
Is the Island Model Fault Tolerant?
J.I. Hidalgo 

Complutense University 
Facultad de Informática 

28040 Madrid, Spain 
+34913947537 

hidalgo@dacya.ucm.es

F. Fernández-de Vega 
University of Extremadura 

Centro Universitario Mérida 
06800 Badajoz, Spain 

+34924387068 

fcofdez@unex.es 

J. Lanchares 
Complutense University 
Facultad de Informática 

28040 Madrid, Spain 
+34913947542 

julandan@fis.ucm.es 

D. Lombraña-González 
University of Extremadura 

Centro Universitario Mérida 
06800 Badajoz, Spain 

+34924387068 

daniellg@unex.es 
 

ABSTRACT 
In this paper, we present a study on the fault tolerance nature of 
the island model when applied to Genetic Algorithms. Parallel 
and distributed models have been extensively applied to GAs 
when researchers tackle hard problems.  The idea is both to 
reduce computing time while also improving diversity of 
populations and therefore quality of solutions.  Nevertheless, 
there are few works dealing with the problem of faults that are 
usually present when a distributed infrastructure is employed for 
running the parallel algorithm. This paper studies the behavior of 
the Island Model when faults appear on a parallel computer or a 
network of computers. Two benchmark problems have been 
employed, and good results obtained for each of them allow us to 
reliably consider Island Model as a fault tolerant parallel 
algorithm. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods 
and Search;  Heuristic Methods. 

General Terms: Management, Measurement, 
Experimentation, Performance, Reliability. 

Keywords: Distributed GAs.  Fault tolerance.   

1. INTRODUCTION 
During the last few years, several researchers have extensively 
studied and applied parallel versions of the Genetic Algorithms 
(GAs).  The idea behind the parallelization of any Evolutionary 
Algorithm is both to improve the quality of solutions that are to 
be found and also reduce the time required for obtaining those 
solutions.  

Greffensttete was the first to show the convenience of 
parallelizing a GA [11], and since then many researchers have 
find the idea of interest. Remarkably, Cantu-Paz presented a 
complete study showing the advantage of the parallel model, and 
describing how the main parameters of the algorithm can largely 
influence the results obtained [10,16]. 

GAs can be easily parallelized at two different levels: 
parallelizing individuals’ evaluation or employing islands for 
evolving semi-isolated populations. At the individual level, each 
candidate solution is usually evaluated in a different worker node 
while for the island model each worker node evaluates a whole 
population –the island: a subpopulation of the original one. These 
two models can nowadays be applied with little effort by using 
existing GA tools. 

Yet, few researchers have taken into account an important feature 
of many parallel and distributed systems:  the presence of 
processing or communication faults that may affect –or even 
break - the execution of an algorithm.  Although massively 
parallel computers are trusty enough for running applications 
without considering the emergence of faults, things change 
significantly when distributed systems are taken into account.  
When a large scale application is to be deployed harnessing 
volunteers PCs on wide area networks, for instance, one of the 
major concerns is Fault Tolerance.  Faults are a key feature of 
network of computing resources.  Faults might also appear on 
parallel computers, and algorithms must be ready for handling 
them. 

Fault tolerance is the ability of a system to continue working in a 
well defined way despite of the errors/faults that can occur in 
hardware or software [13]. When we are talking about fault 
tolerance in parallel or distributed computing we are defining the 
reliability that we will have in a system when handling faults.  

There are different approaches for providing fault tolerance in a 
distributed system: by using check points, n-version algorithms, 
rejuvenation, epidemic algorithms and redundancy [3, 4, 5, 6, 15].  
Fortunately, there are different general purpose frameworks 
available that embody some of these techniques: Calypso [7], 
Condor [3], Starfish [12] and Boinc [5], to name but a few. 
Moreover, there have been developed some specific Parallel EAs 
frameworks that can be employed by researchers interested in 
Evolutionary Computation, such as Beagle [8] and Dream [9, 14, 
15] which also include some of the above referred techniques, 
aimed at avoiding faults on parallel or distributed systems. 
Nevertheless, although those frameworks can recover from 
failures, the complexity of these tools has largely increased, as 
well as the computing time required for running the algorithms, 
due to the overhead of the techniques included.  Table 1 shows a 
list of frameworks, both generic and EA specific, together with 
the fault-tolerant technique included. 

