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ABSTRACT
A new hybrid approach to optimization in dynamical en-
vironments called Collaborative Evolutionary-Swarm Opti-
mization (CESO) is presented. CESO tracks moving op-
tima in a dynamical environment by combining the search
abilities of an evolutionary algorithm for multimodal opti-
mization and a particle swarm optimization algorithm. A
collaborative mechanism between the two methods is pro-
posed by which the diversity provided by the multimodal
technique is transmitted to the particle swarm in order to
prevent its premature convergence. Numerical experiments
indicate CESO as an efficient method compared with other
evolutionary approaches.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods and Search—Heuristic Methods; G.1.6 [Numerical
Analysis]: Optimization global optimization

General Terms
Algorithms

Keywords
Crowding Differential Evolution, Particle Swarm Optimiza-
tion, Dynamic Environments

1. INTRODUCTION
One of the challenges presented by real-world applications

is their dynamical character. The problem of detecting and
tracking moving optima in a dynamical environment has
been successfully addressed by evolutionary algorithms dur-
ing the last years [3].

A new approach to solving optimization problems in dy-
namical environments called Collaborative Evolutionary -
Swarm Optimization (CESO) is proposed.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-698-1/07/0007 ...$5.00.

CESO is based on the collaboration between two opti-
mization methods: an evolutionary algorithm for multimo-
dal optimization and a particle swarm optimization algo-
rithm. The evolutionary multimodal optimization algorithm
provides a diversity preservation mechanism preventing the
particle swarm’s premature convergence to local optima.

2. COLLABORATIVE EVOLUTIONARY -
SWARM OPTIMIZATION

CESO algorithm is a simple method for detecting and
tracking moving optima in a changing environment by us-
ing two populations of equal size. One of the population
is responsible for preserving diversity of the search and the
other one tracks the global optimum. CESO proposes a col-
laborative mechanism between the two populations in order
to avoid premature convergence and to efficiently track mov-
ing optima.

2.1 CESO populations
The rules by which the two populations used by CESO

are evolved are described in what follows.

The CRDE population.
The first population called the CRDE population is evolved

by an evolutionary multimodal optimization algorithm in or-
der to maintain a good population diversity.

Evolutionary multimodal optimization techniques have al-
ready been applied for solving optimization problems in dy-
namical environments: the Self Organizing Scouts [2] uses a
forking procedure borrowed from the Forking GA [9] while
Multinational GA [10] was originally designed as an algo-
rithm for multimodal optimization in static environments.

As a multimodal search operator CESO uses the Crowd-
ing Differential Evolution (Crowding DE)[8] algorithm, a
very efficient method for detecting multiple optima in static
environments.

Crowding Differential Evolution extends the Differential
Evolution (DE) algorithm [6] with a crowding scheme. The
only modification to the conventional DE is made regarding
the individual (parent) being replaced. Usually, the parent
producing the offspring is substituted, whereas in Crowd-
ingDE the offspring replaces the most similar individual
among the population (if it is fitter). A DE/rand/1/exp
[7] scheme is used.

The best individual in the CRDE population is denoted
cbest.
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The SWARM.
The second population used by CESO, called SWARM, is

a particle swarm updated by using classical particle swarm
optimization (PSO) rules [4]. Particle swarm optimization
(PSO) is a population based stochastic optimization tech-
nique inspired by social behavior of bird flocking or fish
schooling.

Within PSO each individual has a velocity vector asso-
ciated. Each iteration, the following equations are used to
compute the new position of individual x = (x1, ..., xn):

vi+1 = vi +c1 ∗rand∗ (pbesti−xi)+c2 ∗rand∗ (gbesti−xi),

xi+1 = xi + vi,

where v = (v1, ..., vn) is called the velocity of particle x
; pbest represents the best position of individual x so far,
gbest represents the best individual in the whole population
detected so far; rand is a random number between (0,1)
and c1, c2 are learning factors. Usually c1 = c2 = 2. Two
parameters, vmin and vmax are used to limit the velocity.

