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ABSTRACT 
In a previous work we have proposed a hybrid Particle Swarm 
Optimisation/Ant Colony Optimisation (PSO/ACO) algorithm for 
the discovery of classification rules, in the context of data mining. 
Unlike a conventional PSO algorithm, this hybrid algorithm can 
directly cope with nominal attributes, without converting nominal 
values into numbers in a pre-processing phase. The design of this 
hybrid algorithm was motivated by the fact that nominal attributes 
are common in data mining, but the algorithm can in principle be 
applied to other kinds of problems involving nominal variables 
(though this paper focuses only on data mining). In this paper we 
propose several modifications to the original PSO/ACO algorithm. 
We evaluate the new version of the PSO/ACO algorithm 
(PSO/ACO2) in 16 public-domain real-world datasets often used to 
benchmark the performance of classification algorithms. 
PSO/ACO2 is evaluated with two different rule quality (particle 
"fitness") functions. We show that the choice of rule quality measure 
greatly effects the end performance of PSO/ACO2. In addition, the 
results show that PSO/ACO2 is very competitive with respect to two 
well-known rule induction algorithms. 

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning – Induction. 

General Terms: Algorithms. 

Keywords: Rule Induction, Classification, Particle Swarm 
optimization, Ant Colony Optimisation, Data Mining. 
1. INTRODUCTION 
We have previously proposed a hybrid Particle Swarm 
Optimisation/Ant Colony Optimisation (PSO/ACO) algorithm for 
the discovery of classification rules, in the context of data mining. 
(A brief review of classification rules is provided in Section 2.) 
Unlike a conventional PSO algorithm, this hybrid algorithm can 
directly cope with not only continuous but also nominal attributes, 
without converting nominal values into numbers in a pre-processing 
phase. The design of this hybrid algorithm was motivated by the 
fact that nominal attributes are common in data mining, but the 
algorithm can in principle be applied to other kinds of problems 
involving nominal variables (though this paper focuses only on data 
mining). 

In this paper we propose several modifications to the original 
PSO/ACO algorithm. In essence, the proposed modifications 
involve changes in the pheromone updating procedure and in the 
rule initialization method, as well as – significantly – the splitting of 
the rule discovery process into two separate phases, as follows. In 
the first phase a rule is discovered using nominal attributes only. In 
the second phase the rule is potentially extended with continuous 
attributes. This further increases the ability of the PSO/ACO 
algorithm in treating nominal and continuous attributes in different 
ways, recognizing the differences in these two kinds of attributes (a 
fact ignored by a conventional PSO algorithm, as mentioned 
earlier). We also experiment with two different rule quality 
functions, since the choice of a such a function is a very important 
aspect in the design of a data mining algorithm. We evaluate the 
new version of the PSO/ACO algorithm – denoted PSO/ACO2 in 
this paper – in 16 public-domain real-world datasets often used to 
benchmark the performance of classification algorithms. 

The remainder of the paper is organised as follows. Section 2 
introduces the classification task, section 3 describes in detail the 
workings of the modified algorithm. Section 4 discusses the reasons 
for the modifications, in section 5 we present the experimental set-
up and results. In section 6 we draw some conclusions from the 
work and discuss possible future research. 

2. CLASSIFICATION 
The task (kind of problem) addressed in this paper is the 
classification task of data mining. In classification the knowledge or 
patterns discovered in the data set can be represented in terms of a 
set of rules. A rule consists of an antecedent (a set of attribute-
values) and a consequent (class): 

IF <attrib = value> AND ... AND <attrib = value> THEN <class> 

The consequent of the rule is the class that is predicted by that rule. 
The antecedent consists of a set of terms, where each term is 
essentially an attribute-value pair. More precisely, a term is defined 
by a triple <attribute, operator, value>, where value is a value 
belonging to the domain of attribute. The operator used in this 
paper is “=” in the case of categorical/nominal attributes, or “≤” and 
“>” in the case of continuous attributes. The knowledge 
representation in the form of rules has the advantage of being 
intuitively comprehensible to the user. This is important, because 
the general goal of data mining is to discover knowledge that is not 
only accurate, but also comprehensible [12][3]. 