In this paper we present a study devoted to test the fault tolerance 
of the island model on GAs when executing them on a distributed 
system. We have analyzed the quality of the solutions with and 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
GECCO’07, July 7–11, 2007, London, England, United Kingdom. 
Copyright 2007 ACM  978-1-59593-698-1/07/0007...$5.00. 
 

2737



without considering processor faults - simulated by stoping some 
of the processors available. In this way we try to know under what 
conditions would not be necessary to apply any of the above 
referred techniques, thus obtaining a significant reduction in the 
execution time. 

Therefore, in this paper we propose a non-conventional approach 
for managing faults when the island model is employed: instead 
of trying to handle the failures, we will ignore them and continue 
the execution of the algorithm, and we will try to see whether 
results are of similar quality as when faults are not present.  If that 
is the case, we will conclude that the time required for controlling 
faults by means of specific techniques could be saved. To our best 
knowledge, this kind of solution has been never considered for the 
Island Model when using EAs.  A similar idea considered for a 
parallelization at individual level has only been described before 
for GP & GAs (see for instance PGA at individual level [17], and 
PGP [2 ,19]). This paper thus studies the fault-tolerant nature of 
Parallel GAs when the Island Model is employed. 

Table 1. Fault-tolerant frameworks. 

Framework Techniques 

Beagle Redundancy 

Java Check points 

Calypso Specific techniques 

Boinc Redundancy 

Dream Epidemic Algorithms 

Starfish Checkpoint 

 

The rest of the paper is structured in the following way:  Section 2 
presents a brief summary of the Island Model.  Section 3 
describes the methodology and experiments performed. Section 4 
analyses the experimental results and finally some conclusions 
and future research lines are depicted. 

2. THE ISLAND MODEL 
The Island Model is a structured model inspired by nature, which 
tend to spatially organize populations [1, 2]. This model includes 
different sub-populations or demes geographically separated. The 
idea behind this model is to explore different areas of the search 
space and at the same time it tries to maintain a higher diversity 
within each sub-population.  For achieving the expected behavior 
individuals are exchanged between sub-populations with a given 
frequency.  A rate of migration defines how many individuals will 
be exchanged, with which frequency.  A migration topology is 
also defined for establishing destinations of migrating individuals. 

Figure 1 shows the island model considering a ring topology; the 
demes will exchange a number “n” of individuals each “N” 
generations. 

3. METHODS AND EXPERIMENTS 
This section explains the methods and experiments performed. 
First, we describe the way we simulate a failure on a processor, 

and then we explain the two kinds of problems analyzed: Fmodal 
and Schwefel functions. Both are multimodal functions that 
search for global optima (maximum or minimum) on a search 
space with several local optima. Typically, they are described by 
trigonometric equations [20]. 
 

 

 

 

 

 

 

Even when we focus on only a kind of problem, the “no free 
lunch'' theorem [21, 22] tell us that, if we compare two searching 
algorithms with all possible functions –problems-, the 
performance of any two algorithms will be, on average, the same. 
So if we try to design a perfect test set, where all the possible 
functions are present in order to determine whether an algorithm 
works or not for every function, we surely make a mistake. 
Therefore we have set out our experiments focused only on a kind 
of problems for this step of the research.  

We have thus selected a couple of separable multimodal 
functions, which are well known in GA literature [23].   We will 
thus obtain conclusions for this kind of problems, although results 
may be extended to a wider set of functions and problems later. A 
function is multimodal if it has two or more local optima. A 
function of variables is separable if it can be rewritten as an 
addition of functions of just one variable 

3.1 Faults simulation 
In our experiments we have employed a multiprocessor 

computer (Proliant ML570 G2, HP) with 8 core processors (4 
Intel ® Xeon™ MP CPU 2.80 GHz, stepping 05, dual core 
processors).  We have therefore employed for experiments up to 8 
subpopulations within the Island Model. 

We implemented a coarse grained parallel GA, with the same 
structure as described in section 2. The population is divided into 
a number of subpopulations or demes, and each of these relatively 
large demes evolves separately on different processors. Exchange 
between subpopulations is possible via a migration operator. 
Although many topologies can be defined to connect the demes 
we have employed the well known ring topology, and migration is 
restricted to neighbouring demes.  

