
Toward a Better Understanding of
Rule Initialisation and Deletion

Tim Kovacs
Dept. of Computer Science

University of Bristol
Bristol, BS8 1UB, U.K.

kovacs@cs.bris.ac.uk

Larry Bull
School of Computer Science

U. of the West of England
Bristol, BS16 1QY, U.K.
larry.bull@uwe.ac.uk

ABSTRACT
A number of heuristics have been used in Learning Classifier
Systems to initialise parameters of new rules, to adjust fit-
ness of parent rules when they generate offspring, and to se-
lect rules for deletion. Some have not been studied in the lit-
erature before. We study the interaction of these heuristics
in an attempt to improve performance and detect any un-
necessary methods. We evaluate the two published methods
for initialisation of new rules in XCS and find the one based
on parental values results in better evolutionary search but
larger population sizes than the one based on population
means. In preliminary work we demonstrate that when the
difficulty of the 6 multiplexer is increased by reducing the
population size limit and turning off subsumption we can
improve performance by discounting the fitness of both par-
ents and children.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Concept learn-
ing ; I.2.8 [Artificial Intelligence]: Problem Solving, Con-
trol Methods, and Search—Heuristic methods

General Terms
Algorithms

Keywords
Learning Classifier Systems, XCS, steady state genetic algo-
rithms, deletion, fitness initialisation

1. INTRODUCTION
A number of heuristics have been used in Learning Clas-

sifier Systems (LCS) to initialise parameters of new rules, to
adjust fitness of parent rules when they generate offspring,
and to select rules for deletion. We study the interaction of
these heuristics in an attempt to improve performance and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-698-1/07/0007 ...$5.00.

detect any unnecessary methods. We work with the widely-
studied XCS system [13], with which, for lack of space, we
must assume familiarity, but in section 4 import ideas from
other LCS.

1.1 Rule initialisation methods
The original XCS paper indicates rule parameters should

be initialised to fixed default values ([13] p. 6). However, this
method appears to have been used only with random initial
populations, which were used in early studies [11]. Later,
Wilson started experiments with empty initial populations
and relied on covering to seed the population. With this
approach a new method of rule initialisation was used. It is
not mentioned in [13] but is in [6] (p. 18).

“The genetic algorithm creates two classifiers when-
ever it acts. If no crossover occurs, the offspring
simply inherit the predictions of the parents. If
crossover does occur, each offspring’s prediction
is set to the mean of the parents’ predictions.
Again, this is a policy of ”minimal disruption”.
The offspring errors are set to one-fourth of the
population mean error. The fitnesses are set to
one-tenth of the population mean fitnesses.” [11]
section 3.3.3

We refer to this as the population initialisation method.
The XCS algorithmic description of 2001 defines initialisa-
tion differently:

“If the offspring are crossed, their prediction, er-
ror, and fitness values are set to the average of
the parents’ values.” [4] section 3.9, p. 13.

We refer to this as the parental initialisation method. We
hypothesise it improves on the earlier method as the parental
values are likely to be better estimates of the childrens’ val-
ues than the population averages are.

The XCS Java version 1.0 by Martin Butz [5] implements
parental initialisation with a discount of the offsprings’ error
by one-fourth and fitness by one-tenth (as in the population
method). We refer to the undiscounted parental initialisa-
tion as p1 and the discounted version as p2.

1.2 Deletion schemes
We will compare various deletion methods. In all cases

rules are selected for deletion using a roulette wheel and all
rules are eligible for deletion, not just those in the action
set.

2777

The first two methods, which we label t1 and t2 for tech-
niques 1 and 2, are from [13]. In t1 the size of the slot on the
roulette wheel occupied by a rule is its estimate of the aver-
age size of the action sets it participates in. The intention
is to balance allocation of rules between action sets so they
tend to have approximately the same size. This technique
is based on one introduced in [1] for the same purpose.

In t2 the slot size is as in t1, except if a rule’s fitness is
less than a small fraction δ of the population mean fitness,
in which case the slot size is multiplied by the population
mean fitness divided by the rule’s fitness. This has the effect
of increasing the deletion probability of low-fitness rules.