3. THE MODIFIED PSO/ACO ALGORITHM 
In this section we first provide a very brief overview of the hybrid 
Particle Swarm Optimization/Ant Colony Optimization (PSO/ACO) 
algorithm originally proposed in [5] and [6] – hereafter denoted as 
PSO/ACO1. This algorithm was designed to be the first PSO-based 
classification algorithm to natively support nominal data – i.e., to 
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cope with nominal data directly, without converting a nominal 
attribute into a numeric or binary one and then applying a 
mathematical operator to the  value. The motivation to natively 
support nominal data is that by converting a nominal attribute such 
as gender into a numerical attribute (say, mapping male into 0 and 
female into 1) we would be introducing an artificial order among the 
numerical values (1 > 0). Such an order clearly makes no sense in 
the context of original nominal values, and mathematical operations 
applied to this artificial order may generate counter-intuitive results. 

The PSO/ACO1 algorithm achieves a native support of nominal 
data by combining ideas from Ant Colony Optimisation (Ant-Miner 
classification algorithm [10]) and Particle Swarm Optimisation 
[8][11] to create a classification meta heuristic that supports innately 
both nominal (including binary as a special case) and continuous 
attribute. 

3.1.PSO/ACO2 Sequential Covering Approach 
RS = ∅   /* initially, Rule Set is empty */ 
FOR EACH class C 
       TS = {All training examples} 
       WHILE (Number of uncovered training examples 
               belonging to class C > MaxUncovExampPerClass) 

Run the PSO/ACO algorithm to discover the  
best nominal rule predicting class C, called Rule 
Run the standard PSO algorithm to add continuous terms 
to Rule, and return the best discovered rule BestRule 
Prune BestRule 
RS = RS ∪ BestRule 
TS = TS – {training examples correctly covered by 
          discovered rule} 

       END WHILE 
END FOR 
Order rules in RS by decending Quality 

Pseudocode 1: Sequential Covering Approach used by the 
Hybrid PSO/ACO2 Algorithm  

Both the original PSO/ACO algorithm and the new modified 
version uses a sequential covering approach [12] to discover one-
classification-rule-at-a-time. The original PSO/ACO algorithm is 
described in detail in [5][6], hereafter we describe how the 
sequential covering approach is used in the new modified version of 
the PSO/ACO algorithm as described in Pseudocode 1 – hereafter 
denoted as PSO/ACO2. It starts by initialising the rule set (RS) with 
the empty set. Then, for each class the algorithm performs a WHILE 
loop, TS is used to store the set of training examples the rules will be 
created from. Each iteration of this loop performs one run of the 
PSO/ACO2 algorithm which only discovers rules based on nominal 
attributes, returning the best discovered rule (Rule) predicting 
examples of the current class (C). The rule returned by the 
PSO/ACO2 algorithm is not (usually) complete as it does not 
include any terms with continuous values. For this to happen the 
best rule discovered by the PSO/ACO2 algorithm is used as a base 
for the discovery of terms with continuous values. A standard PSO 
algorithm (applied only to numeric attributes) is used [1] with 
constriction. The vector to be optimised consists of two dimensions 
per continuous attribute, one for an upper bound and one for a lower 
bound. At every particle evaluation the vector is converted to set of 
terms (rule conditions) and added to Rule produced by the 
PSO/ACO2 algorithm for fitness evaluation. For instance, if the data 
set contained one nominal attribute An0 and one continuous attribute 
Ac0 the PSO/ACO algorithm might produce a rule like: IF An0 = 

<value> THEN class C. The standard PSO algorithm would then 
attempt to improve this rule by adding terms: xi1 > Ac0  AND xi2 ≤ 
Ac0, which effectively corresponds to a term of the form: xi1 > Ac0 ≥ 
xi2. Where a particle's position would be the vector xi1, xi2. The rule 
for evaluation purposes would be:  

