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ABSTRACT
In this paper we present the use of a previously developed
single-objective optimization approach, together with the
ε-constraint method, to provide an approximation of the
Pareto front in a multiobjective optimization problem. This
approximation is usually very near of the true Pareto front,
but its cost grows with the desired number of points in the
output set. As an alternative, it is possible to generate only
a few points, and execute a second phase which will generate
intermediate points, to increase the size of the output set.
We use a rough sets-based approach for this second phase,
which is a very robust approach. The results of this two-
phase approach are very competitive in hard multiobjective
problems, and is less expensive than the ε-constraint method
alone. This approach is very effective on hard multiobjec-
tive problems, where is able to find good approximations
of the Pareto front with less funtion evaluations than other
approaches, as the NSGA-II (against which is compared).

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization; I.2.8 [Artificial
Intelligence]: Problem Solving, Control Methods, and Search—
Heuristic methods

General Terms
Algorithms, design

Keywords
Multi-objective optimization, ε-constraint, cultural algorithms,
differential evolution

1. INTRODUCTION
Evolutionary multi-objective optimization consists of us-

ing evolutionary algorithms to solve problems with two or
more (often conflicting) objective functions. This research
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area has become very popular in the last few years [1]. Con-
currently, more challenging problems have been integrated
into the most recent benchmarks, some of which require a
considerably high number of objective function evaluations
in order to be solved, or can even make current algorithms
to fail in their efforts to generate the true Pareto front [6].

The ε-constraint method [5] is a mathematical program-
ming technique, which transforms a multi-objective opti-
mization problem into several constrained single-objective
problems. This method has not been used too often in the
evolutionary multi-objective optimization literature, due to
the fact that it does not generate a set of nondominated
solutions in a single run, as most multi-objective evolu-
tionary algorithms (MOEAs) do. Moreover, it has been
found that this method is relatively expensive when solv-
ing “easy” multi-objective problems, because of the several
single-objective optimizations that need to be performed in
order to generate the Pareto front. Nevertheless, and de-
spite its disadvantages, we argue that the ε-constraint ap-
proach can be a very effective choice under certain condi-
tions. For example, in [9] is shown that a hybrid of the ε-
constraint with a carefully designed evolutionary algorithm
can be adopted as a viable MOEA when dealing with very
difficult two-objective optimization problems, which state-
of-the-art MOEAs such as the NSGA-II cannot solve even
when performing a very high number of fitness function eval-
uations. In this paper, we extend the work of [9] by intro-
ducing a mechanism that allows to solve problems with three
or more objectives, and a further hybridization with rough
sets, which are used as a local search algorithm. The re-
sulting approach has a much more affordable computational
cost, while still solving very difficult multi-objective opti-
mization problems. The single-objective optimizer adopted
by our hybrid with the ε-constraint method consists of a
differential evolution-based cultural algorithm, which im-
proves the optimization process by means of domain in-
formation extracted during the evolutionary search. Since
the ε-constraint method requires an execution of the single-
objective optimizer to obtain each point of the Pareto front,
we propose to reduce the high computational cost associated
with this process by generating only a few points, which are
then processed by another approach able to diversify them
such that the entire Pareto front can be covered. Obviously,
this diversification approach, which acts as a local search al-
gorithm, should be computationally affordable, so that the
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Figure 1: Generating different solutions with the ε-
constraint method

total cost of this MOEA is reasonably low. As indicated
before, in this paper, we propose the use of rough sets as
our diversification method.

2. THE EPSILON-CONSTRAINT METHOD
The ε-constraint method is a multi-objective optimiza-

tion technique, proposed by Haimes et al. [5], for gener-
ating Pareto optimal solutions. It makes use of a single-
objective optimizer which handles constraints, to generate
one point of the Pareto front at a time. For transform-
ing the multi-objective problem into several single-objective
problems with constraints it uses the following procedure
(assuming minimization for all the objective functions):

minimize fl(x)
subject to fj(x) ≤ εj for all j = 1, 2, . . . , m, j 6= l,

x ∈ S

where l ∈ {1, 2, . . . , m} and S is the feasible region, which
can be defined by any equality and/or inequality constraint.
The vector of upper bounds, ε = (ε1, ε2, . . . , εm), defines the
maximum value that each objective can have. In order to
obtain a subset of the Pareto optimal set (or even the entire
set, in case this set is finite), one must vary the vector of
upper bounds along the Pareto front for each objective, and
perform a new optimization process for each new vector.
The generation of different points of the Pareto front using
different values of the upper bound is illustrated in Figure 1.

