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ABSTRACT
The Unit Commitment Problem (UCP) is the task of find-
ing an optimal turn on and turn off schedule for a group of
power generation units over a given time horizon to mini-
mize operation costs while satisfying the hourly power de-
mand constraints. Various approaches exist in the literature
for solving this problem. This paper reports the results of
experiments performed on a series of the UCP test data us-
ing the binary differential evolution approach combined with
a simple local search mechanism. In the future stages of the
project, the algorithm will be applied to solve the UCP for
the Turkish interconnected power system.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods and Search—Scheduling

General Terms
Algorithms, Design, Economics

Keywords
Differential Evolution, Binary Differential Evolution, Hill
Climbing, Unit Commitment, Economic Dispatch

1. INTRODUCTION
The operating conditions of a group of power generation

units need to be scheduled effectively to obtain the minimum
operational cost while satisfying the hourly power demands,
subject to some operational constraints. This problem con-
sists of two subproblems [5]: the UCP and the Economic
Dispatch Problem (EDP). UCP [10] is the task of finding
an optimal turn on and turn off schedule for a group of
power generation units for each time window over a given
time horizon. EDP [9] is the task of determining the opti-
mal power outputs for each online generator for each time
window. Since even minor savings in the operational costs
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for an hour can lead to significant overall economic savings,
the UCP has gained interest.

As it is stated, the arrangement of which unit will gen-
erate how much power to meet an hourly demand is the
task of EDP. The solution found for the EDP has the low-
est cost for this hour but for a time horizon of N time win-
dows, this solution can cause higher costs due to the start-up
constraints and costs of power generating units. There are
various kinds of start-up constraints, such as: a power gen-
erating unit cannot be turned on for an arbitrary number
of hours after it has been turned off, or the start-up cost is
usually lower if it is turned on again before its cold start-up
time has been reached. Operational constraints like these
make it important to schedule the power generating units
not only according to their fuel costs but also according
to their start-up constraints. There are several approaches
used in the literature to tackle this problem. A detailed sur-
vey can be found in [6]. In this study, a binary differential
evolution (BDE) [7] algorithm which uses an angle modula-
tion technique to operate in binary search spaces is used to
solve the UCP. Since the focus of this paper is on solving the
UCP, the standard lambda-iteration method [9], an iterative
process that finds near-optimal solutions and is commonly
used in the literature is utilized for solving the EDP. A local
search mechanism method is also used to improve existing
solutions found by the BDE.

Differential Evolution (DE) [8] has been successfully ap-
plied to many problem domains. This makes it an interest-
ing approach to also apply to the UCP. However, the search
space of the UCP is binary. This issue makes it impossible
to apply the standard DE algorithm since it works on real
valued parameters. BDE which is a variation of DE which
uses an angle modulation technique, has been specifically
developed for use in binary spaces. This paper reports the
initial results of an ongoing project. In the initial stages,
the BDE algorithm is implemented and tested on a series of
test data obtained from the literature and results are com-
pared to a state-of-the-art memetic algorithm approach [10].
The second stage of the project deals with the application of
the algorithm to real-world data obtained from the Turkish
national interconnected power generation system.

2. UNIT COMMITMENT PROBLEM
As it is stated in the introduction section, UCP is the

problem of deciding which units will stay turned on or will
be turned off for each time window and how much power
will be produced by each generating unit during each time
window over a fixed time horizon.
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2.1 Problem Formulation
Parameters:

Pi(t): generated power by unit i at time t
Fi(p): cost of producing p MW power by unit i
PD(t): power demand at time t
PR(t): power reserve at time t
CSi(t): start-up cost of i-th unit at time t
xi(t): duration that unit i has stayed off since hour t
vi(t): status of i-th unit at time t (online-offline)

Among these parameters Pi(t) and vi(t) should be opti-
mized while calculating Fi(p), CSi(t) and xi(t). The pa-
rameters PD(t) and PR(t) are included in the system data.

According to these system parameters, for N generating
units at time t, the minimum total fuel cost is calculated
using the following objective function and constraints.

min Ftotal(t) =

NX
i=1

Fi(Pi(t))

Subject to constraints:PN
i=1 Pi(t) = PD(t)

P min
i ≤ Pi(t) ≤ P max

i

The formulation for calculating the start-up cost is:

CSi(t) =


CShot if xi(t) ≤ tcoldstart

CScold otherwise
(1)

According to these fuel cost and start-up cost functions
and constraints, the formulation for the UCP for N units
and T hours is as given below:

min Ftotal =

TX
t=1

NX
i=1

[Fi(Pi(t)).vi(t) + CSi(t)]

Subject to constraints:

PN
i=1 Pi(t).vi(t) = PD(t)

vi(t).P
min
i ≤ Pi(t) ≤ vi(t).P

max
iPN

i=1 P max
i .vi(t) ≥ PD(t) + PR(t)

2.2 Lambda Iteration
The fuel cost of generating p MW power for i-th unit is

calculated using the following formula.