IF An0 = <value> AND xi1 > Ac0  AND xi2 ≤ Ac0 THEN class C 

If the two bounds cross over (i.e., 0 > Ac0 ≥ 1) both terms are 
omitted from the decoded rule but the PBest (pi) positions is still 
updated in those dimensions. 

vid = χ (vid + c1�1 (pid − xid) + c2�2 (pgd − xid)) 

Equation 1: PSO Velocity Update 

xid = xid + vid 

Equation 2: PSO Position Update 

The best rule is then added to the rule set after being pruned using 
Ant-Miner “style” pruning [10], and the examples correctly covered 
by that rule are removed from the training set (TS). An example is 
said to be correctly covered by a rule if that example satisfies all the 
terms (attribute-value pairs) in the rule antecedent (“IF part”) and it 
has the class predicted by the rule. This WHILE loop is performed 
as long as the number of uncovered examples of the class C is 
greater than a user-defined threshold, the maximum number of 
uncovered examples per class (MaxUncovExampPerClass). After 
this threshold has been reached TS is restored to all the original 
training examples. This process means that the rule set generated is 
unordered – it is  possible to use the rules in the rule set in any order 
to classify an example without unnecessary degradation of 
predictive accuracy. Having an unordered rule set is important 
because after the entire rule set is created the rules are ordered by 
their Quality and not the order they were created in, although this is 
a greedy approach it improved predictive accuracy in initial 
experiments. 

3.2.The PSO/ACO2 Algorithm 
Each particle in the PSO/ACO2 population is a collection of n  
pheromone matrices where n is the number of nominal attributes in 
a data set. Each particle can be decoded probabilistically into a rule 
with a predefined consequent class. Each of the n matrices has two 
entries, one entry represents an off state and one entry represents an 
on state. If the off state is selected the corresponding  attribute-value 
pair will not be included in the decoded rule. If the on state is 
selected when the rule is decoded the corresponding attribute-value 
pair will be added to the decoded rule. Which value is included in 
this attribute-value pair (term) is dependant on the seeding values. 
The seeding values are set when the population of particles is 
initialised, each particle has its past best state (which is a rule) set to 
a randomly chosen record (a collection of attribute-value pairs) with 
class C – the same class as the predefined consequent class for the 
decoded rules. From now on the particle is only able to translate to a 
rule with attribute-values equal to the seeding terms, or to a rule 
without some or all those terms. This may seem at first glance, 
counter-intuitive as flexibility is lost – each particle cannot translate 
into any possible rule, the reasons for this will be discussed later. 
Each pheromone matrix entry is a real valued number and all the 
entries in each matrix for each attribute add up to 1. Each entry in 
each pheromone matrix is associated with a minimum, positive, 
non-zero pheromone value. This prevents a pheromone from 
dropping to zero, helping to increase the diversity of the population 
(reducing the risk of premature convergence). 
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Initialize population 
REPEAT for MaxInterations 
  FOR every particle P 
    /* Rule Creation */ 
    Set Rule R = “IF ∅  THEN C” 
    FOR ever dimension d in P 

Use roulette selection to choose whether the state should be set 
to off or on. If it is on then the corresponding attribute-value pair 
set in the initialisation will be added to R otherwise, if off is 
selected nothing will be added. 