Given the main goal of this research, and given that the 
multiprocessor system is reliable enough to neglect the presence 
of random failures on processors during experiments, we had to 
simulate faults on processor: we did it by closing the 
communication between a given processor and their neighbours.  
Therefore that processor abandons the experiment, and the 
remaining ones redefine their communicating neighbourhood 
reducing the ring consequently. Figure 2 shows an example of a 
fault on processor number 4. 

As we will see below, we have performed a series of 
experiments considering different number of processor faults:  the 

  
1 2 3   

8   

4   

7   6 5 

Figure 1: Island Model for Parallel GA 

2738



larger number of processors failing, the larger number of islands 
that disappear from the experiment, and consequently the smaller 
number of individuals that keeps working and helping to find 
good solutions.  Furthermore:  every time a processor fails, the 
best individual may be lost.  In the following section we show 
results obtained when 1, 2 or 4 processors fails (we have consider 
up to 50% of processors failing, which is an extremely an 
abnormal fault rate for a parallel or distributed system). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 Fmodal Function 
Fmodal function is a trigonometric function that is frequently 
employed as a benchmark for GAs [24]. Fmodal is defined by 
equation 1. It is a 10 variable function and each 50 bits of the 
chromosome give us the value of one variable. We have 
employed a 500-bit chromosome. Figure 3 represents Fmodal 
function for 2 and 3 variables. 

∑
=

+⋅⋅⋅−=
10

1
)1(1)10sin(

i
ii xxF π  

3.3 Schwefel´s function 
Schwefel's function is another multimodal function and is 
deceptive in that the global minimum is geometrically distant, 
over the parameter space, from the next best local minima. 
Therefore, the search algorithms are potentially prone to 
convergence in the wrong direction. We have also evaluated a 
500-bit chromosome taking 50 bit for each variable, in order to 
evaluate a 10 variable function. Figure 4 represents Schwefel´s 
function for 2 and 3 variables. 

( )∑
=

⋅−=
10

1

)2(sin
i

ii xxF  

 

 
1 2 3 

8 

4 

7 6 5 

1 2 3 

8 

4

7 6 5 

Figure 2: Fault simulation on processor #4

Figure 3: Fmodal Function 

Figure 4: Schwefel function 

 

2739



4. EXPERIMENTAL RESULTS 
In this section we describe the experimental results we have 
obtained when simulating processors’ failures when the parallel 
GA is run. We have tested each of the experiments with several 
values of a set of important parameters: 

• Number of processors in the experiment:  The initial number 
corresponds to the number of islands at the beginning of the 
experiment.  Experiments have considered values varying 
from 2 to 8 processors.  As said in previous section, faults 
have been simulated by removing communication links 
between processors, and up to 50% of processors employed 
for a given experiment. 

• Migration frequency:  Several values have been tested:  10, 
25, 50 or 100 generations computed before the migration 
step.  Best individual from each of the processor is selected 
for migrating. 

• Processor failures:  We have simulated a processor failure 
every 50, 100 or 200 generations.  Actually, the faults are 
simulated by affecting communications so that the isolated 
processor continues computing results independently.  We 
don’t care about the results obtained by isolated populations. 
Every experiment has also been computed without faults, 
and this latter case is employed for comparing results. 

We have used a Parallel GA library: PGAPack [25]. PGAPack is 
a parallel genetic algorithms library that provides most 
capabilities desired in a genetic algorithms package. The features 
of PGAPack that encouraged us to use it are: Parameterized 
population replacement, multiple choices for selection crossover 
and mutation operators, and large set of example problems. 
Some minor changes were required to fit our experiments. To 
build a parallel version you must have an implementation of the 
Message Passing Interface MPI for the parallel computer or 
workstation network you are running on. We have used the 
MPICH implementation of MPI which is freely available [26]. 
We have fixed a total population size of 512 and this number of 
individuals is distributed equally into the number of processors –
demes- employed for each of the experiments: if we use 2 
processors, we have two population of 512/2, 512/4 if we employ 
4 processors instead, and so on. The rest of the parameters for the 
algorithm are the following ones:  

• Crossover probability: 0.8 

• Mutation probability: 0.002 

• Initialization of the population: Random 

• Elitism 

• Stopping criteria:  Solution is found or a maximum of 5000 
generations are computed. 

• Remaining parameters:  Tournament Selection, Two-Point 
Crossover, Fitness Raw (see PGAPack standard parameters 
[25]). 

