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ABSTRACT 
We present a biology-inspired probabilistic graphical model, 
called the hypernetwork model, and its application to medical 
diagnosis of disease. The hypernetwork models are a way of 
simulated DNA computing. They have a set of hyperedges repre-
senting a subset of features in the training data. These characteris-
tics allow the hypernetwork models to work similarly to associa-
tive memories and make their learning results more understand-
able. This comprehensibility is one of main advantages of the 
models over other machine learning algorithms such as support 
vector machines and artificial neural networks which are used in a 
wide range of applications but are not easy to understand their 
learning results. Since medical applications require both competi-
tive performance and understandability of results, the hypernet-
work models are suitable for this kind of applications. However, 
ordinary hypernetwork models have limitations that hyperedges 
cannot be changed after they are sampled once. To improve this 
diversity problem, we adopted simple evolutionary computation 
method, the hyperedges replacement strategy as the method of 
keeping the diversity into conventional hypernetworks in addition 
to error correction for model learning. To show the improvement, 
we used aptamer-based cardiovascular disease data. Experiment 
results show that the hypernetworks can achieve fairly competi-
tive performance and the results are also comprehensible. 

Categories and Subject Descriptors 
I.5.2 [Computing Methodology, Pattern Recognition, and Design 
Methodology]: Classifier design and evaluation 

General Terms: Algorithms, Experimentation. 

Keywords: Hypernetwork, Hypergraph, Aptamer, Cardiovas-
cular disease, Diagnosis, Evolutionary computation.  

 

1. INTRODUCTION 
Since DNA computing was suggested by Adleman [1], it has been 
recognized as biology inspired new computational paradigm and 
motivated many variational methods for different problems [1]. 
However, there have been many difficulties in implementing 
DNA computing in vitro. For example, the set of experimental 
constraints including temperatures, molecule densities, and salt 
concentrations should be controlled strictly for the precise simula-
tion of in vitro reactions. 

Many alternative in silico simulation methods have been sug-
gested to resolve these limitations and to render in vitro experi-
ment. The probabilistic library model (PLM) [14] and the hyper-
network models [12] are representative examples of these simu-
lated DNA computing approaches. 

The hypernetwork model is a novel random probabilistic graphi-
cal models based on undirected graphs. A hypernetwork is a hy-
pergraph which consists of weighted hyperedges. A hyperedge 
can connect to more than two vertices while the usual edge in 
conventional graphs connects two vertices. Since hyperedges are 
made by sampling the features of given observed data randomly, 
similarly to library elements in PLM, each hyperedge contains the 
partial contents of given training data. Therefore, whole informa-
tion of given training data can be reconstructed by retrieving and 
combining a set of hyperedges. This mechanism is similar to the 
working method of associative memories. The main advantage of 
hypernetwork models is that they provide descriptive way of ex-
plaining the relation between features and class labels of training 
data. Another advantage is that they can have competitive per-
formances in diverse pattern recognition problems such as hand-
written digit recognition problem [12]. These are advantages of 
hypernetwork models over other machine leaning algorithms 
considering that support vector machines (SVM) and artificial 
neural networks are widely used but are not easy to understand its 
learning results, and decision trees provide the easy-to-understand 
results but occasionally show poor classification performances. 
Therefore hypernetwork models are useful in bioinformatics and 
medical applications where the comprehensibility of the learning 
results is as important as the ability to classify and predict the data. 
However, ordinary hypernetwork models have limitations for 
diversity. Although the weight of a hyperedge is updated by error 
correction, hyperedges themselves, which a hypernetwork con-
sists of, cannot be changed after being sampled once. To keep the 
diversity, we adopt the method of replacing hyperedges as evolu-
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tionary computation into an ordinary hypernetwork. We perform 
cardiovascular disease level prediction using aptamers to show the 
effect of keeping the diversity of the hypernetwork.  