    LOOP 
    Calculate Quality Q of R 
    /* Set the past best position */ 
    IF Q > P’s Best past rule’s (Rp) Quality Qp 
      Qp= Q 
      Rp = R 
    END IF 
  LOOP 
  FOR every particle P 
    Find best Neighbour Particle N according to N's Qp 
    FOR every dimension d in P 
      /* Pheromone updating procedure */ 
      IF best state selected for Pd = best state selected for Nd THEN  
        pheromone_entry for the best state selected for Pd  is    
        increased by Qp 
      ELSE 
        pheromone_entry for the best state selected for Pd  is    
        decreased by Q 
      END IF 
      Normalize pheromone_entries 
    LOOP 
  LOOP 
LOOP 

Pseudocode 2: The Hybrid PSO/ACO Algorithm 

Pseudocode 2 shows the modified PSO/ACO algorithm proposed in 
this paper and utilised in Pseudocode 1. Firstly the population of 
particles is initialised. Each particle is seeded with terms from a 
randomly selected record, as described in the previous paragraph. 
Initially, in each dimension the pheromone for the on state is set to ≈ 
0.9 and the pheromone for the off state is set to ≈ 0.1. The first loop 
iterates the whole population for MaxIterations. Then for each 
particle P a rule is built probabilistically from its pheromone 
matrices. For each dimension d in P, roulette selection is used to 
decide if the on or off state should be selected [5]. If the on state is 
selected then the corresponding term is added to the antecedent of R, 
this is an attribute-value pair where the attribute corresponds to the 
dimension d and the value corresponds to the initial seeding value. 
After this process has been repeated for every dimension, the quality 
Q of the rule is calculated. If the new Q is greater than the previous 
best Qp, then the particle's state (R) is saved as Rp. 

After the rule creation phase the pheromone is updated for every 
particle. Each particle finds its best neighbour (N) according to the 
rule quality measure (as saved in Qp). For every dimension d in P 
and so every corresponding dimension in N the following 
pheromone updating rules are used. If the best state selected for P in 
the dimension d (PBestd) is the same as the best state selected for N in 
d then an amount of pheromone equal to Qp is added to the 
pheromone entry for the best state for P in d. If the best state 
selected for P in the dimension d is not the same as the best state 
selected for N in d then an amount of pheromone equal to Q is 
removed from the pheromone entry for the best state for P in d. If 

after this process is completed any pheromone entry is less than a 
minimum amount then it is set to that amount (≈ 0.001). Importantly 
this allows the pheromone entry that is not the best state to increase 
due to normalisation, it also aids search in a conveptually similar 
way to mutation in GAs. This is because if the non best state 
reached a pheromone value of zero then it would always remain at 
zero even if pheromone was being removed from the other entry. 
After the pheromone matrix has been updated it is normalised, so 
that its entries add up to one. 

Figure 1: Pheromone Update in PSO/ACO2 

Table 1: Different Pheromone Updating Scenarios 

State for Nd Sate for PBestd Outcome for entries in Pd 

(on) 
<value>=X 

(on) 
<value>=X 

on pheromone increased 
off pheromone decreased 

(on) 
<value>=X 

(on) <value>=Y off pheromone increased 
on pheromone decreased 

off (on) 
<value>=X 

off pheromone increased 
on pheromone decreased 

off off off pheromone increased 
on pheromone decreased 

 

Figure 1 gives a graphical representation of how both the personal 
best PBest and the best Neighbour N effect the pheromone in the 
current particle P. In table 1 the four possible scenarios for 
pheromone updating are described given the differing states of PBest 
and N. Note that the only time the pheromone for the entry on is 
increased (by Qp) is when the state of  PBest and N are set to on and 
their corresponding values are the same. In all other cases the 
pheromone is decreased (by Q). 

3.3.Quality Measures 
It is necessary to estimate the quality of every candidate rule 
(decoded particle). A measure must be used in the training phase in 
an attempt to estimate how well a rule will perform in the testing 
phase. Given such a measure it becomes possible to optimise a rule's 
quality (the fitness function) in the training phase and this is the aim 
of the PSO/ACO2 algorithm. In our previous work [5] the Quality 
measure used was Sensitivity × Specificity (Equation 3) [4]. Where 
TP, FN, FP and TN are, respectively, the number of true positives, 
false negatives, false positives and true negatives associated with the 
rule [12].  