Every experiment has been repeated 100 times employing a 
different random seed.  In order to obtain good random values, the 
random device (/dev/random) from the Linux OS has been 
employed.  This device retrieves environmental noise from device 

drivers storing it on an entropy file.  This file is then employed for 
generating random numbers.  Processor #0 is the only one in 
charge of accessing the file, thus avoiding waiting times for other 
processors trying to access the same shared file. 

Results shown below are always the average over the 100 runs 
computed for every experiment, so that they are statistically 
significant. 

When experimenting with regular GA, without faults, the 
experiment finishes when results have converged, after a number 
n of generations, or 5000 generations otherwise (therefore 
n=5000).  On the other hand, when experiments undergoing faults 
are considered, the experiment finishes after the same number of 
n generations computed for the experiment without faults.  We 
can thus fairly compare fitness values for both experiments.   

For a better understanding of results summarized on Tables 1 and 
2, we first describe information included for each of the columns: 

• Experiment:  A summary of the experiments, including 
some important parameters:   

o Initial number of populations – processors. 

o Number of generations computed before every 
simulated failure 

• Interchange:  Period employed for migrating individuals. 

• Inheritance:  Indicates whether all subsisting processors at 
the end of the run have received genetic material belonging 
to all of the processors from the experiment. 

• Generation:  Total number of generations for the 
experiment. 

• Max with faults:  Best fitness obtained for the experiment 
considering faults. 

• Max w/o faults:  Best fitness obtained for the same 
experiments when no faults are present.   

•  % Difference:  Difference between results obtained with 
and without faults. 

• Min with faults:  Worst fitness obtained for the experiment 
considering faults. 

• Min w/o faults: Worst fitness obtained for the same 
experiments when no faults are present.   

Experimental results included also the minimum values obtained 
with and without simulation of errors. The aim of this figure is 
to check that we have reached the convergence of the 
populations.  The first columns on tables name the experiments, 
for example, 50#P8 stands for simulating a fault every 50 
generations on an implementation with 8 processors. 

We have included information concerning inheritance, for 
making a first analysis about the relationship between 
propagation of information and fault tolerance. 

 

2740



E
xp

er
im

en
t 

in
te

rc
ha

ng
e 

In
he

rit
an

ce
 

N
um

be
r o

f g
en

er
. 

M
A

X
  w

ith
 fa

ul
t  

M
A

X
 w

/o
 fa

ul
t 

%
 D

iff
er

en
ce

 