For any nonlinear multi-objective optimization problem,
the solution of an ε-constraint problem yields a weakly Pareto
optimal solution [5]. A true Pareto optimal solution can be
obtained either if the solution is unique, or if the optimiza-
tions are done for all the objectives before reporting the so-
lution [10]. However, to improve the speed of the generation
of solutions, and specially if the single-objective optimizer
is a metaheuristic, only one optimization per point can be
performed to obtain an approximation of the Pareto optimal
set.

It is worth mentioning that the ε-constraint method only
guarantees to obtain Pareto optimal points if the single-
objective optimizer can find the global optimum of the ε-
constraint problem, which is not possible for a general non-
linear problem in polynomial time. To the best of our knowl-
edge, the only attempt to hybridize the ε-constraint method
with an evolutionary algorithm is the approach called CMEA
[15]. This approach performs the intermediate optimiza-
tions using a standard evolutionary algorithm. To reduce

the computational cost of each independent optimization,
the final population of one optimization process is used as
the initial population for the next one; however, the au-
thors noted the lack of diversity of the approach and pro-
posed a high mutation rate at the beginning of each process.
The authors provide no further details about the mechanism
adopted to handle the constraints in the single-objective op-
timizer.

In [7], the authors proposed an extension of CMEA for
three-objective problems. However, the algorithm seems to
be unable to find the extreme points of the Pareto front
itself, since they are provided a priori to the algorithm. Re-
garding the number of fitness function evaluations needed
for CMEA to obtain good results, in [7], the authors men-
tion that they perform 500,000 evaluations for solving three-
objective knapsack problems.

3. CULTURED DIFFERENTIAL
EVOLUTION

Instead of using an exact method to solve the constrained
optimization problems derived from the ε-constraint method,
our proposed approach is designed to use an efficient evolu-
tionary technique, which is able to approximate the global
minimum of constrained optimization problems requiring a
relatively low computational cost.

The cultured differential evolution is a cultural algorithm
[16] based on differential evolution [14], designed to solve
nonlinear constrained optimization problems. In previous
experiments [8], this algorithm exhibited a very good per-
formance, obtaining competitive results when compared to
other state-of-the-art evolutionary optimization techniques,
but requiring only a fraction of their fitness function evalu-
ations. This is because of the use of domain knowledge, ex-
tracted during the evolutionary process, to efficiently guide
the search. Next, we will briefly describe this approach.

Cultural algorithms consist of two main components: (1)
The population space, which consists of a set of possible so-
lutions to the problem, and can be modeled using any pop-
ulation based technique, and (2) the belief space, which is
the information repository in which the individuals can store
their experiences for the other individuals to learn them in-
directly; it may be composed by several knowledge sources.
Our proposed approach uses differential evolution in the
population space [14]. A pseudo-code of our approach is
shown in Algorithm 1.

In the initial steps of the algorithm, a population of popsize
individuals, xj , j = 1, . . . , popsize, is created; each indi-
vidual contains the n parameters of the problem, xj =
(xj

1, . . . , x
j
n). An initial belief space is also created. For

the offspring generation, the variation operator of differen-
tial evolution is modified by the influence() function of a
knowledge source, but the parameters CR and F of the stan-
dard differential evolution are also required. Since we want
to solve constrained optimization problems, the objective
function by itself does not provide enough information as to
guide the search properly. To determine if a child is better
than its parent, and, therefore, if it can replace it, we use
the following rules: 1. A feasible individual is better than
an infeasible one. 2. If both are feasible, the individual
with the best objective function value is better. 3. Other-
wise, the individual with less amount of constraint violation
is considered better. The amount of constraint violation
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Algorithm 1 Pseudo-code of the cultured differential evo-
lution

Generate initial population of size popsize
Initialize the belief space
repeat

for each individual j in the population do
Randomly select a knowledge source ks from the be-
lief space
Generate a random integer irand ∈ (1, n)
for each parameter i do

xj′
i =

8

<

:

influence(ks) if rand(0, 1) < CR
or i = irand

xj
i otherwise

end for
Replace xj with the child xj′, if xj′ is better

end for
Update the belief space

until the termination condition is achieved

is measured with normalized constraints, with the use of

the following expression: viol(x) =
PC

c=1
gc(x)
gmaxc

where gc(x)
with c = 1, . . . , C are the constraints of the problem, and
gmaxc is the largest violation found for the constraint gc(x)
so far.