Sensitivity × Specificity = TP / (TP + FN) × TN / (TN + FP) 

Equation 3: Original Quality Measure 
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Later we found that Equation 3 does not give an effective measure 
of accuracy under certain circumstances [6]. This led us to modify 
the quality measure so that when the class predicted by a rule is the 
majority class (a class having more examples than the rest of the 
data set combined) its quality is computed by the product of the 
rule's sensitivity and specificity as shown in Equation 3. When a 
rule predicts a minority class (i.e., any class different from the 
majority class) the product of sensitivity and precision [6], shown in 
Equation 4, is used as the rule’s quality.  

Sensitivity × Precision = TP / (TP + FN) ×  TP / (TP + FP) 

Equation 4: Quality Measure on Minority Class 

Subsequent experiments proved that although this new measure of 
quality deals better with extreme cases it caused rules to be 
generated that produced suboptimal accuracies in the testing phase. 
We have modified the quality measure so that when the minority 
class is being predicted precision with Laplace correction [12] [2] is 
used, as per equation 5. 

Precision = 1 + TP / (1+ k + TP + FP) 

Equation 5: New Quality Measure on Minority Class 

Where k is the number of classes. We noticed that in some cases the 
use of Precision as a rule quality measure would lead to rules 
covering very few examples. To stop this less than ideal situation 
we also added the following conditional statement to the new 
quality measure: 

IF TP < MinTP 
   Quality = 0 
ELSE 
   Quality = Precision 
END IF 

Where MinTP is the least number of correctly covered examples 
that a rule has to cover before it is given a positive non-zero quality. 
In our experiments we set MinTP to equal 10 but any comparably 
small number will have a similar effect. These two different quality 
measures are compared in section 5. 

4. MOTIVATIONS, MODIFICATIONS AND 
DISCUSSION 
The modified algorithm (PSO/ACO2) proposed in this paper differs 
from the original algorithm (PSO/ACO1) proposed in [5][6] in four 
important ways. Firstly PSO/ACO1 attempted to optimise both the 
continuous and nominal attributes present in a rule antecedent at the 
same time, whereas PSO/ACO2 takes the best nominal rule built by 
PSO/ACO2 and then attempts to add continuous attributes using a 
standard PSO algorithm. Secondly the original algorithm used a 
type of pruning to create seeding terms for each particle, 
PSO/ACO2 uses all the terms from an entire training example 
(record). Thirdly in PSO/ACO1 it was possible for a particle to 
select a value for an attribute that was not present in its seeding 
terms, in PSO/ACO2 only the seeding terms' values may be added 
to the decoded rule. Fourthly the pheromone updating rules have 
been simplified to concentrate on the optimisational properties of 
the original algorithm. In PSO/ACO1 pheromone was added to each 
entry that corresponded to the particle's past best state, its best 
neighbour's best state, and the particle's current state in proportion to 
a random learning factor. Now pheromone is only added when the 
best neighbour's best state and the current particle's best state match, 
or taken away when they do not. Also pheromone is only ever 
added to the best state's entry. 

In PSO/ACO2 (Pseudocode 2) the standard PSO and the hybrid 
PSO/ACO2 algorithms have been separated partially because they 
differ quite largely in the time taken to reach peak fitness. It usually 
takes about 30 iterations for the pheromone matrices to reach a 
stable state in PSO/ACO2, it tends to take considerably longer for 
the standard PSO algorithm to converge. Due to this fact the 
standard PSO algorithm's particles set PBests early on in quite 
dissimilar positions, this causes high velocities and suboptimal 
search, with a higher likelihood of missing a position of high fitness. 
So separating the two algorithms provides more consistent results. 

Secondly in the PSO/ACO1 algorithm, sets of seeding terms were 
pruned before they were used, the aggressive pruning algorithm 
used a heuristic to discard certain terms. This is less than ideal as the 
heuristic does not take into account attribute interaction, and so 
potentially useful terms are not investigated. 