Aptamers are emerged as rival molecules in medical fields pro-
viding many advantages over synthetic antibodies recently [4]. 
Aptamers consist of oligonucleotide sequences which have the 
capacity to recognize any class of target molecules with high 
affinity and specificity. For that reason, they are used in a wide 
range of recent applications including synthetics, biosensors, and 
material detection, etc. [2] [3] [7] in addition to clinical applica-
tions. 

In this paper, the classification performances of hypernetworks 
were compared with several popular machine learning methods 
including SVMs, decision trees (DTs), and Bayesian networks 
(BNs). We show that the evolved hypernetwork performs well for 
the problem of cardiovascular disease level prediction with com-
petitive performances compared with the several popular machine 
learning methods. 

The rest of this paper is organized as follows: In Section 2, we 
present the basic concept and learning method of the hypernet-
work model. The error correction and evolution methods are de-
scribed in Section 3. In Section 4, we present the basic concept of 
aptamers and aptamer-biochip data of cardiovascular disease used 
for the experiments. Experimental results and their analysis are 
described in Section 5. Concluding remarks and future research 
are drawn in Section 6. 

2. THE HYPERNETWORK MODELS 

2.1 The Basics of the Hypernetwork Models 
Before referring to the hypernetwork models, we need to define a 
hypergraph. A hypergraph G is undirected graph with edges 
which can be connected to more than two vertices i.e. G = (V, E) 
where V is a set of vertices and E is a set of edges such that V = 
{v1, v2, …, vn}, where vi is a pair of index and binary value, vi = 
(index, value), E = {E1, E2, …, Em}, and Ei = {vi1, vi2, …, vik}. Ei 
is a hyperedge which is different from an edge of a conventional 
graph for the number of connected vertices. Ordinary edges of a 
graph connect to at most two vertices, but hyperedges can connect 
to more than two vertices. A hyperedge of cardinality k is called a 
k-cardinality hyperedge. Figure 1 shows a hypergraph with eight 
vertices and four hyperedges. 
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Figure 1. Hypergraph with 8 vertices and 4 hyperedges 

A hypernetwork is a specific case of hypergraph. When a weight 
value is assigned to a hyperedge, we call it a hypernetwork. That 
is, a hypernetwork is a hypergraph with weighted hyperedges. 
Formally we define a hypernetwork by using a set of vertices, 

edges and weights as H = (V, E, W), where V = {v1, v2, …, vn}, E 
= {E1, E2, …, Em}, Ei = {vi1, vi2, …, vik}, and W = {w1, w2, …, 
wm}. If every hyperedge Ei in E of a hypernetwork H has cardinal-
ity k, then we call it a k-uniform hypernetwork. 

Hypernetwork models are strongly related to the probabilistic 
library models (PLM) [6][14] which are simulated DNA comput-
ing models. Compared with PLMs, a hypernetwork corresponds 
to an entire library, a hyperedge to a library element, a vertex to a 
gene, and a weight to the number of copies of a library element. 
We can consider PLMs as genotypes of hypernetwork models and 
hypernetwork models as phenotypes of PLMs. Shortly, the prin-
ciple of PLMs is adopted in hypernetwork models. 

2.2 Hypernetworks as Associative Memories 
Associative memories are storage devices which return stored 
contents from partial contents. Similarly, hypernetwork models 
play the comparable role of associative memories through the 
mechanism of storage and retrieval of given data. Compared with 
associative memories, hyperedges correspond to partial contents 
and the cardinality of hyperedges is the quantity of the partial 
contents. When the cardinality of a hyperedge is lower, the hyper-
edge is probable to be matched to more data. On the other hand, 
the higher is the cardinality, the more specific is the hyperedge to 
data that have similar patterns. Therefore, the hypernetwork with 
lower cardinality behaves as globalist and higher one acts as lo-
calist. Figure 2 shows the process of constructing hyperedges 
from observed data, retrieving them, and classifying unobserved 
data.  