In our approach, the belief space is divided into 4 knowl-
edge sources:

Situational Knowledge: consists of the best exemplar
found along the evolutionary process. Its infuence
function modifies the direction of the variation opera-
tor to follow the leader.

Normative Knowledge: contains the intervals for the de-
cision variables where good solutions have been found,
to move new solutions towards them, through the use
of its influence function.

Topographical Knowledge: creates a kind of map of the
fitness landscape of the problem during the evolution-
ary process. It consists of a set of cells, and the best in-
dividual found on each cell. The topographical knowl-
edge has an ordered list of the best cells, based on the
fitness value of the best individual on each of them. Its
influence function moves newly generated individuals
towards the best cells.

History Knowledge: was originally proposed for dynamic
objective functions [17]. It records in a list, the loca-
tion of the best individual found before each environ-
mental change. In our approach, instead of detecting
changes of the environment, we use it to escape from
local optima.

At the beginning, all the knowledge sources have the same
probability to be applied, but during the evolutionary pro-
cess, the probability of applying each knowledge source is
updated according to its success rate.

4. ROUGH SETS
The rough sets are an approach designed to deal with im-

perfect (i.e., uncertain) knowledge. In this paper, we adopt
rough sets to generate nondominated points in less popu-
lated areas, obtaining a denser approximation of the Pareto

Figure 2: Rough sets approximation

front. The Rough sets theory was originally proposed by
Pawlak [12, 13]. The basics of this approach are presented
next.

Let us assume that we are given a set of objects U called
the universe and an indiscernibility relation R ⊆ U × U ,
representing our lack of knowledge about elements of U (in
our case, R is simply an equivalence relation based on a grid
over the feasible set; this is, just a division of the feasible set
in (hyper)-rectangles). Let X be a subset of U . We want
to characterize the set X with respect to R. The way rough
sets theory expresses vagueness is employing a boundary
region of the set X built once we know points both inside
X and outside X. If the boundary region of a set is empty
it means that the set is crisp; otherwise, the set is rough
(inexact). A nonempty boundary region of a set means that
our knowledge about the set is not enough to define the set
precisely (see Figure 2).

Then, each element in U is classified as certainly inside X
if it belongs to the lower approximation or partially (proba-
bly) inside X if it belongs to the upper approximation (see
Figure 2). The boundary is the difference of these two sets,
and the bigger the boundary the worse the knowledge we
have of set X. On the other hand, the more precise is the
grid implicity used to define the indiscernibility relation R,
the smaller the boundary regions are. But, the more precise
is the grid, the bigger the number of elements in U , and then,
the more complex the problem becomes. Then, the less el-
ements in U the better to manage the grid, but the more
elements in U the better precision we obtain. Consequently,
the goal is to obtain “small” grids with the maximum pre-
cision possible. These two aspects are called Density and
Quality of the grid. If q is the number of criteria (in our
case, the number of objectives), Qi is the i-th criteria, bi

j is
the j-th value of the i-th criteria (we assume these value are
ordered increasingly), then:

Density(G) =

q
X

i=1

|Qi|
X

j=1

xi
j

Quality(G) =
|Low(X)|

|X|

where xi
j is 1 if bi

j is active in the grid and |Low(X)| is the
cardinality of the lower approximation of X.

4.1 Use of Rough Sets in Multi-Objective Op-
timization

Our main purpose for using rough sets in our work is that
this technique can be utilized as a local search approach
that takes as input a small set of points that lie either on
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Figure 3: Decision variable space (left) and objective
function space (right)

the Pareto front, or very close to it, and returns a larger set
of points that approximate the entire Pareto front.

Rough sets use a grid to distribute the points that the
algorithm receives as input, and the precision of such grid is
critical to its performance: a high precision provides high-
quality results, but at a high computational cost, and vicev-
ersa. Thus, reaching a good balance in the design of the
rough sets grid is an important issue. To create this grid,
as an input we will have N feasible points divided in two
sets: the nondominated points (ES) and the dominated ones
(DS). Using these two sets we want to create a grid to de-
scribe the set ES in order to intensify the search on it. This
is, we want to describe the Pareto front in decision variable
space because then we could easily use this information to
generate more efficient points and then improve this initial
approximation. Figure 3 shows how information in objective
function space can be translated into information in decision
variable space through the use of a grid.