M
IN

 w
ith

 fa
ul

t 

M
IN

 w
/o

 fa
ul

t 

10 Yes 760 28,1 28,6 1,74825 28,1 28,6

25 Yes 760 28,5 28,7 0,69686 28,5 28,3

50 no 860 28,1 28,4 1,05634 27,7 26,8
50 

#P=8  

100 no 840 27 27,3 1,09890 25,6 24,5

10 Yes 840 27,9 28,4 1,76056 27,9 28,4

25 Yes 800 28 28,7 2,43902 28 28,5

50 no 820 27,6 28,7 3,83275 27,5 28,5
50 

#P=4  

100 no 780 27,2 28,8 5,55556 27,1 27,9

10 Yes 800 27,5 28,2 2,48227 27,5 28,2

25 Yes 840 27 28,2 4,25532 27 28

50 no 740 26,6 28,3 6,00707 26,2 28,1
50 

#P=2 

100 no 700 26,6 28,6 6,99301 26,6 28,4

10 Yes 760 28,4 28,6 0,69930 28,4 28,6

25 Yes 760 28,7 28,7 0,00000 28,7 28,3

50 Yes 1020 28,3 28,4 0,35211 27,5 26,8
100 

#P=8  

100 no 960 27,3 27,3 0,00000 25,4 24,5

10 Yes 560 28,1 28,4 1,05634 28,1 28,4

25 Yes 740 28,4 28,7 1,04530 28,4 28,5

50 Yes 620 28,3 28,7 1,39373 28,2 28,5
100 

#P=4  

100 no 880 27,7 28,8 3,81944 27,5 27,9

10 Yes 840 28,1 28,2 0,35461 28,1 28,2

25 Yes 820 27,7 28,2 1,77305 27,7 28

50 Yes 840 27,3 28,3 3,53357 27,2 28,1
100 

#P=2 

100 no 780 26,7 28,6 6,64336 26,6 28,4

10 Yes 700 28,7 28,6 0,34965 28,6 28,6

25 Yes 760 28,8 28,7 0,34843 28,5 28,3

50 Yes 800 28,4 28,4 0,00000 27,2 26,8
200 

#P=8  

100 Yes 860 27,5 27,3 0,73260 25 24,5

10 Yes 660 28,2 28,4 0,70423 28,2 28,4

25 Yes 700 28,6 28,7 0,34843 28,5 28,5

50 Yes 700 28,6 28,7 0,34843 28,6 28,5
200 

#P=4  

100 Yes 880 28,5 28,8 1,04167 28,3 27,9

10 Yes 700 28,2 28,2 0,00000 28,2 28,2

25 Yes 760 28,1 28,2 0,35461 28,1 28

50 Yes 760 28,1 28,3 0,70671 28,1 28,1
200 

#P=2 

100 Yes 820 28,1 28,6 1,74825 27,8 28,4

Table 1: Experimental Results for FModal. Bold figures 
indicates differences < 1% 

4.1 Fmodal 
Table 1 shows results obtained for Fmodal problem.  If we focus 
on %Difference column, we notice that differences are usually 
very small.  They only grow (up to a 6%) when failures happen 

very frequently or a small number of processors or both (see for 
instance Experiments simulating failures every 50 generations or 
considering 2 processors –islands-  or 100 generations between 
failures and 2 processors, or 50 generations and 4 processors).  
When a larger number of generations are computed before every 
new fault and a larger number of processors -subpopulations, 
differences are very narrow (1%).  Therefore, the first conclusion 
is that processor faults do not affect significantly the quality of 
obtained results. 
If we continue analyzing results, we see that when 200 
generations are computed before every new fault, differences 
obtained are extremely narrow (below 1%).  When 100 
generations are computed instead, similar results are obtained if 
we use a number of processors larger than 2.  Only with 2 
processors results deteriorates.  But if we remember how the 
island model work, we see that if a fault occur in one out of the 
two processor, no island model exist any more, given that the two 
processors will remain isolated. 
In both of the above referred cases, differences of fitness quality 
with and without failures are below 2%. 
Summarizing, we have seen for this problem that the island model 
can provide results of equivalent quality in the presence of 
processor faults (when compared with the model in the absence of 
faults, and for a number of island greater than 2). 

 

 

 

 

 

 

 

 

 

 

 

 

If we look to inheritance column within the table, we see that 
when the exchange period is smaller (10 or 25 generations), 
processors have enough time to distribute their genetic material to 
the remaining processors before faults occur.  This helps to obtain 
smaller differences between executions with and without 
processor failures. 

The reason for this behaviour is clear:  When the exchange period 
is larger than faults period, a population might disappear before 
sending its best genetic material to another population, thus 
keeping it from participating in the generation of even better 
solutions.  Therefore, on a distributed environment with a given 
frequency of faults, the exchange rate should be tuned 
appropriately for obtaining results of quality.  

Those results can also been observed on Figure 5. This graph 
represents the differences on maximum values for different 

0

1
2

3

4

5
6

7

8

50-8 50-4 50-2 100-8 100-4 100-2 200-8 200-4 200-2

Period of fault - #of Processors

%
 D

ife
re

nc
e 

Fa
ul

t-N
oF

au
lt

10
25
50
100

Figure 5: % Differences between Max averaged values for 
exchange periods of 10, 25, 50 generations. Fmodal function 

2741



interchanges period 10, 25, 50 and 100 generations. Confirming 
the commented results, when the genetic information is 
transmitted at the beginning of the execution (10 and 25), the GA 
suffers less the effect of a fault. 

4.2 Schwefel  
Similar experiments have been conducted for schwefel function, 
and similar conclusions can be drawn from table 2: 

- Results are on average of similar quality when faults are 
present when compared with a fault-free run on the 
Island model. 

- Better to exchange more frequently individuals, so that 
island has time to distribute their genetic material 
before a fault can appear (better results with a period of 
10 or 25). 

- In the presence of processors’ failures, it is better to 
employ a larger number of islands for the experiment 
(better results with 8 processors). 

 

 

 

 

 

 

 

 

 

 

Those results can also been observed on Figure 6. Again it 
represents the differences on maximum values for different 
interchanges period 10, 25, 50 and 100 generations. Let us just 
comment one point on the figure. It could be seen that the 
behaviour is not clear. That is simply a consequence of the 
selected representation. Actually, point at 100-8 and 200-8 x-axis 
signs indicated a very good fault tolerance of the configurations 
with 8 processors.  