To present the procedure of storage and retrieval as associative 
memories, we need to define several terms. If C, C = {c1, c2, …, 
cn}, is a set of class labels and M, M = {m1, m2, …, mn}, is a coun-
ter set whose ith element is the number of hyperedges with class 
label ci, then the contribution of a feature is given by 
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Figure 2. The mechanism of storage and retrieval. 

The mechanism of storage and retrieval is as follows: 

1. Make hyperedges and store them in a hypernetwork by sam-
pling several index-value pairs of features randomly for an 
observed datum. The number of pairs is the cardinality of the 
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hyperedge. The class of a hyperedge is assigned to the class 
label of the original datum. 

2. Repeat Step 1 for an observed datum in several times. The 
number of repeated sampling is referred to sampling rate. 

3. Repeat Step 2 for all observed data set. The number of hy-
peredges in a hypernetwork is equal to observed data set size 
by sampling rate. 

4. Retrieve a hyperedge Ei, where Ei = {vi1, vi2, …, vik}, vij = (dij, 
xij), and compare xij with the feature value of an unobserved 
datum whose index is dij. If an unobserved datum has same 
index-value pairs of features as all elements of Ei and the 
class label of Ei is ck, kth element of C, then increase mk, the 
kth element of M. 

5. Repeat Step 4 for all hyperedges. 

6. Calculate P(ci|X), where X is the vector of features of the un-
observed data and ci is the ith element of C, for all class la-
bels. 

7. Predict the class label of the datum with ci, which satisfying 
argmax P(c=ci|X). 

8. Repeat Step 5, 6, and 7 for all unobserved data. 

In above steps, step 1 is the process of storing partial contents and 
steps from 4 to 7 are the process of returning contents. Hypernet-
work models show good classification performance as associative 
memories for pattern recognition problems including hand-written 
digit recognition [12]. 

3. EVOLUTIONARY HYPERNETWORKS 
To improve naïve hypernetwork models, we added simple learn-
ing and evolutionary computing mechanism. Before the mention 
of learning and evolving, we need to define some terminology 
that will be used to explain the way to improve. The ith element Ti 
of training data set T and the jth element Dj of test data set D with 
m features which have binary value, and a class label which is 
element c of class label set C, C = {c1, c2,…, cn}, is defined as a 
set which is given by 

Ti = {fi1, fi2, … fim, ci}, 

Dj = {fj1, fj2, …,fjm, cj}. 

According to the procedure constructing a hypernetwork H = (V, 
E, W) from given data set, a set of vertices V, V = (v1, v2,…, vk), is 
a subset of a set of features F, F = {f1, f2, … , fm}, and both v and f 
are a pair of (index, value). In other words, the arbitrary element v 
of vertices set V corresponds to a specific element f of feature set 
F. Therefore the ith k-cardinality hyperedge in a hypernetwork H 
which has n hyperedges is defined as followed,  

Ei = {vi1, vi2, …  vik, ci}, 

W = {w1, w2, …, wn} 

where wi is the weight of Ei.  

The learning and evolving procedures of the hypernetwork are 
presented in the following subsection. 

3.1 Introducing Error Correction 
The performance of hypernetwork can be improved by introduc-
ing heuristics based error correction procedures. This error correc-
tion is to update the weight of hyperedges using the result of 
learning training data set. The error correction includes following 
steps: 

1. Divide data into training data set and test data set 

2. According to procedure explained in 2.2, make a hyper 
network H and initialize the weights to Wc. 

3. For all training data, repeat followed sub-step, where the ith 
training data Ti. 

1) Select the jth hyperedge Ej of H.  

2) In case of Ti – {ci} ⊃ Ej – {cj},  
If ci = cj, then wj = wj×δ p ( δ p > 1), 
Otherwise,      wj = wj×δ n (0 < δ n < 1). 

3) Repeat 1) and 2) for all hyperedges for Ti. 