We must note the importance of the DS set as in a rough
sets method the information comes from the description of
the boundary of the two sets. Then, the more nondomi-
nated points provided the better. However, it is also re-
quired to provide dominated points, since we need to es-
timate the boundary between being dominated and being
nondominated. Once this information is computed, we can
simply generate more points in the “efficient side”.

Since the computational cost of managing the grid in-
creases with the number of points used to create it, we will
try to use just a few points. However, such points must be
as far from each other as possible, because the better the
distribution the points have in the initial approximation the
less points we need to build a reliable grid. On the other
hand, in order to diversify the search, we build several grids
using different (and disjoint) sets DS and ES coming from
the initial approximation. To ensure these sets are really dis-
joint we will mark each point as explored or non-explored
(if it has been used or not to compute a grid) and we will
not allow repetitions. Algorithm 2 describes a Rough Sets
iteration.

5. OUR PROPOSED APPROACH
First, we will describe the hybridization of the ε-constraint

method with the cultured differential evolution, which rep-
resents the first stage of our approach.

As our proposed approach is designed to deal with real-
valued problems which are likely to have a continuous Pareto

Algorithm 2 Rough Sets Iteration

1: Choose NumEff non-explored points of ES.
2: Choose NumDom non-explored points of DS.
3: Generate NumEff efficient atoms.
4: for i = 0 to NumEff do
5: for j = 0 to Offspring do
6: Generate (randomly) a point new in atom i and

send to ES
7: if new is efficient then
8: Include in ES
9: end if

10: if A point old in ES is dominated by new then
11: Send old to DS
12: end if
13: if new is dominated by a point in ES then
14: Remove new
15: end if
16: end for
17: end for

front, the εj must vary from the best to the worst value for
the objective j, i.e. the search must move from the ideal
to the nadir objective vector. The estimation of the ideal
objective vector involves individual optimizations of one ob-
jective at a time. On the other hand, the estimation of the
nadir objective vector is a more difficult task [10]. Only for
the two-objective case, there exists a simple method that
can provide a good estimation, which is called the payoff
table. As we also want to solve problems with three or more
objectives, a more sophisitcated mechanism is required. In
this work we use a technique based on the approach in [2],
which is a modification of the crowding mechanism of the
NSGA-II. The modification consists of emphasizing the gen-
eration of nondominated solutions near to the edges of the
Pareto front, and not only the extreme values. In this work,
we perform the estimation using a standard differential evo-
lution approach, incorporating the new ranking rules before
the selection procedure. The decision of using a differential
evolution algorithm is due to the speed required, because
this is only the first step of the process, and the estimation
obtained will be relaxed in the next steps.

In the following, let’s assume that the procedure
nadir st(f , g) performs the modified differential evolution
previously described for g generations. It will return two ar-
rays, lb and ub with the estimated ideal and nadir objective
vectors (assuming minimization).

The single-objective optimizer, in which our method is
based, is the cultured differential evolution previously de-
scribed. Let’s now assume that it is available as the proce-
dure
cde(fl, ε, g), which performs the optimization process of the
ε-constraint method during g generations and returns the
best point found. The pseudo-code of the ε-constraint with
CDE (εCCDE) is shown in the Algorithm 3.

In Algorithm 3, the lower and upper bounds, lb and ub,
are increased by a tolerance t; this is done since the results
of the nadir st procedure are only approximations, and it
is possible to find a better point outside of them. We use
tj = 0.1(ubj − lbj). The ε values are updated with a delta,
which is dependent of the number of points in the Pareto
front desired by the user or the decision maker. It is ob-

tained as follows: δj =
ubj−lbj

p
. This way, we aim that the
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Algorithm 3 ε-Constraint with CDE.