Finally, Figure 7 shows for the previous Fmodal function, a graph 
including information of inherited material.  The figure shows for 
the experiment which employes 4 islands, how material from each 
of those 4 islands have reached one of the islands along the 
experiment.  The graph shows the percentage of individuals from 
population #3, that includes material comming from populations 
#0 ,#1 and #2.  We see that material inherited grows within the 
population under study, when exchange periods are taking place.  
Given that population #2 is the one closer to population #3, its 
material is the one that arrives first.  This graphs shows the 
importance of the migration periods, and how material from all 
the population is present in the remaining ones, which helps to 
understand why when a population fails, results are not greatly 
affected.  Similar results have been obtained for other number of 
islands and also for the schwefel problem. 

E
xp

er
im

en
t 

In
te

rc
ha

ng
e 

P
er

io
d 

In
he

rit
an

ce
 

N
um

be
r o

f g
en

er
 

M
A

X
  w

ith
 fa

ul
t  

M
A

X
 n

o 
fa

ul
t 

%
 D

ife
re

nc
e 

M
IN

 w
itt

h 
fa

ul
t 

M
IN

 n
o 

fa
ul

t 

10 yes 700 4050 4100 1,21951 4050 4100

25 yes 820 4080 4130 1,21065 4070 4100

50 no 840 4020 4100 1,95122 3990 3950
50

#P=8 

100 no 860 3950 4030 1,98511 3790 3620

10 yes 680 4010 4060 1,23153 4010 4050

25 yes 760 3980 4100 2,92683 3980 4090

50 no 780 3990 4100 2,68293 3990 4090
50

#P=4 

100 no 1000 3920 4130 5,08475 3920 4070

10 yes 760 3970 4060 2,21675 3970 4050

25 yes 760 3970 4070 2,45700 3960 4050

50 no 820 3890 4080 4,65686 3890 4060
50

#P=2

100 no 780 3890 4080 4,65686 3880 4080

10 yes 740 4100 4100 0,00000 4100 4100

25 yes 860 4120 4130 0,24213 4110 4100

50 yes 940 4080 4100 0,48780 4030 3950
100

#P=8 

100 no 1000 4030 4030 0,00000 3860 3620

10 yes 720 4050 4060 0,24631 4050 4050

25 yes 840 4060 4100 0,97561 4050 4090

50 yes 880 4040 4100 1,46341 4020 4090
100

#P=4 

100 no 860 4010 4130 2,90557 3980 4070

10 yes 760 4020 4060 0,98522 4010 4050

25 yes 800 4050 4070 0,49140 4050 4050

50 yes 780 4000 4080 1,96078 4000 4060
100

#P=2

100 no 780 3890 4080 4,65686 3880 4080

10 yes 660 4070 4100 0,73171 4070 4100

25 yes 820 4130 4130 0,00000 4110 4100

50 yes 940 4120 4100 0,48780 4030 3950
200

#P=8 

100 yes 820 4030 4030 0,00000 3720 3620

10 yes 660 4060 4060 0,00000 4060 4050

25 yes 820 4090 4100 0,24390 4090 4090

50 yes 840 4090 4100 0,24390 4090 4090
200

#P=4 

100 yes 960 4090 4130 0,96852 4060 4070

10 yes 780 4050 4060 0,24631 4050 4050

25 yes 780 4090 4070 0,49140 4080 4050

50 yes 800 4100 4080 0,49020 4100 4060
200

#P=2

100 yes 920 4080 4080 0,00000 4030 4080

Table 2: Experimental Results for Schwefel. Bold figures 
indicates differences < 1% 

0

1

2

3

4

5

6

50-8 50-4 50-2 100-8 100-4 100-2 200-8 200-4 200-2

Period of fault - # of Processors

%
 D

ife
re

nc
e 

Fa
ul

t-N
o 

Fa
ul

t

10
25
50
100

Figure 6: % Difference between Max averaged values for 
10,25,50 and 100 interchange period. Schwefel function 

2742



 
 

 
 
 

 
 

5. CONCLUSIONS AND FUTURE 
WORK 
This paper has shown that the coarse grain parallel GA structured 
by means of the Island Model achieves fault tolerance when 
applied to Multimodal Functions. 