A third scheme t3, a hybrid of the first two, was intro-
duced in [7], and has since been adopted as the standard
approach in XCS [4]. In this scheme a rule’s slot size de-
pends on how much experience it has. Rules with less than
an experience threshold θdel are treated as in t1, while those
exceeding the threshold are treated as in t2. This scheme
protects newly evaluated rules from the low-fitness deletion
penalty of t2 until they have been well-evaluated, at which
point useful rules should have gained enough fitness to es-
cape penalisation.1 The final scheme is uniform random
deletion.

Results in [7] indicate that t1 is very similar to random
deletion in terms of both %[O] and population size (see the
following section) and we therefore omit it from the present
study. That work did not consider rule initialisation meth-
ods or the fitness discounting of section 4.

1.3 Experimental method
We used the venerable 6 multiplexer Boolean function and

sampled inputs uniformly from the entire function, a method
which has been widely used with LCS (see e.g. [13, 7]). We
used XCS with the standard parameter settings for the 6
multiplexer given in figure 1. We used GA subsumption but
not action set subsumption. We will measure performance in
terms of %[O] which indicates the percentage of the optimal
solution present in the rule population. The optimal solution
is defined as the minimal irredundant solution in the ternary
language often used with XCS. In the figures higher %[O]
is better. We will also evaluate the population size. Lower
population size is better. These measures are explained in
more detail in [8].

2. COMPARING INITIALISATION
METHODS

Figure 2 compares the three initialisation methods. Of the
two parental methods (p1 and p2) p2 has lower population
size. They have very similar %[O], although p1 appears to
lead very slightly early on. A tentative conclusion is that p2
is the better method.

As hypothesised in section 1.1 the later parental initiali-
sation methods are superior in terms of %[O] to population
initialisation. However, population initialisation is better in
terms of population size. Our explanation of the population
size difference is as follows. From one trial to the next pop-
ulation initialisation produces rules with very similar initial
prediction error and fitness (since they are based on the same
population means). In contrast, parental initialisation will
produce rules with very different prediction error and fitness

1An earlier study which protects rules until they are well-
evaluated is [10].

Parameter Value
Subsumption threshold θsub 20
GA threshold θGA 25
t3 deletion threshold θdel 25
Covering threshold θmna 1
Low-fitness deletion threshold δ 0.1
Population size limit N 400
Learning rate β 0.2
Accuracy falloff rate α 0.1
Accuracy criterion εo 0.01
Accuracy exponent ν 5
Crossover rate χ 0.8
Mutation rate µ 0.04
Hash probability P# 0.33

Figure 1: Standard XCS parameter settings for the
6 multiplexer.

100

90

80

70

60

50

40

30

20

10

0
1000080006000400020000

%
[O

] a
nd

 p
op

ul
at

io
n

siz
e

Exploit Trials

p1

population initialisation

p2

population initialisation

p1

p2

Figure 2: Two parental (p1 and p2) initialisation
methods and population initialisation compared on
the 6 multiplexer with 400 rules using t3 deletion.
Curves averaged over 200 runs.

(since they are based on the parents, and parents have very
different values). Parental initialisation will give some rules
low initial error and high fitness. Among these, some will
turn out to be low-quality rules. We hypothesise that the
increased population size seen with parental initialisation is
due to the persistence of low-quality rules which have in-
herited low error and high fitness from their parents. We
hypothesise the increase in population size in p2 is less than
in p1 because p2 discounts child error and fitness and hence
its low-quality offspring are less disruptive than p1’s.

3. COMPARING DELETION METHODS
In section 2 we we used t3 deletion because we earlier [7]

found it superior to the the other deletion methods of section
1.2 in terms of %[O], and t3 was adopted as part of the XCS
specification [4]. However, an initial experiment indicated
the advantage of t3 over t2 had disappeared. We therefore
compare a range of deletion methods in this section.

Figure 3 shows t2, t3 and random deletion with parental
initialisation (p2). This not only fails to replicate t3’s lead
over t2 on %[O] but suggests t2 is slightly better, although
its lead may not be statistically significant.