P = ∅
(lb,ub) = nadir st(f , g)
ub = ub + t, lb = lb − t
∀j ∈ (2, . . . , m), εj = lbj + δj

while εm ≤ ubm do
x = cde(f1, ε, g)
if x is nondominated with respect to P then

P = P − {y ∈ P | x � y}
P = P ∪ {x}

end if
ε2 = ε2 + δ2

for j = 2 to m − 1 do
if εj > ubm then

εj = lbj

εj+1 = εj+1 + δj+1

end if
end for

end while

final points are equally spaced in their projection over the f2

to fm axis. g is an input parameter of the algorithm, but it is
very important, because together with p and the population
size of the cde procedure, popsize, define the total number of
fitness function evaluations required for the approach. The
number of fitness function evaluations is pm−1 · g · popsize.
Algorithm 3 shows f1 as the objective to be optimized, and
f2 to fm as the constraints. However, one can interchange
the roles of the objectives if the problem looks harder to
solve in the original setting. In the experiments shown in
this paper, the original setting was always preserved, and
f1 was always taken as the objective to optimize, to allow
a fair comparison. In order to improve the performance of
each optimization process, the algorithm shares a percentage
of the population, in the initial population of the next pro-
cess. This helps because the problems to be solved are very
similar, and the only change is the upper bound of the objec-
tive functions which is treated as a constraint. When all the
population is shared, the loss of diversity leads to premature
convergence. In practice, we found that a small percentage
(around 10%) of the population to be shared is enough to
improve convergence without losing diversity. According to
our previous experiments [9], the εCCDE approach provides
good results by itself, but it can result computationally ex-
pensive when many points of the Pareto front are required,
because it needs an individual optimization process for each
point. At this point, we propose to use rough sets theory
to spread the few points obtained earlier, an then cover a
larger area of the Pareto Front. To achieve this objective,
in addition to the final nondominated points provided by
the ε-constraint approach, we need some dominated points
obtained from the intermediate optimizations (these points
are randomly chosen). These sets of points provide enough
information to the rough sets to enhance the approximation
of the Pareto front.

6. COMPARISON OF RESULTS
In order to validate the performance of the proposed ap-

proach, some test functions have been taken from the spe-
cialized literature. One may think that the several single-
objective optimizations required may give rise to a pro-

hibitively high computational cost, which is unnecessary
considering that a modern MOEA may produce a similar ap-
proximation of the Pareto front at a much more affordable
computational cost. There are problems, however, where
this is not the case, and in which a modern MOEA can-
not converge to the true Pareto front even if we do not re-
strict the number of evaluations performed. It is precisely
in those cases for which we believe that our approach can
be a viable alternative. In order to validate our hypothe-
sis we looked specifically for hard multi-objective problems
within the existing benchmarks. Our search led us to the
use of two recent benchmarks, proposed by Huband et al. [6]
and Okabe et al. [11], where we found very hard problems
(WFG1, WFG2, WFG9, OKA1 and OKA2). In the case of
WFG problems, each of them has 24 variables. WFG1 is
strongly biased toward small values of the first 4 variables,
WFG2 is non-separable and has also a disconnected Pareto
front, and WFG9 is a deceptive problem. In the case of
OKA problems, they only have 2 and 3 variables and 2 ob-
jectives, but the geometry of their optimal sets is nonlinear,
and they are also strongly biased to the opposite side of the
Pareto front. We also use four ZDT problems [18], because
they have been used frequently in the specialized literature,
and they constitute a reference point for many researchers
in the field. We decided to compare results with respect to
the NSGA-II [3], since this is an approach representative of
the state-of-the-art in the area. It is also known, that the
NSGA-II performs very well in the ZDT problem set.

6.1 Experimental Setup

6.1.1 εCCDE alone
In this case, and due to space constraints, we only use

the WGF problems, with two objectives. We ran both al-
gorithms during 250,000, 25,000 and 50,000 fitness function
evaluations each (for WFG1, WFG2 and WFG3, respec-
tively). We aimed to obtain a set of 50 points as a result of
each run, so we adapted the parameters according to that.
For the εCCDE, the parameters adopted were: p = 120, 50
and 50 for each problem, g = 48, with 10% of the population
shared between optimizations (this 10% is chosen at ran-
dom). For the cde procedure we used popsize = 40, 20 and
10 for each problem, F = 0.7, CR = 0.5. The population
size of NSGA-II was set to 52, and the number of genera-
tions to 4808, 962 and 481 for each problem. The rest of the
parameteres were set as recommended by its authors: prob-
ability of crossover = 0.9, probability of mutation = 1/n,
the value of the distribution index for crossover = 15, and
the value of the distribution index for mutation = 20. It
is worth mentioning that, in the case of WFG1, even with
this large number of iterations, the NSGA-II was not able
to reach the true Pareto front. In Figure 4, we show the
results of a single run for each test problem.