To understand the reasons behind the last two modifications it is 
important to understand how the algorithms find good rules. In  both 
PSO/ACO1 and PSO/ACO2 sets of terms are generated by mixing 
together the experiences of the particles and their neighbours. This 
mixing is done on a performance driven basis, so a particle will only 
be influenced by its best neighbour, this means that areas of 
promising quality are investigated. Each particle is a probabilistic 
rule generator. As the pheromone entries in the matrices converge 
and reach one (and zero), better rules should be generated more 
often.  

In PSO/ACO1 the levels of the pheromone in the matrices is 
influenced by three factors (current state, past best state and best 
neighbours' best state) [5]. If these factors do not agree then the 
pheromone matrix will be slow to converge. Slow convergence can 
be advantageous in this type of situation as the algorithm should not 
prematurely converge on a local maxima. However, in PSO/ACO1 
the result of this slow convergence is usually destructive, as 
incompatible terms can be mixed together over and over again. 
Incompatible terms are terms that do not cover any of the same 
records. In Table 2, example, incompatible terms are An1 = a and 
An2 = b. A rule including both these terms would have a quality of 
zero as it would not cover any examples. This problem is addressed 
by the third modification in PSO/ACO2, now incompatible terms 
will not be mixed.  

In PSO/ACO2 the pattern being investigated by the particles will 
likely include relatively general terms – an example might be a rule 
including the term An3 = b in table 2. It is the job of the PSO/ACO2 
algorithm to find terms that interact well together to create a rule 
that is not only general to the class being predicted (and so particles 
representing records, or parts of records from it) but also specific to 
the class as well (by not covering examples in other classes). It is 
also the job of the PSO/ACO2 algorithm to turn off terms that limit 
the generality of the rule without adding specificity to it. This trade-
off between specificity and generality (or sensitivity) is calculated 
by the rule quality measure. It is clear, in Table 2, that including 
values for An1 and An2 will not create a good trade-off between 
sensitivity and specificity and so  due to the new pheromone 
updating procedures a particle will choose the off state for these 
conflicting attributes. As this is a good modification it will 
propagate throughout the population. These are the most important 
qualities of the PSO/ACO2 algorithm and are exploited more 
effectively by the new pheromone updating procedure.  

Modification three in PSO/ACO2 ensures a particle will always 
cover at least one example (the seeding example) even if all the 
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terms are included in the decoded rule. This was not the case in 
PSO/ACO1 as at the beginning of the search many incompatible 
terms would be mixed creating many particles with zero fitness . 

Table 2. An Example Single Class Data Set, R's are Records, 
An's are Nominal Attributes 

 An1 An2 An3 

R1 a a a 

R2 a a b 

R3 a a b 

R4 b b b 

R5 b b b 

R6 b b b 
 

For instance, if record R1 and R4 are used to seed two different 
particles then three attribute value conflicts will take place, this is 
due to the fact that no single rule can cover both examples. In 
PSO/ACO1 the particle seeded with R1 would most likely 
eventually be converted to a particle more suited to covering R4 as 
there are more records within the data set that follow R4's pattern. 
However, it is not clear that this is always a good idea because, in 
the PSO/ACO algorithm it is important to maintain diversity within 
the search for as long as possible. This is because the algorithm does 
not know which generalisations (arising from the interaction of 
particles starting with different seeding terms) will prove to be the 
best in the long term. In the example provided diversity is not 
important, but if R1 characterised the pattern found within many 
other records then it would be, as this may lead to a rule with higher 
quality than the ones that may be generated after starting with R4. 
Obviously too much diversity within the population would not be 
useful either, as a sort of hierarchy of interaction needs to take place 
to form good generalisations. The interaction between just two 
particles may not necessarily form a good rule, but the interaction 
between those two particles and another two may. In PSO/ACO2 
more diversity is maintained because a particle seeded with R1 can 
never be “converted” to cover R4, it cannot produce a rule with a 
term A3 = b. This may not initially seem like a good thing, as the 
population can never fully converge on a single solution. It is, 
however, not necessary for the whole population to converge to 
produce good rules with a reasonably sized and well connected 
population. This is because smaller “colonies” within the main 
population emerge that are compatible and mix to produce good and 
increasingly general rules for their shared pattern. Particles 
bordering the boundaries between different “colonies” will be 
unstable and have a low fitness but serve as a buffer to keep 
unhelpful influences out. If R2 and R4 were used to seed two 
particles then it is easy to see how the interactions of just these two 
particles would produce the optimal rule (with the single term An3 = 
b) very quickly. It is the guided (according to a fitness function) 
generalising power of the algorithm, along with the ability to 
maintain diversity that also makes PSO/ACO2 effective and this is 
also reflected in the modified pheromone updating rules. 