We therefore replicate experiments from [7] in which pop-

2778

100

90

80

70

60

50

40

30

20

10

1000080006000400020000

%
[O

] a
nd

 p
op

ul
at

io
n

siz
e

Exploit Trials

t2 t3random

t2
t3
random

Figure 3: Deletion schemes compared on the 6 mul-
tiplexer with 400 rules and the p2 parental initiali-
sation method. Curves averaged over 200 runs.

ulation initialisation is used. The results in figure 4 fit those
in [7], indicating that the optimal deletion method depends
on the rule initialisation method.

The best overall performance so far (on both %[O] and
population size) is by t2 and parental initialisation (specifi-
cally p2). We might therefore conclude t3 and its protection
of new rules is an unnecessary complication of the t2 scheme
on which it is based. However, we hypothesise the protection
principle is sound and that in other circumstances it might
prove its worth. Specifically, we believe it will have an ad-
vantage in situations where good rules must wait longer for
their fitness to rise and hence have more need for protec-
tion. This should occur when good rules are very specific,
for examples in the parity problem. It should also occur
when there is noise slowing the rise in fitness, or when there
is a sever imbalance in the class distribution. Furthermore,
recent work [9] has resulted in a more principled and less
coarse method of protecting rules which should enhance t3’s
effectiveness.

4. FITNESS DISCOUNTING
We hypothesise that discounting the fitness of both the

child and the parent will improve the convergence of %[O]
by making it easier for children to compete with parents
than when only the child is discounted. In fact, this ap-
proach introduces generalisation pressure because, of two
equally accurate rules with the same discounted fitness, the
more general will recover its true fitness more quickly (be-
cause it occurs in more action sets) and hence increase its
reproductive probability more quickly. Parental fitness dis-
counting is used to provide generalisation pressure in ZCS
[12] where half the fitness of the parent is donated to the
child. It has also been used in MCS [2] and YCS [3]. A
more general discussion can be found in [3].

In XCS the main source of generalisation pressure is the
niche GA and its effect is far stronger than that introduced
by discounting parental fitness. However, we hypothesise
that using both sources of generalisation pressure in the
same system will improve performance over using only one.
Our technique is to subtract 90% of one microclassifier’s fit-
ness from each parent.

Figure 5 compares discounting both parents and children

100

90

80

70

60

50

40

30

20

10

0
1000080006000400020000

%
[O

] a
nd

 p
op

ul
at

io
n

siz
e/

10

Exploit Trials

t2

t3

random

t2
t3
random

Figure 4: Deletion schemes compared on the 6 mul-
tiplexer with 400 rules and the population initiali-
sation method. Curves averaged over 200 runs.

100

90

80

70

60

50

40

30

20

10

1000080006000400020000

%
[O

] a
nd

 p
op

ul
at

io
n

siz
e/

10

Exploit Trials

child
neither

both

both
child
neither

Figure 5: Fitness discounting methods compared
on the 6 multiplexer with 400 rules, t2 deletion,
p1 parental initialisation and fitness discounting as
specified on each curve. Curves averaged over 1000
runs.

to discounting only children and discounting neither. Dis-
counting both results in the smallest population size but
much worse %[O]. Therefore we find no support for our hy-
pothesis that %[O] will be improved by discounting both.

5. REDUCED POPULATION SIZE
We have failed to find support for the following hypothe-

ses: i) that t3’s protection of new rules will be beneficial
when parental rule initialisation is used, and ii) that dis-
counting both parents and children would improve %[O].
However, we strongly suspect that is because the 6 mul-
tiplexer is too simple a problem. In order to make it more
difficult we now reduce the population size limit to 200 rules
(from 400) and remove subsumption deletion. The results
in figure 6 demonstrate that although discounting children
leads on %[O] it does not converge to 100% [O]. Eventually
discounting both overtakes it and does converge to 100% [O].
Discounting both also has the lowest population size. This
supports the idea that more difficult problems will show the
hypothesised advantages but more study is clearly needed.

2779

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

200001600012000800040000

Pe
rf.

 a
nd

 p
op

. s
ize

/1
00

0

Exploit Trials

child
neither

both

child
neither

both

Figure 6: Fitness discounting methods compared on
the 6 multiplexer with 200 rules and no subsumption
deletion. Deletion and initialisation as in figure 5.
Curves averaged over 200 runs.