6.1.2 εCCDE+MORS
We ran both algorithms during 15,000 fitness function

evaluations each1 (except for OKA2 and WFG1). We aimed
to obtain a set of 100 points as a result of each run, so we
adapted the parameters according to that. For the εCCDE,
the parameters adopted were, for the two objective prob-
lems: p = 5, g = 100, with 10% of the population shared

1Note that this number of evaluations includes those re-
quired to estimate the ideal vector.
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Figure 4: Results produced by our εCCDE and the
NSGA-II on the two-objective WFG test problems.

between optimizations (this 10% is chosen at random), for
the cde procedure we used popsize = 20, F = 0.7, CR = 0.5;
and for the three objective problems: p = 3, g = 70 and
popsize = 16 (the parameters must be different because the
number of evaluations depends of the number of objectives
m). The maximum number of evaluations performed by
the rough sets algorithm was set to 5,000. The popula-
tion size of the NSGA-II was set to 100, and the number
of generations to 150. The rest of the parameteres were set
as recommended by the NSGA-II’s authors: probability of
crossover = 0.9, probability of mutation = 1/n, the value of
the distribution index for crossover = 15, and the value of
the distribution index for mutation = 20.

Only for OKA2 and WFG1, the total number of fitness
function evaluations was increased to 25,000, because these
are really difficult problems. In this case, we adopted, for
the two objective problem (OKA2): g = 150, and for the
three objective problem (WFG1): g = 104. In both cases
the maximum number of evaluations of the rough sets algo-
rithm was set to 10,000. The number of generations of the
NSGA-II was changed in this case to 250, to allow a fair
comparison. However, even with this large number of iter-
ations, the NSGA-II was not able to reach the true Pareto
front of WFG1, and in the case of OKA2, a very small por-
tion of the Pareto front was covered. In Figures 5, 6 and 7,
we show the results of the run on the median with respect
to the two set coverage metric (CS) for each test problem
adopted. Since a visual comparison of the results may be in-
accurate, we also used some performance measures to allow
a quantitative comparison of results.

6.2 Performance Measures
To assess the performance of the proposed approach, we

adopted the two set coverage (CS) metric [18], which is an
indicator of how much a set covers (or dominates) another
one. A value of CS(X, Y ) = 1 means that all points in X
dominate or are equal to Y . If CS(X, Y ) = 0, there are no

True Pareto front
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Figure 5: Results produced by our εCCDE+MORS
and the NSGA-II on the WFG test problems.

points in X that dominate some point in Y .

Our second performance measure was the binary coverage
(Qc) [4], which is an indicator of the ability of an algorithm
to obtain solutions near the extrema of the Pareto front,
measuring the largest possible angle between two vectors
of the output of an algorithm. This is a second criterion
when proper convergence has been achieved. A value of
Qc(X, Y ) > 0 means that X obtained points nearer to the
extrema of the Pareto front Note that Qc(Y, X) = −Qc(X, Y ).

6.2.1 εCCDE alone
We executed our εCCDE 30 times per problem, and then

executed the NSGA-II 30 times with the same random seeds,
and we performed 30 one-to-one comparisons. The results
are summarized in Table 1 and 2.

In all the problems in Table 1, the εCCDE obtained better
average values. However, in WFG1, all the points of εCCDE
always dominate the points produced by the NSGA-II, be-
cause the latter cannot properly converge. From Table 1, it
can be seen that our approached obtained the largest value
for WFG1. For WFG9, this metric indicates that the NSGA-
II can cover a larger portion of the Pareto front. However,
it is important to keep in mind that this is a secondary cri-
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Figure 6: Results produced by our εCCDE+MORS
and the NSGA-II on the OKA test problems.
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Figure 7: Results produced by our εCCDE+MORS
and the NSGA-II on the ZDT test problems.

Table 1: Mean and standard deviation of the CS
measure (a larger value is better for the first algo-
rithm)

Test Problem CS(εCCDE, NSGA-II) CS(NSGA-II, εCCDE)
mean (std. dev.) mean (std. dev.)