Fi(p) = a0i + a1i.p + a2i.p
2

As can be seen, this cost for a generating unit depends on
three parameters: a0i, a1i and a2i. Based on these parame-
ters, each power generator unit can have different costs while
producing the same amount of power due to the values of
these characteristic parameters. The lambda-iteration tech-
nique uses this formulation to find the lowest cost for dis-
patching the amount of power to be generated by the online
generating units. This corresponds to the EDP. To solve the
EDP by lambda-iteration, an optimal lambda value which
also satisfies the constraints is sought [9]. Here are the steps
of the lambda-iteration technique:

1. Select initial λ and ∆

2. Repeat

(a) Calculate P for each unit from dFi/dPi = λ

(b) Calculate Ptotal =
PN

i=1 Pi

(c) diff = PD − Ptotal

(d) if(diff < 0)

• λ = λ−∆

(e) else

• λ = λ + ∆

(f) ∆ = ∆/2

3. until ( abs(diff) ≤ tolerance)

The initial value of λ is calculated according to λmax and
λmin which uses Pmax and Pmin as the value of P.

λ =
λmax + λmin

2

Also the initial value of ∆ is calculated with λmax and
λmin.

∆ =
λmax − λmin

2

3. DIFFERENTIAL EVOLUTION
ALGORITHM

3.1 Differential Evolution
The Differential Evolution (DE) [8] algorithm was intro-

duced by Storn and Price in 1995. Basically, DE is a popu-
lation based algorithm which operates in continuous search
spaces. DE is based on four main steps: initialization, mu-
tation, recombination and selection. Each individual in the
population passes through these operations. While the ini-
tialization step is only done in the first iteration, the other
three steps take place in each iteration of DE.

Xj,i,g =

8<: j index of parameter
i index of individual
g index of generation

(2)

The initialization step sets the initial values of the param-
eters in the population according to their boundaries.

Xj,i,0 = rand(0, 1) ∗ (Bj,max −Bj,min) + Bj,min

As stated above, each individual, called the target vec-
tor, goes through the mutation and recombination steps.
There are several mutation operators. One of these opera-
tors chooses three different vectors from the population and
creates the mutant vector, which will be called the donor
vector, using the following equation:

V i, g = Xr0,g + F (Xr1,g −Xr2,g)

F takes values in the range (0,1+) and It is recommended
to set F less than 1 [8]. Also, the constraint over deciding
the r0, r1, r2 vectors can be changed [8]. For example, in
some functions when r0 = r1 is allowed, better optimized
results can be obtained.
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The aim of the recombination operation is to create a dif-
ferent vector according to the donor and the target vectors.
The parameters of this vector are taken from the target vec-
tor when a uniformly distributed random number is greater
than a predefined Cr value; otherwise, it is taken from the
donor vector [8]. Cr takes values in the range [0,1]. The
vector that is created with the recombination step will be
called the trial vector.

Uj,i,g =


Vj,i,g if(randj(0, 1) ≤ Cr or j = jrand)
Xj,i,g otherwise

(3)

Selection is the step to choose the vector between the tar-
get vector and the trial vector with the aim of creating an
individual for the next generation.

Xi,g+1 =


Ui,g if f(Ui,g) ≤ f(Xi,g)
Xi,g otherwise

(4)

These steps continue until an acceptable solution is found
or a predefined number of maximum iterations has been
reached.

3.2 Binary Differential Evolution
Binary Differential Evolution (BDE) [7] is the modified

version of DE which operates in binary search spaces. The
mutation operator that DE uses makes it impossible to use
DE for optimization problems with a binary search space.
To solve this issue, in BDE, the search space of the prob-
lem is mapped onto a more simple representation form and
after the solution is obtained, the abstracted space is trans-
formed back into the original space [7]. In brief, after the
binary search space has been represented with real valued
parameters, the standard DE algorithm optimizes the pa-
rameters and these are transformed back into the binary
space to obtain the binary solution. The Angle Modulation
technique, which generates a bit string using a trigonometric
function, can be used to transform continuous spaces into a
binary space [7].

Generator function:

g(X) = sin(2π(X − a).b.cos(A)) + d

where

A = 2π.c.(X − a)

The parameters a, b, c and d, which take on values in the
range [-1,1], represent the problem in the continuous domain
and this transformation allows us to obtain the actual solu-
tion in the binary domain. The whole bit string is obtained
after sampling the g(X) function by the length of the bit
string. X represents the index of sampling. If g(x) takes a
positive value at the sampling point, 1 is recorded as a bit
value; otherwise, 0 is recorded. By using BDE, the dimen-
sion of the problem is also reduced from N to 4 [7] which
decreases the search space.

3.3 Local Search through Hill-Climbing
Combining local search techniques with evolutionary al-

gorithms is a method used to generate better performing hy-
brid approaches [2]. Genetic algorithms enriched with local
search methods are commonly known as memetic algorithms
[1] and are the state-of-the-art for many application domains

[4]. A hill-climber, also known as an iterative improvement
algorithm [3], is one of the simplest local search techniques.
In the greedy form, all the neighbors of the current solution
are searched to find a better solution which is then accepted
as the next step. The procedure is repeated until no fur-
ther improvement is possible. In the heuristic form, the
neighbors of the current solution are searched in a random
order and the first improving solution is accepted. This
process also continues until an improvement is no longer
possible. In our implementation, a greedy hill-climber is ap-
plied in each iteration to the individual which has the best
fitness value. In hybrid evolutionary algorithms which use
local search techniques to improve found solutions, two ap-
proaches are possible [2]: In the Lamarckian method, the
genotype of the current individual is replaced by the geno-
type of the improved solution. In the Baldwinian method,
the genotype of the current solution is kept but the fitness
of the improved solution is used for the further steps. In our
approach, a Baldwinian approach is implemented.