6. CONCLUSION
We conclude that parental initialisation is superior to pop-

ulation initialisation, and that p2 may be superior to p1.
We have found the optimal deletion method depends on the
initialisation method used. We have failed to show t3 im-
proving performance but strongly suspect it will do so on
harder problems that the one used here. This will be the
subject of further research.

We have shown that discounting the fitness of both par-
ents and children can allow XCS to find 100% [O] when the
multiplexer is made more difficult. Whether this holds on
other more difficult problems will be the subject of further
research.

The present study is entirely empirical and an avenue for
future work would be to investigate principled ways of dis-
counting fitness during reproduction.

7. REFERENCES
[1] L. B. Booker. Triggered rule discovery in classifier

systems. In J. D. Schaffer, editor, Proceedings of the
3rd International Conference on Genetic Algorithms
(ICGA89), pages 265–274. Morgan Kaufmann, 1989.

[2] L. Bull. A simple payoff-based learning classifier
system. In X. Yao, E. Burke, J. A. Lozano, J. Smith,
J. J. Merelo-Guervos, J. A. Bullinaria, J. Rowe,
P. Tino, A. Kaban, and H.-P. Schwefel, editors,
Parallel Problem Solving from Nature - PPSN VIII,
pages 1032–1041. Springer Verlag, 2004.

[3] L. Bull. Two Simple Learning Classifier Systems. In
L. Bull and T. Kovacs, editors, Foundations of
Learning Classifier Systems, number 183 in Studies in
Fuzziness and Soft Computing, pages 63–90.
Springer-Verlag, 2005.

[4] M. V. Butz and S. W. Wilson. An Algorithmic
Description of XCS. In P. L. Lanzi, W. Stolzmann,
and S. W. Wilson, editors, Advances in Learning
Classifier Systems, volume 1996 of LNAI, pages
253–272. Springer-Verlag, Berlin, 2001.

[5] M. V Butz. XCSJava1.0: An Implementation of the
XCS classifier system in Java. Technical Report
2000027 at the Illinois Genetic Algorithms Laboratory,
2000. http://www.psychologie.uni-
wuerzburg.de/i3pages/butz/

[6] T. Kovacs. Evolving Optimal Populations with XCS
Classifier Systems. Master’s thesis, School of
Computer Science, University of Birmingham,
Birmingham, U.K., 1996. Also technical report
CSR-96-17 and CSRP-96-17
ftp://ftp.cs.bham.ac.uk/pub/tech-
reports/1996/CSRP-96-17.ps.gz.

[7] T. Kovacs. Deletion schemes for classifier systems. In
W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon,
V. Honavar, M. Jakiela, and R. E. Smith, editors,
Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-99), pages
329–336. Morgan Kaufmann, 1999. Also technical
report CSRP-99-08, School of Computer Science,
University of Birmingham.

[8] T. Kovacs. Strength or Accuracy: Credit Assignment
in Learning Classifier Systems. Springer, 2004.

[9] J. A. R. Marshall, G. Brown, and T. Kovacs. Bayesian
Estimation of Rule Accuracy in UCS. To appear in
T. Yu, editor, the proceedings of the 2007 workshops
on genetic and evolutionary computation. ACM, 2007.

[10] C. Melhuish and T. C. Fogarty. Applying A Restricted
Mating Policy To Determine State Space Niches Using
Immediate and Delayed Reinforcement. In T. C.
Fogarty, editor, Evolutionary Computing, AISB
Workshop Selected Papers, number 865 in Lecture
Notes in Computer Science, pages 224–237.
Springer-Verlag, 1994.

[11] S. W. Wilson. NetQ question on “Classifier Fitness
Based on Accuracy”. http://www.eskimo.com/
˜wilson/netq. Accessed 22/3/2007.

[12] S. W. Wilson. ZCS: A zeroth level classifier system.
Evolutionary Computation, 2(1):1–18, 1994.

[13] S. W. Wilson. Classifier Fitness Based on Accuracy.
Evolutionary Computation, 3(2):149–175, 1995.

2780