WFG1 1.0000 (0.0000) 0.0000 (0.0000)
WFG2 0.8509 (0.1771) 0.0362 (0.0614)
WFG9 0.6415 (0.3669) 0.0995 (0.2114)

Table 2: Mean and standard deviation of the Qc

measure (a larger value is better for the first algo-
rithm)

Test Problem Qc(εCCDE, NSGA-II)
mean (std. dev.)

WFG1 0.2112 (0.0634)
WFG2 0.0677 (0.2172)
WFG9 -0.0913 (0.1154)

Table 4: Mean and standard deviation of the Qc

measure (a larger value is better for the first algo-
rithm)

Test Problem Qc(εCCDE+MORS, NSGA-II)
mean (std. dev.)

WFG1 0.6494 (0.1237)
WFG2 -0.1686 (0.1019)
WFG9 0.0085 (0.0796)
OKA1 0.0626 (0.0648)
OKA2 -0.1496 (0.1674)
ZDT1 0.0030 (0.0032)
ZDT2 0.0139 (0.0034)
ZDT3 -0.0980 (0.0249)
ZDT4 -0.3449 (0.4441)

terion, which becomes relevant only when convergence has
been achieved. In this case, and based on the two set cov-
erage measure, our εCCDE obtained a better convergence.

6.2.2 εCCDE+MORS
Again, we executed the proposed εCCDE+MORS 30 times

per problem, and then executed the NSGA-II 30 times with
the same random seeds, and we performed 30 one-to-one
comparisons. The results are summarized in Table 3.

In almost all the problems in Table 3, the approach pre-
sented here obtained better average values. WFG1 is a very
hard problem for the NSGA-II, which again cannot properly
converge, and almost all its points were dominated by the
εCCDE+MORS outcome. On the other hand, in OKA1,
both algorithms show difficulties to dominate the results
of each other. Regarding the ZDT problems, the NSGA-
II presented a better convergence in two problems (ZDT2
and ZDT3), while in the other two our approach obtained
a better convergence. For WFG2 and OKA2, as well as
for ZDT3 and ZDT4, the second measure (Table 4) indi-
cates that the NSGA-II can cover a slighly larger portion
of the Pareto front. In these cases, and based on the CS
measure, our εCCDE+MORS obtained a better convergence
than the NSGA-II, except in ZDT3, where the NSGA-II ob-
tained both, a better convergence and a larger length over
the Pareto front.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we explored the use of the ε-constraint

method hybridized with an efficient evolutionary single-ob-
jective optimizer, in order to obtain a first approximation to
the Pareto front, and then apply an approach based on rough
sets theory to spread the results. We apply this approach
to solve hard two- and three-objective optimization prob-
lems. Our results show that the proposed approach can solve
problems that a highly competitive MOEA (the NSGA-II)
cannot. This approach may be recommended when other
algorithms cannot achieve a proper convergence, or when it
is known that the problem is deceptive or strongly biased
(as is the case of several of the test problems adopted).

8. REFERENCES
[1] C. A. Coello Coello, D. A. Van Veldhuizen, and G. B.

Lamont. Evolutionary Algorithms for Solving

2793



Table 3: Mean and standard deviation of the CS measure (a larger value is better for the first algorithm)
Test Problem CS(εCCDE+MORS, NSGA-II) CS(NSGA-II, εCCDE+MORS)

mean (std. dev.) mean (std. dev.)

WFG1 0.8927 (0.0240) 0.0000 (0.0000)
WFG2 0.4569 (0.3869) 0.3006 (0.3430)
WFG9 0.7323 (0.2126) 0.0890 (0.1079)
OKA1 0.2278 (0.2694) 0.1589 (0.2577)
OKA2 0.3774 (0.1892) 0.1602 (0.2793)
ZDT1 0.3795 (0.1645) 0.1645 (0.3213)
ZDT2 0.0528 (0.0163) 0.3576 (0.2119)
ZDT3 0.0244 (0.0118) 0.4246 (0.1244)
ZDT4 0.4994 (0.2512) 0.1661 (0.3929)

Multi-Objective Problems. Kluwer Academic
Publishers, New York, May 2002. ISBN 0-3064-6762-3.

[2] K. Deb, S. Chaudhuri, and K. Miettinen. Towards
Estimating Nadir Objective Vector Using
Evolutionary Approaches. In M. K. et al., editor, 2006
Genetic and Evolutionary Computation Conference
(GECCO’2006), volume 1, pages 643–650, Seattle,
Washington, USA, July 2006. ACM Press. ISBN
1-59593-186-4.