4. Build a new hypernetwork H’ with updated weights from 
Step 3. 

  5. Through the followed sub-step, estimate classification per-
formance for training data set and test data set. 

1) Select a datum Di from training (test) data set, where Di 
is the ith element of data set. 

2) In case of  Di – {ci} ⊃ Ej – {cj} and cj = ck, where Ej is 
the jth element of hyperedge set E and ck is the kth ele-
ment of class label set C, add the weight wj of  to mk .  

3)  Repeat 2) for all hyperedges.  

4) Calculate P(ck|Xi), where Xi is the vector of features of 
Di  and ck is the kth element of C, for all class labels.  

5) Classify the class label of Di into ck satisfying 

 argmax P(c=ck|Xi). 

6)  If ci = ck , then count it.  

      6. Save the hypernetwork H which has the highest classifica-
tion accuracy. 

7. Until the termination condition is satisfied, repeat Steps 
from 3 to 6. 

In Step 3, δ p and δ n play the role of learning rate. The nearer to 1 
are δ p and δ n, the slower is learning. This step is error correction 
and updated weights cause to improve the classification perform-
ance of hypernetwork models. Generally, the termination condi-
tion is the number of iterations. Compared with DNA computing, 
updating the weight of hyperedges means that a DNA sequences 
are selected and amplified by polymerase chain reaction (PCR). 
By error correction, therefore, learning a hypernetwork is search-
ing optimal combination of weights. 

3.2 Evolving Hypernetworks 
In addition to learning through error correction, we can further 
improve hypernetwork models by adopting evolutionary concept. 
We used simple population replacement strategy for bad solutions 
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as evolution methods. The goal of evolving hypernetworks is 
selecting the feature whose makes the classification performance 
of a hypernetwork higher by assigning its classification accuracy 
to fitness function. Before we describe the process of evolving 
hypernetwork, some terminologies need to be defined.  

A subgraph S is defined a kind of hypernetworks and is an indi-
vidual of population, where S = {S1, S2, …, Sn} and Sk = (V, E, W). 
That is, S is a small hypernetwork. When a hypernetwork H con-
sists of n subgraphs, H can be represented as 

1

n
k

k
H S

=
= U . 

A subgraph S is individual to be evolved and the size of subgraph 
set S is population size. A hypernetwork H is made up of sub-
graphs that have good quality. Unlike 3.1, data set is divided into 
three parts, training, validation, test data set. The reason that use 
validation set is that classification accuracy for them is assigned 
to the fitness function of S. the fitness function of the kth sub-
graph is called fk. We replace the subgraphs which has poor fit-
ness function with new subgraphs to keep the diversity. The pro-
cedure of evolving hypernetwork models is followed in detail. 
 

1. Divide data set into training, validation, and test data set. 

2. Make subgraphs S from training and validation data set. 

3. Learn S by using training data for some iterations. 

4. Assign classification accuracy for validation data set of Sk to 
the fitness function fk  

5. Make a modified hypernetwork H’ by followed simple evo-
lutionary computation methods. 

    1) Selection:  execute Step 3 and 4. 

    2) Reproduction: Reproduce the specific proportion of sub-
graphs with good fitness function. 

3) Variation: To keep the diversity, drop the rest which are 
not selected in 1) and make new subgraphs as size of 
dropped subgraphs. 

    4) Reconstruction: Construct a modified hypernetwork by 
merging the result of Step 2) 

6. Until the stop condition is satisfied, repeat Step 5. 

7. Learning the result of Step 6 by error correction which is ex-
plained in Section 3.1. 

A hypernetwork with hyperedges, which are selected through 
above evolutionary steps, is probable to classify the data better 
than one sampled randomly once. That is, evolutionary computa-
tion methods such as selection, variation, and reproduction play 
the role of constructing a hypernetwork with hyperedges includ-
ing important features. 