We have experimented on a multiprocessor computer running a 
GA library and employing MPI for migrating individuals among 
processors. Processor failures have been simulated when 
experimenting with Fmodal and Schwefel functions. 

A different number of processors have been employed for each 
experiment and we have considered different failure rates for the 
available processors.  For every experiment results obtained 
without any fault have been compared with those obtained when 
faults are present.  For all experiments, differences have been 
quite small (below 7%), being the average difference always 
below 2% (1,81 for Fmodal function and 1.4 for the schwefel 
function).  Especially good results were obtained when using 
more than 2 processors-islands for the experiment, so that after 
faults the island model is actually present.   

For a number of 8 processors-islands and 200 generations 
computed before every fault, differences of results are below 1%.  
We have also seen that better results are obtained when exchange 
frequency is larger than faults rate.  Although results have been 

obtained simulating faults and on a multiprocessor system, the 
high failure rate considered allows us to be confident on the 
extension of conclusions to real distributed networks of computers 
(we have considered up to 50% of processors failures, which is an 
extremely high number of faults). 

Summarizing, researchers can trust on the island model when 
running experiments on a non-reliable parallel or distributed 
infrastructure:  Despite processor failures the island model GA 
will still provide results of similar quality as when a reliable 
infrastructure is employed, and this without making the algorithm  
more complex by adding any special techniques required for 
dealing faults. 

The Island Model has proved fault-tolerant by nature, at least on 
the problems faced within this research. 

6. ACKNOWLEDGMENTS 
This work has been partially supported by “OPLINK” Spanish 
Government Project and Project number TIN 2005-5619 also 
from the Spanish Goverment. We also want to thank to the 
students who help us with the simulations Amelia Barroso, David 
Boíllos y Ana Belén Jerónimo. 

7. REFERENCES 
[1] W. D. Whitley, S. B. Rana, and R. B. Heckendorn, “Island 

model genetic algorithms and linearly separable problems,” 
in Selected Papers from AISB Workshop on Evolutionary 
Computing. London, UK: Springer-Verlag, 1997, pp. 109–
125. 

[2] M. Tomassini, “Spatially Structured Evolutionary 
Algorithms: Artificial Evolution In Space And Time”, 
(Natural Computing Series), Springer-Verlag New York, 
Inc., Secaucus, NJ, 2005 Springer, 2005. ISBN:3540241930 

[3] J. B. M. Litzkow, T. Tannenbaum and M. Livny, 
“Checkpoint and migration of unix processes in the condor 
distributed processing system,” University of Wisconsin,  
Technical Report #1346, University of Wisconsin Madison 
Computer Sciences, April 1997. 

[4] A. T. Tai and K. S. Tso, “A performability-oriented software 
rejuvenation framework for distributed applications,” in 
DSN ’05: Proceedings of the 2005 International Conference 
on Dependable Systems and Networks (DSN’05). 
Washington, DC, USA: IEEE Computer Society, 2005, pp. 
570–579. 

[5] D. Anderson, “BOINC: a system for public-resource 
computing and storage,” in Grid Computing, 2004. Grid 
Computing, 2004. Proceedings. Fifth IEEE/ACM 
International Workshop on, pp 4- 10. 

[6] K. Imamura and J. A. Foster, "Fault tolerant computing with 
N-version genetic programming," in GECCO 2001: 
Proceedings of Genetic and Evolutionary Computation 
Conference, San Francisco, CA, USA, L. Spector, E. D. 
Goodman (eds.), Morgan Kaufmann: San Francisco, CA, 
USA, 2001, p. 178 

[7] A. Baratloo and P. Dasgupta and Z.M. Kedem, “ CALYPSO: 
a novel software system for fault-tolerant parallel processing 
on distributed platforms”, Fourth IEEE International 

Figure 7: Percentage of individuals from population #3 that 
includes material inherited from the remaining populations 
when the frequency of exchange is 50 generations (above) or 

100 generations (below), along generations.   

2743



Symposium on High Performance Distributed Computing 
(HPDC-4 '95)   p. 122. 1995, IEEE Press. 

[8] C. Gagné and M. Parizeau and M. Dubreuil, “ Distributed 
BEAGLE: An Environment for Parallel and Distributed 
Evolutionary Computations”, in 17th Annual International 
Symposium on High Performance Computing Systems and 
Applications (HPCS) 2003, pp 201 – 208. 