[3] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
Fast and Elitist Multiobjective Genetic Algorithm:
NSGA–II. IEEE Transactions on Evolutionary
Computation, 6(2):182–197, April 2002.

[4] A. Farhang-Mehr and S. Azarm. Minimal Sets of
Quality Metrics. In C. M. Fonseca et al., editors,
Evolutionary Multi-Criterion Optimization. Second
International Conference, EMO 2003, pages 405–417,
Faro, Portugal, April 2003. Springer. LNCS. Volume
2632.

[5] Y. Y. Haimes, L. S. Lasdon, and D. A. Wismer. On a
Bicriterion Formulation of the Problems of Integrated
System Identification and System Optimization. IEEE
Transactions on Systems, Man, and Cybernetics,
1(3):296–297, July 1971.

[6] S. Huband, P. Hingston, L. Barone, and L. While. A
Review of Multiobjective Test Problems and a
Scalable Test Problem Toolkit. IEEE Transactions on
Evolutionary Computation, 10(5):477–506, October
2006.

[7] S. V. Kumar and S. R. Ranjithan. Evaluation of the
Constraint Method-Based Evolutionary Algorithm
(CMEA) for a Tree-Objective Optimization Problem.
In W. Langdon et al., editors, Genetic and
Evolutionary Computation Conference
(GECCO’2002), pages 431–438, San Francisco,
California, July 2002. Morgan Kaufmann Publishers.

[8] R. Landa Becerra and C. A. Coello Coello.
Optimization with Constraints using a Cultured
Differential Evolution Approach. In H.-G. Beyer et al.,
editors, Genetic and Evolutionary Computation
Conference (GECCO’2005), volume 1, pages 27–34,
Washington, D.C., U.S.A., June 2005. ACM Press.

[9] R. Landa Becerra and C. A. Coello Coello. Solving
hard multiobjective optimization problems using
ε-constraint with cultured differential evolution. In
T. P. Runarsson, H.-G. Beyer, E. Burke, J. J.

Merelo-Guervós, L. D. Whitley, and X. Yao, editors,
Parallel Problem Solving from Nature - PPSN IX, 9th
International Conference, pages 543–552. Springer.
Lecture Notes in Computer Science Vol. 4193,
Reykjavik, Iceland, September 2006.

[10] K. M. Miettinen. Nonlinear Multiobjective
Optimization. Kluwer Academic Publishers, Boston,
Massachusetts, 1999.

[11] T. Okabe. Evolutionary Multi-Objective Optimization
- On the Distribution of Offspring in Parameter and
Fitness Space -. PhD thesis, Bielefeld University,
Germany, 2004.

[12] Z. Pawlak. Rough sets. International Journal of
Computer and Information Sciences, 11(1):341–356,
Summer 1982.

[13] Z. Pawlak. Rough Sets: Theoretical Aspects of
Reasoning about Data. Kluwer Academic Publishers,
Dordrecht, The Netherlands, 1991. ISBN
0-471-87339-X.

[14] K. V. Price. An introduction to differential evolution.
In D. Corne et al., editors, New Ideas in Optimization,
pages 79–108. McGraw-Hill, London, UK, 1999.

[15] S. R. Ranjithan, S. K. Chetan, and H. K. Dakshima.
Constraint Method-Based Evolutionary Algorithm
(CMEA) for Multiobjective Optimization. In
E. Zitzler et al., editors, First International
Conference on Evolutionary Multi-Criterion
Optimization, pages 299–313. Springer-Verlag. LNCS
No. 1993, 2001.

[16] R. G. Reynolds. An Introduction to Cultural
Algorithms. In A. V. Sebald and L. J. Fogel, editors,
Third Annual Conference on Evolutionary
Programming, pages 131–139. World Scientific, River
Edge, New Jersey, 1994.

[17] S. M. Saleem. Knowledge-Based Solution to Dynamic
Optimization Problems using Cultural Algorithms.
PhD thesis, Wayne State University, Detroit,
Michigan, 2001.

[18] E. Zitzler, K. Deb, and L. Thiele. Comparison of
Multiobjective Evolutionary Algorithms: Empirical
Results. Evolutionary Computation, 8(2):173–195,
Summer 2000.

2794