4. APTAMER-BASED BIOCHIP DATA  
OF CARDIOVASCULAR DISEASE 

4.1 Aptamers 
Synthetic antibodies have been used as the most popular class of 
molecules with capacity of molecular recognition for a wide range 

of applications such as diagnosis and therapeutics for a few dec-
ades.  However, aptamers are emerging as rival molecules against 
antibodies and they have some advantages over antibodies [4]. 
Aptamers are the oligonucleotide sequences which have the ca-
pacity to recognize any class of target molecules with high affin-
ity and specificity. Aptamers are made by the process called the 
systematic evolution of ligands by exponential enrichment (SE-
LEX) which is made up of selection and amplification steps [4]. 
Recent researches report that aptamers are used in a wide range of 
applications including biology and chemical industry beside dis-
ease diagnosis and therapeutics. In recent researches, for example, 
aptamers are applied for RNA interference (RNAi) study with 
aptamer-siRNA [2][7], detection of biological threat agents [3], 
and alternative anticoagulants synthesis [10]. 

4.2 Cardiovascular Disease 
Cardiovascular disease (CVD) is a disease affecting the heart or 
blood vessels. Any abnormal condition characterized by the dys-
function of the heart or blood vessels such as arteriosclerosis, 
rheumatic heart disease and systemic hypertension. In general, 
CVD include arteriosclerosis, coronary artery disease, heart valve 
disease, arrhythmia, heart failure, hypertension, orthostatic hy-
potension, shock, endocarditis, diseases of the aorta and its 
branches, disorders of the peripheral vascular system, and con-
genital heart disease. In affluent western societies such as the 
USA and Australia, CVD is the severe disease of leading cause of 
death. 

4.3 Data Preparation and Preprocessing 
CVD is divided into 3 classes which are stable angina (SA), un-
stable angina (UA), and myocardial infarction (MI) in the order of 
its development. It is assumed that CVD patients have the dis-
ease-specific and disease level-specific proteins in their blood. To 
detect these blood-contained proteins, we discovered about 3,000 
aptamers by applying SELEX for serum refined from 135 CVD 
patient bloods including normal group and disease patients. These 
aptamers having high affinity and specificity to the disease-
specific proteins are selected by SELEX. Then 3K aptamer-array 
biochips are crafted with these selected aptamers. By reacting 
with 135 patient blood samples we obtained mass protein expres-
sion data. Table 1 shows the simple statistics of this data. 

Table 1. The statistics of CVD data 

Class Normal SA UA  MI Total 
Training 24 22 17 16 79 

Validation 8 8 6 6 28 
Test 8 8 6 6 28 

Total Sum 40 38 29 28 135 
 

The 3K protein expression data have 3,000 feature dimensions 
and each feature, which is the level of reaction between aptamers 
and protein, has a real-valued expression level of the range from 0 
to 1. This data set was obtained by applying general preprocess-
ing steps including scanning, quality controls, imputation, linear 
normalization, and log transformation [5]. After these procedures, 
we selected 150 features, which have high significant values, 
from total 3000 features with gain-ratio [9] to reduce feature di-
mension. 
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Lastly, we discretized each feature value as a binary form for the 
application of hypernetwork model by applying Fayyad and Ira-
ni’s binary discretization algorithm in Weka [11]. This is due to 
the limitation of current hypernetwork model which can only 
adopt binary-valued feature vectors. 

For hypernetwork learning and evolving, we divided data set 
having 135 patient samples into 3 parts including training, valida-
tion, and test set. The validation data set are used to calculate the 
fitness function when evolving a hypernetwork, and they are 
merged with training data for learning a hypernetwork by error 
correction. The each portion of validation and test data is about 
20% of entire data set per classes as explained in Table 1. 