[9] MG Arenas et al  “A framework for distributed evolutionary 
algorithms Lecture Notes in Computer Science . Springer 
Berlin / Heidelberg . Volume 2439/2002 . Parallel Problem 
Solving from Nature - PPSN VII: 7th International 
Conference Proceedings, Granada, Spain, September 7-11, 
2002. Pages 665-675.  

[10] E. Cantú -Paz and D. E. Goldberg, “Efficient parallel genetic 
algorithms: Theory and practice,” Computer Methods in 
Applied Mechanics and Engineering, 2000. 
citeseer.ist.psu.edu/cantu-paz00efficient.html. 

[11]  C.B. Pettey, M. R. Leuze and J. J. Grefenstette, “A parallel 
genetic algorithm” in Proceedings of the Second 
International Conference on Genetic Algorithms and their 
application, J.J. Grefenstette (Editor).1987, pp 155-161  

[12] A. Agbaria and R. Friedman, “Starfish: Fault-Tolerant 
Dynamic MPI Programs on Clusters of Workstations” in 
HPDC '99: Proceedings of the The Eighth IEEE International 
Symposium on High Performance Distributed Computing, 
1999, pp 31. 

[13] W. Gropp and E. Lusk, “Fault Tolerance in MPI Programs”, 
in Proceedings of the Cluster Computing and Grid Systems 
Conference, December 2002. 

[14] Paechter, B.; Back, T.; Schoenauer, M.; Sebag, M.; Eiben, 
A.E.; Merelo, J.J.; Fogarty, T.C., "A Distributed Resource 
Evolutionary Algorithm Machine (DREAM)," Evolutionary 
Computation, 2000. Proceedings of the 2000 Congress on , 
vol.2, no.pp.951-958 vol.2, 2000. 

[15] M. Jelasity, M. Preuss, M. van Steen, B. Paechter, 
“Maintaining Connectivity in a Scalable and Robust 
Distributed Environment” in Proceedings of the Second 

IEEE/ACM International Symposium on Cluster Computing 
and the Grid (CCGrid2002), 2002. 

[16] E. Cantú-Paz “Efficient parallel genetic algorithms” Kluwer 
Academic Publishers, 2000. ISBN 0-7923-7221-2. 

[17] F. Fernandez, G. Spezzano, M. Tomassini, and L. Vanneschi, 
“Parallel genetic programming,” in Parallel Metaheuristics, 
ser. Parallel and Distributed Computing, E. Alba, Ed. 
Hoboken, New Jersey, USA: Wiley-Interscience, 2005, ch. 
6, pp. 127–153. 

[18] M. Tomassini, Spatially Structured Evolutionary Algorithms, 
Springer, Ed. Springer, 2005. 

[19] D. Lombraña González, F. Fernández de Vega, “On the 
intrinsic fault-tolerance nature of Parallel Genetic 
Programming”, in The Fifteen Euromicro Conference on 
Parallel, Distributed and Network-based Processing, 2007. 

[20] H. P.Schwefel. Numerical Optimization of Computer 
Models. John Wiley & Sons, 1981. 

[21] Wolpert, D. H, Macready, W. G., “No Free Lunch theorems 
for optimization”, IEEE Transactions on Evolutionary 
Computation, Vol 1, N 1, pp: 67-82. Apr. 1997. 

[22] Ho, Y.C., Pepyne, D.L. (2002), Simple Explanation of the 
No-Free-Lunch Theorem and Its Implications, Journal of 
Optimization Theory and Applications 115, 549.  

[23] Cantu-Paz, E., Goldberg, D. E.: Are multiple runs of genetic 
algorithms better than one? Proceedings of Gecco (2003). 
Chicago. Pp. 801-812. Springer Verlag. 

[24] Z.  Michaelewicz. Genetic Algorithms + Data Structures = 
Evolution Programs. Springer,3rd edition, 1996 

[25] David Levine, PGA Pack.  Available at: http://www-
fp.mcs.anl.gov/CCST/research/reports_pre1998/comp_bio/st
alk/pgapack.html 

[26] W Gropp, E Lusk “User’s Guide for MPICH, a Portable 
Implementation of MPI” - Argonne National Laboratory, 
1994. http://www-unix.mcs.anl.gov/~lusk/oldpapers/mpich-
guide/paper.html 

 

 

2744



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