The pheromone updating rules (as can be seen in Table 1) simply 
say that, for a given dimension d, if the current particle P has the 
same term (attribute-value) in d as its best neighbour then reinforce 
the probability of selecting that term by adding pheromone, if they 
do not agree then increase the likelihood that the term will be turned 

off (via normalisation - evaporation). In this way it is possible to 
generate a very general (but specific to the current class and so of 
high quality) rule that most particles will have converged to by the 
end of the run. If there are only less general rules possible then 
many of them will be present throughout the population at the end, 
making it possible to select the best one. 

5. RESULTS 
For the experiments we used 16 of data sets from the well-known  
UCI dataset repository [9], we performed 10 fold cross validation, 
and run each algorithm 10 times for each fold for the stochastic 
algorithms.  

Both the PSO/ACO2 algorithm and the standard PSO algorithm use 
the Von-Neumann topology as it is recommended as a good 
topology [7] and performed well in initial experiments. Both 
algorithms had 100 particles, the PSO/ACO2 algorithm ran for a 
maximum of 100 iterations (MaxInterations) and the standard PSO 
algorithm ran for a maximum of 100 iterations per rule discovered. 
In all experiments constriction factor χ = 0.72984 and social and 
personal learning coefficients c1 = c2 = 2.05 [1]. 
MaxUncovExampPerClass = 2 as this is the minimum number of 
examples you can discover any sort of general rule for. The WEKA 
[12] statistics class was used to compute the standard deviation and 
two tailed Student T-Tests in the results presented. 

The algorithms compared in table 3 are JRip [12] (WEKA's 
implementation of RIPPER) and PART [12] (which uses J48, 
WEKA's improved implementation of C4.5, to generate pruned 
decision trees from which rules are extracted ). PSO/ACO2 (S×P) 
is the proposed variant of the algorithm that uses Sensitivity × 
Precision as the quality measure. PSO/ACO2 (P) is the variant of 
the proposed algorithm that uses precision with Laplace 
correction. We report results only for PSO/ACO2 as in initial 
experiments PSO/ACO2 always outperformed PSO/ACO1. The 
shading in the last three columns of the table denotes a win or a 
loss (according to the two tailed Student's T-Test), light grey for a 
win and dark grey for a loss against the baseline algorithm (JRIP). 
It can be seen that overall PART scores equally as well as JRip, 
but PSO/ACO (P) wins by 2 (i.e., 3 wins against 1 loss) according 
to the two tailed T-Test. PSO/ACO (S×P) performs significantly 
worse overall losing by 5. Therefore against the benchmark JRip 
algorithm, PSO/ACO (P) outperforms PSO/ACO (S×P) by 7 (out 
of a possible maximum value of 16). 

Table 3. Accuracy of Labelled Approaches in UCI Data Sets, 
with Standard Deviation and Student T-Test Shadings 

 JRip Part PSO/ACO2
(S×P) 

PSO/ACO2
(P) 

BC 69.95 
±5.66 

69.19 
±7.71 

71.69 
±6.71 

74.16 
±6.47 

Crx 85.6 
±4.79 

84.4 
±5.34 

86.05 
±4.08 

86.19 
±4.59 

Diabetes 75.39 
±4.87 

74.36 
±4.51 

71.37 
±8.64 

72.67 
±5.28 

Heart-c 78.55 
±7.17 

76.84 
±7.8 

80.14 
±8.02 

80.53 
±10.21 

Hepatitis 90.42 
±9.38 

84.86 
±14.0 

80.0 
±15.2 

88.19 
±14.14 

Table Continued
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Table 3. Accuracy of Labelled Approaches in UCI Data Sets, 
with Standard Deviation and Student T-Test Shadings
(continued) 