5. SIMULATION RESULTS 

5.1 Experiment Settings 
The δ p and δ n are the positive and the negative learning rate of 
hypernetwork learning respectively. We assigned positive learn-
ing rate δ p to 1.0001 to prevent the weight accumulation over-
flow through iterative learning. However, we maintained flexible 
negative learning rate to enable wider solution space search. Be-
cause it could be supposed that if improved rates by a learning 
epoch get smaller, the weight of hyperedges get nearer to optimal 
value for classification. The rule of δ n is given by 

if ΔE  ≥ 0.01                    then δ n = 0.95 
  0.005 ≤ ΔE  < 0.01       then δ n = 0.99 

    0.002 ≤ ΔE  < 0.005     then δ n = 0.995 
      0.001 ≤ ΔE  < 0.002     then δ n = 0.999 
      0.0005 ≤ ΔE  < 0.001   then δ n = 0.9995 

         ΔE  < 0.0005                then δ n = 0.9999 
where Ek is the classification error for training data set in the kth 
epoch and ΔE = Ek-1 – Ek. 

To prevent fast zero convergence of model weights, we assigned 
the negative learning rate to value slightly less than 1.0. The fast 
zero weight convergence could leads overfitting of model training. 
To evolve a hypernetwork, we doubled population size of sub-
graphs and selected the good half of all subgraphs sorted by their 
validation accuracy. The stop condition of evolution was set as 10 
iterations. 

Two data sets are used for model simulation. One is Wisconsin 
diagnostic breast cancer data set, and the other is aptamer-based 
CVD data set. Since hypernetwork models have been applied for 
the problems with binary feature value such as digit recognition 
and text mining, we used WDBC data in addition to CVD data to 
show that the hypernetwork models can also be good at classify-
ing the problem with real-value features through proper binary 
discretization. The experimental results with these two data sets 
are presented in the following sections. 

5.2 Wisconsin Diagnostic Breast Cancer Data 
Data set having real value features, Wisconsin Diagnostic Breast 
Cancer (WDBC) data, was collected from UCI machine learning 
repository for hypernetwork-based classification. The WDBC 
data have binary class label which is either malignant or benign, 
569 samples that consist of 212 malignant and 357 benign sam-
ples with 30 real-valued features. The feature value of the WDBC 
data was also converted to binary data by preprocessing. 

To compare hypernetwork models with other machine learning 
algorithms, we used the implementation of decision trees (J48), 
SVM (SMO), Bayesian networks in Weka and simulated an ordi-
nary hypernetwork (O-HN) and an evolved hypernetwork (E-HN). 
The polynomial kernel is used in SVM and K2 is used as search 
algorithms in Bayesian networks. An ordinary hypernetwork 
means model that classifies by basic operation of storage and 
retrieval. We ran each algorithm nine times with test data having 
20% of original data and averaged these results. The cardinality 
of the hypernetworks was set to 3, and sampling rate was set to 50. 
Furthermore, in case of evolved hypernetworks, population size 
was assigned to 4. Table 2 shows the classification accuracy of 
each algorithm for test data set. The p–value was calculated 
through t–test. The accuracy of hypernetwork of the table is max-
imum value throughout all testing epochs.  

Table 2. The classification results for WBCD data set 

Classification accuracies Epochs 
DT SVM BN O-HN E-HN 

1 93.860 93.86 92.110 83.478 98.261 
2 95.614 98.246 98.246 86.957 93.043 
3 93.86 96.491 93.860 88.696 95.652 
4 89.474 90.351 91.228 83.478 94.783 
5 93.860 93.86 92.983 84.378 93.913 
6 85.965 89.474 87.719 84.378 96.522 
7 92.105 93.86 92.983 81.739 97.391 
8 92.983 97.368 95.614 83.478 96.522 
9 94.737 96.491 95.614 83.478 97.391 

Average 92.495 94.445 93.373 84.451 95.942 

p-value 0.005 0.111 0.023 0.000 – 

 

In above results, all algorithms except ordinary hypernetworks 
present good classification and the accuracy of the evolved hy-
pernetwork model is the best of them. Especially, considering p-
value by t-test, we can insist that the hypernetwork model should 
not only be improved significantly but evolved hypernetworks 
can also classify WDBC problem better than decision tree and 
Bayesian networks within 5% confidence interval. Consequently, 
hypernetwork models can classify the problem with real-valued 
features though the values of vertices are restricted to binary val-
ues. 