4. EXPERIMENTS
A test problem [11] including four power generating units

and a time horizon of eight hours is used to test the imple-
mented algorithm. The data for this test system is given
in Table 1 and Table 2. For every individual in the popu-
lation, the return value of the fitness function is the sum-
mation of the fuel cost, the cost of start-up and a penalty
value. Cost for power generation is calculated using lambda-
iteration based on the status of each power generator unit.
For each hour, depending on whether the start-up is a cold
start or a hot start, the appropriate cost is added to total
start-up cost. In addition to these, if the total generated
power does not meet the hourly power demands plus some
reserve power amounts, a penalty term is added to the fit-
ness value. Details on the fitness evaluation and the penalty
calculation method can be found in [10]. The fitness value
of an individual V is calculated by the following formula:

fitness = fuelcost(V ) + startupcost(V ) + penalty(V )

Cr is selected as 0.2 and F is selected as 0.5 for the DE
algorithm. Also the number of individuals in the popula-
tion is set to 50. The BDE algorithm runs for 600 iterations
and the result with the smallest fitness value is chosen as
the final result. 20 runs of the algorithm are performed to
obtain the average final result for the total cost. The on/off
status of power generators vary in different solutions. Due
to this, taking the average of results will not make sense.
So the EDP’s result which is given with table 2 is randomly
chosen among the 20 outcomes. After we obtained the test
results, they are compared with the results that are gener-
ated by a state-of-the-art memetic algorithm [10]. In Valen-
zuela and Smiths implementation, there is an additional con-
straint which does not allow an online generator to become
offline for the duration of a specific amount of time. This
additional constraint does not prevent us from comparing
the results of the two approaches because the majority of
generators stay online for many consecutive hours and the
amount of time specified by the constraint is small. The
lambda-iteration function for solving the EDP is allowed to
run for a maxmum of 5000 iterations if it does not find a
feasible solution according to the tolerance value until then.
The result of the ECD problem for each hour is presented
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Table 1: Test System (Wood and Woolenberg,
1996).

Unit1 Unit2 Unit3 Unit4
Pmax (MW) 300 250 80 60
Pmin (MW) 75 60 25 20

a0 684.74 585.62 213.00 252.00
a1 16.83 16.95 20.74 23.60
a2 0.0021 0.0042 0.0018 0.0034

Sh(hotstart)($) 500 170 150 0.00
Sc(coldstart)($) 1100 400 350 0.02

tcoldstart(h) 5 5 4 0
Initial state(h) 8 8 -5 -6

Table 2: Demand and Reserve (Wood and Woolen-
berg, 1996).

Hour 1 2 3 4
Demand (MW) 450 530 600 540
Reserve (MW) 45 53 60 54

Hour 5 6 7 8
Demand (MW) 400 280 290 500
Reserve (MW) 40 28 29 50

in Table 3. If the corresponding generated power is equal
to zero, it means that the unit is offline. The UC results
are presented in Table 4. The best result obtained using our
approach is approximately 75,077 while the best result of
the memetic algorithm is given as 74,675 in [10].

A second test is performed using a larger set of system
data taken from [10], which has 10 units and a time horizon
of 24 hours. The best result of the memetic algorithm is
566453 [10] as compared to our result which is approximately
629827 for this test set.

5. CONCLUSION AND FUTURE WORK
This work is a preliminary study. As can be seen from

the above results, they are not as good as those obtained
by the memetic algorithm [10], however they are very close
and this is promising especially since the algorithm used in
this study is still in its initial stages of development. Differ-
ent mutation and crossover techniques, population sizes and
parameter settings will be experimented with for the BDE.
A simple hill-climber is used as the local search mechanism,
but better mechanisms could be used for the solution im-
provement phase. The main idea of this project emerged
as a result of the actual need for optimizing the operational
costs for the Turkish interconnected power system network.

Table 3: Results of EDP for Each Hour
P1out P2out P3out P4out

Hour 1 296.19 133.81 0.0 20.0
Hour 2 300.0 205.0 25.0 0.0
Hour 3 300.0 250.0 30.0 20.0
Hour 4 300.0 215.0 25.0 0.0
Hour 5 259.5 115.48 25.0 0.0
Hour 6 235.0 0.0 25.0 20.0
Hour 7 265.0 0.0 25.0 0.0
Hour 8 300.0 180 0.0 20.0

Table 4: Results of UCP over 20 Runs
Best Total Cost ($) 75077.02

Worst Total Cost ($) 76384.77
Average Total Cost ($) 75618.26

To answer this need, the resulting algorithm will be run on
the real system data.
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