Ionosphere 88.05 
±5.13 

90.04 
±4.68 

80.64 
±6.77 

90.04 
±3.58 

Iris-
Discretized 

93.33 
±5.44 

94.0 
±5.84 

94.67 
±6.13 

97.33 
±4.66 

Lymph 78.43 
±8.08 

83.19 
±9.47 

75.0 
±11.04 

79.81 
±6.84 

Mushroom 99.98 
±0.08 

100.0 
±0.0 

98.84 
±0.92 

99.74 
±0.51 

Promoters 71.91 
±13.33 

83.91 
±7.91 

77.45 
±13.1 

77.45 
±13.92 

Sonar 73.4 
±11.35 

72.52 
±10.57 

53.88 
±10.05 

64.0 
±14.56 

Splice 94.61 
±1.5 

92.79 
±1.65 

91.5 
±1.69 

94.33 
±1.46 

Tic-Tac-
Toe 

97.5 
±1.0 

93.85 
±2.7 

73.38 
±3.49 

98.64 
±0.7 

Vehicle 51.17 
±4.82 

58.02 
±6.36 

44.69 
±6.95 

58.6 
±7.89 

Wisconsin 93.99 
±3.22 

94.43 
±2.06 

93.7 
±2.87 

93.85 
±2.67 

Zoo 90.18 
±9.23 

94.18 
±6.6 

95.09 
±7.01 

81.36 
±9.1 

6. DISCUSSION AND CONCLUSIONS 
Our experiments show that the new variant of PSO/ACO2 is at least 
comparable in terms of accuracy with two leading classification 
algorithms, JRip (RIPPER) and Part (C4.5Rules). They also show 
that the version of the PSO/ACO2 algorithm that uses just precision 
with Laplace correction outperforms the variant that uses sensitivity 
× precision with Laplace correction. As usual some algorithms 
perform better in certain situations, but on average PSO/ACO2 with 
Laplace correction performs the best in these 16 data sets. We 
believe this is because both measures give a level of trade-off 
between the generality of the rule within the predicted class and 
how specific the rule is to the predicted class. In the case of the 
measure that uses sensitivity it causes the algorithm to more 
strongly attempt to cover as many examples in the predicted class as 
possible. It is good to make general rules as rules that are not 
general are likely to perform badly in the test set. For example, in 
the most extreme case, a rule for every example in the training set 
could be created, this would make a very specific rule set, but it it 
very likely to perform badly in the test set. The opposite is also true 
with rules that are too general without consideration for the 
specificity in the predicted class. An extreme example would be a 
rule with an empty antecedent which would always be very general 
but would only perform at the default (majority class prediction) 
accuracy. Using precision alone allows the algorithm to cover small 
patterns in the data set that are not too small as to be overfitted.  
Sensitivity × Precision creates rules that are overly general and so 
causes the less optimal accuracies in the test set. 

At present PSO/ACO2 is still greedy in the sense that it builds each 
rule with the aim of optimising that rule's quality individually, 
without directly taking into account the interaction with other rules. 
A less greedy, but possibly more computationally expensive way to 
approach the problem would be to associate a particle with an entire 
rule set and then to consider the quality of the entire rule set when 
evaluating a particle, this is known as the “Pittsburgh approach” in 
the evolutionary algorithm literature. Also the nominal part of the 
rule is always discovered first and separately from the continuous 
part, it could be advantageous to use a more “co-evolved” approach. 
More extensive comparisons  between meta-heuristic algorithms, 
quality measures and rule induction algorithms are left for future 
research. Along with different topologies and levels of connectivity 
within the population. 
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