5.3 Aptamer-based CVD Data 
Same as Section 5.2, we used 5 algorithms to classify the data. 
Table 3 shows the classification results of these different models. 

The result is very similar to the result of Table 2 in the Section 
5.2. From the results, it can be thought that the evolved hypernet-
work models are superior to not only the ordinary hypernetwork 
models but also decision trees and Bayesian networks in this clas-
sification task. 
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Table 3. The classification results for CVD data set. 

Classification accuracies 
Epochs 

DT SVM BN O-HN E-HN 
1 74.074 77.778 70.37 75 78.571 
2 66.667 85.185 59.259 67.857 78.571 
3 55.556 70.37 70.37 75 82.143 
4 74.074 88.889 62.963 64.286 82.143 
5 62.693 85.185 74.074 71.429 78.571 
6 74.074 88.889 74.074 71.429 85.714 
7 81.482 81.482 74.074 64.286 78.571 
8 70.37 85.185 81.482 67.857 82.143 
9 74.074 77.778 66.667 67.857 82.143 

Average 70.340 82.305 70.370 69.445 80.952 
p–value 0.0024 0.17566 0.001 5.8E-06 – 

 

Figure 3 shows the changes of average training and testing classi-
fication accuracies of hypernetworks with cardinality of 4 as mod-
el learning proceeds. The population size of model was set to 4 
and sampling rate per subgraph was set to 25. The accuracies of 
Figure 3 are calculated by averaging 10 separate runs. The learn-
ing pattern of hypernetwork model in Figure 3 follows the pattern 
of general machine learning methods. 
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Figure 3. The learning curve for training and testing of hy-
pernetwork models with 4–cardinality 

The model training accuracy was increased through all epochs up 
to about 96% and the model testing accuracy starts to decrease 
from about 350 epoch after reaching its peak accuracy, which is 
about 82%, at the range of 300~350 epochs. The fluctuations of 
accuracy in the range of from 50 to 350 epochs were caused by 
averaging model accuracies. 

Figure 4 shows the effects of changing cardinality of hypernet-
work models. To remove the effect of bad accuracy due to lack of 
hyperedges, we set population size to 4 and sampling rate to 100. 
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Figure 4. The average accuracies for different cardinalities 

Figure 4 shows the average test accuracies of hypernetworks for 
different cardinalities as model training epoch proceeds. Note that 
there are difference between the patterns of lower cardinality 
hypernetworks below 10 and higher ones over 20. In case of hy-
pernetworks with low cardinality, the effect of learning is much 
bigger than higher ones. Although there are little effects of learn-
ing in hypernetworks with higher cardinalities over 20, they can 
classify the data well by using mechanism of storage and retrieval 
merely. Models with relatively too high cardinality over 40 show 
poor classification performances because there are few hyper-
edges matched to test data. 

Table 4 shows the results of disease prediction using hypernet-
work model with cardinality of 4. The results are accumulated 
values for 10 simulations. Accumulated values in each simulation 
are the number of class label classified for test data by a hyper-
network with best classification accuracy. 

Table 4. The disease class prediction results with the hyper-
network model 

Class 

Predicted 
Normal SA UA MI 

Normal 78 
(97.25%) 

7 
(8.75%) 

2 
(3.33%) 

14 
(23.33%) 

SA 1 
(1.25%) 

73 
(91.25%) 

0 
(0.0%) 

14 
(23.33%) 

UA 0 
(0.0%) 

0 
(0.0%) 

58 
(96.67%) 

5 
(8.33%) 

MI 1 
(1.25%) 

0 
(0.0%) 

0 
(0.0%) 

27 
(45.0%) 

 

In Table 4, all classes except class MI were classified with good 
accuracy. Nevertheless, the ratio of misclassification for MI class 
is over 50%. Compared with class UA with similar data size to 
MI, the accuracy for class MI is abnormal significantly. We can 
guess that the interactions between features are the essential factor 
in class MI. 

