermes
Science Publishing, 2004, 336-346.

[14] Gouvêa, E.F. Transgenética Computacional: Um Estudo
Algorítmico. Ph.D. Thesis, Universidade Federal do Rio de
Janeiro, 2001.

[15] Hillis, D.W. Co-evolving parasites improve simulated
evolution in an optimization procedure. Physica D 42, 1999,
228–234.

[16] Husbands, P. Distributed coevolutionary genetic algorithms for
multi-criteria and multi-constraint optimisation. In AISB
Workshop on Evolutionary Computing, Fogarty, T. (ed.),
Selected Papers, Springer-Verlag, Lecture Notes in Computer
Science 865, 1994, 150–165.

[17] Jeon, K.W. Prokaryotic Symbionts of Amoebae and Flagellates
in The Prokaryotes. In The Prokaryotes, A Handbook on the
Biology of Bacteria, Volume 7: Proteobacteria: Delta, Epsilon
Subclass, Dworkin, M., Falkow, S., Rosenberg, E., Schleifer,
K-H., and Stackebrandt, E., (eds.), Springer New York, 2006.

[18] Joint, I., Downie, J.A., and Williams, P. Bacterial
conversations: Talking, listening and eavesdropping. An
introduction, Philosophical Transactions of The Royal Society
B, 2007, available at http://www.journals.royalsoc.ac.uk.

[19] Kim, J.Y., Kim, Y., and Kim, Y.K. An endosymbiotic
evolutionary algorithm for optimization. Applied Intelligence
15, 2001, 117–130.

[20] Kim, Y.K., Park, K., and Ko, J. A symbiotic evolutionary
algorithm for the integration of process planning and job shop
scheduling. Computers and Operations Research 30, 8, 2003,
1151-1171.

[21] Kirby Jr., H. Organisms Living on and in Protozoa. In
Protozoa in Biological Research, Calkins, G.N.; Summers,
F.M. (eds.), Columbia Univ. Press, New York, 1941.

[22] Kubota, N., Shimojima, K., and Fukuda, T. Virus-evolutionary
genetic algorithm -coevolution of planar grid model. In
Proceedings of the Fifth IEEE International Conference on
Fuzzy Systems (FUZZIEEE '96) 1, 1996, 8-11.

[23] Margulis, L. Symbiosis as a Source of Evolutionary
Innovation: Speciation and Morphogenesis. The MIT Press,
1991.

[24] Michaelian, K. A symbiotic algorithm for finding the lowest
energy isomers of large clusters and molecules. Chemical
Physics Letters 293, 1998, 202-215.

[25] Muhlenbein, H., and Voigt, H-M. Gene pool recombination in
genetic algorithms. In Proceedings of the Sixth International

Conference on Genetic Algorithms, Eshelman, L. (ed.),
Morgan Kaufmann: San Mateo, 1995, 104-113.

[26] Nawa, N., Furuhashi, T., Hashiyama, T., and Uchikawa, Y. A
study of the discovery of relevant fuzzy rules using pseudo-
bacterial genetic algorithm. IEEE Transactions on Industrial
Electronics 46, 6, 1999, 1080-1089.

[27] Pagie, L., and Mitchell, M. A comparison of evolutionary and
co-evolutionary search. International Journal of
Computational Intelligence and Applications 2, 1, 2002, 53-69.

[28] Pierce, S.K., Massey, S.E., Hanten, J.J., and Curtis, N.E.
Horizontal transfer of functional nuclear genes between
multicellular organisms. Biological Bulletin 204, 2003, 237-
240.

[29] Ramesh, T. Traveling purchaser problem. Opsearch 18, 1981,
78–91.

[30] Ramos, I.C.O. Abordagens utilizando a Metodologia
Estatística na Busca de Soluções para o Problema do Caixeiro
Viajante e na Avaliação de Performance de Algoritmos:Um
Estudo Aplicado à Transgenética Computacional, Ph.D.
Thesis, Universidade Federal do Rio Grande do Norte, 2005.

[31] Ramos, I.C.O, Goldbarg, M.C., Goldbarg, E.F.G., and Dória
Neto, A.D. Logistic regression for parameter tuning on an
evolutionary algorithm. In Proceedings of the Congress on
Evolutionary Computation (CEC 2005), Edinburg, 2005, 1061-
1068.

[32] Riera-Ledesma, J., and Salazar-González, J.J. A heuristic
approach for the traveling purchaser problem. European
Journal of Operational Research 162, 2005, 142–152.

[33] Rosin, C.D., and Belew, R.K. New methods for competitive
coevolution, Evolutionary Computation 5, 1, 1997, 1–29.

[34] Shapiro, J. A. Transposable elements as the key to a 21st
century view of evolution, Genetica 107, 1999, 171-179.

[35] Simões, A., and Costa, E. On biologically inspired genetic
operators: Transformation in the standard genetic algorithm, In
Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2001), 2001a, 584-591.

[36] Simões, A., and Costa, E. An evolutionary approach to the
zero/one knapsack problem: Testing ideas from biology. In
Proceedings of the Fifth International Conference on Neural
Networks and Genetic Algorithms (ICANNGA' 2001),
Springer-Verlag, 2001b, 22-25.

[37] Tsujimura, Y., Mafune, Y., and Gen, M. Effects of symbiotic
evolution in genetic algorithms for the job-shop scheduling. In
Proceedings of the 34 Hawaii International Conference on
Systems Science 3, 2001, 3026.

[38] Waters, C., and Bassler, B. Quorum sensing: Cell-to-cell
communication in bacteria, Annual Review of Cell and
Developmental Biology 21, 2005, 319-346.

2708

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