Table 5 shows the analysis results of the relations between aptam-
ers and class labels by simulating lower cardinality hypernet-
works. The result was collected from the three 3–uniform hyper-
networks which have test accuracy over 85%. The pairs of index 
and value in the table are 10 vertices that appeared the most fre-
quently in all hyperedges of three hypernetworks, and proportion 
values are the ratio of hyperedges that have the vertices which are 
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represented with index-value pairs per class labels. The above 
result can be obtained easily through analyzing hyperedges in 
case of hypernetworks with lower cardinality below 5. It is re-
markable that there are strong relations between index-value pairs 
of features and class labels. We can suppose that above aptamers 
have primary effects with CVD diagnosis and react to CVD-
related proteins.  It is needed that aptamers that seems to be re-
lated to CVD is identified to discover CVD-related proteins. 

Table 5. The relations between features and class labels 

Index Value Class Proportion 
(%) Index Value Class Proportion 

(%) 
NOR 100 NOR 96.4 
UA 0 UA 0 
SA 0 SA 3.6 

124 0 

MI 0 

44 0 

MI 0 
NOR 85 NOR 96.7 
UA 0 UA 0 
SA 0 SA 3.3 110 1 

MI 15 

63 0 

MI 0 
NOR 0 NOR 0 
UA 86.3 UA 24.4 
SA 13.7 SA 68.9 

127 1 

MI 0 

72 1 

MI 6.7 
NOR 100 NOR 91.5 
UA 0 UA 0 
SA 0 SA 8.5 91 0 

MI 0 

24 0 

MI 0 
NOR 0 NOR 7.7 
UA 98.6 UA 0 
SA 1.4 SA 0 

17 1 

MI 0 

101 0 

MI 92.3 
 

6. CONCLUSION 
As represented in the above results, hypernetwork models can be 
improved significantly by hyperedge replacement and error cor-
rection to keep the diversity. Compared with other machine learn-
ing algorithms, furthermore, evolved hypernetwork models show 
good classification performance for data with real-valued features. 
Beside the aspects of classification performance, hypernetwork 
models allow to understand biological meaning of the simulation 
results like the relation between features effectively. This is the 
main advantage of hypernetwork models over machine learning 
algorithms such as SVM and artificial neural networks which 
classify data well but are relatively difficult to understand mean-
ings of the result. Therefore, we expect that hypernetwork models 
can play the role of the useful classifiers and analysis tools in 
bioinformatics, especially in medical diagnosis applications. 

Considering inner parts of hypernetwork models, each of lower 
and higher cardinality hypernetwork can be applied for different 
purposes. Generally a higher cardinality about 10%~30% of fea-
ture size is better than a 2~5 cardinality hypernetwork with re-
spects to accuracy and overhead. Since higher one can classify 
well without learning and evolving, there are little overheads for 
improvement methods compare with lower one. Nevertheless, 
higher one is too complex to analyze and understand the relation 
between features that hyperedges consist of. On the other hand, 
although a lower cardinality hypernetwork has overheads for 
learning and evolving, it has the advantage of comprehensibility 

for the result. Regarding the relation between hypernetwork mod-
els as simulated DNA computing, a lower cardinality hypernet-
work can be implemented easier than higher one in in vitro DNA 
computing. 

In the aspects of data analysis, primary aptamers, which have the 
strongest effect on deciding the class label of data, can be discov-
ered efficiently by using the hypernetwork model. It is needed 
that interaction between aptamers is found by analyzing the lower 
cardinality hypernetwork. In addition, CVD related aptamers and 
corresponding proteins should be identified for the practical use in 
medical diagnosis. 
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