Endowing PSO with an efficient diversity preserving mech-
anism it becomes a very powerful optimization technique.

2.2 The Collaboration
One of the main problem in dealing with dynamical envi-

ronments is the premature convergence to local optima. To
cope with it CESO uses the CRDE population to maintain
a set of local and global optima during the entire search pro-
cess. The SWARM population is used to detect the global
optimum and to indicate - if necessary - its position to the
CRDE population.

Both CRDE and SWARM populations evolve in their
’natural’ manner, i.e. no additional mechanism is added
to them individually.

The collaborative mechanism proposed by CESO implies
two-ways communication between the SWARM and CRDE:

Transmitting information from
the CRDE to the SWARM population.

The CRDE population maintains a good diversity over the
search space by maintaining a set of local optimal solutions.
CRDE information is transmitted to the SWARM by copy-
ing all individuals from the CRDE to the SWARM. Thus
the SWARM is actually reinitialized. The reinitialization of
the SWARM takes place if one of the followings occur:

i. a change is detected in the environment (the test is made
by re-evaluating cbest); in this case all individuals are
evaluated;

ii. the distance between cbest and gbest is lower than a
prescribed threshold θ (for example 0.1)

Transmitting information from
the SWARM to CRDE population.

At each iteration gbest replaces cbest if it has a better
fitness value. Thus the CRDE population contains the best
optima detected at each iteration.

3. CESO ALGORITHM
Within CESO both populations are randomly initialized

and evaluated. At the beginning of each iteration a test

is performed to check if a change in the environment has
occurred during the last iteration. The best individual in
the CRDE population is re-evaluated: if a difference appears
between the new and the old fitness value it is considered
that a change took place.

In case a change appears in the environment or if the
distance between cbest and gbest is very small, the search of
the SWARM is restarted by copying the CRDE individuals
to it. By re-starting the search with particles scattered over
the search space, the SWARM presents a good potential to
locate the global optimum.

At the end of each iteration gbest replaces cbest if it is
better than cbest. Therefore, at each iteration, the CRDE
contains the best individual found so far.

CESO technique is outlined in the Algorithm 1.

Algorithm 1 Outline of the CESO Algorithm

Parameters setting;
Randomly initialize CRDE and SWARM;
Evaluate populations;
while final condition not met do

if (change in landscape) then
Copy CRDE to SWARM;
Evaluate populations;

end if
if distance between best individuals in CRDE and

SWARM lower than 1 then
Copy CRDE to SWARM;

end if
Update SWARM;
Evolve CRDE;
Evaluate populations;
if gbest better than cbest then

gbest replaces cbest in CRDE;
end if

end while

4. NUMERICAL EXPERIMENTS
Numerical experiments concerning the Moving peaks bech-

mark (MPB), scenario2, as proposed by Branke in [2] were
performed. This scenario has also been used by several au-
thors and allows the comparison of results obtained by dif-
ferent methods. The settings for this scenario are presented
in Table 1.

Results obtained by CESO are compared with those re-
ported by the following methods:

• the Self Organizing Scouts (SOS) [2];

• the Multiswarms (MPSO) methods [1];

• The Particle Swarm with Speciation and Adaptation
(SPSO) [5].

The best results obtained using the three methods consid-
ered, where applicable, are compared with those obtained by
CESO.

MPSO and SPSO may have several configurations and
variants. The best reported results have been chosen from
the various configurations in order to compare them with
those obtained by CESO.

Results are averaged over 50 runs with different random
seed generator for CESO.
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Table 1: Standard settings for the Moving Peaks
Problem

Parameter Setting

Number of peaks p 10

Number of dimensions d 5

Peak heights ∈ [30, 70]

Peak widths ∈ [1, 12]

No. of evals. between changes 5000

Change severity s 1.0

Correlation coefficient λ 0

Table 2: Parameter Settings for CESO

Parameter Setting

CRDE and SWARM sizes 10

vmin,vmax -0.1,0.1

4.1 Parameter settings for CESO
CESO uses only three parameters: the populations size

and vmin and vmax to control the particles velocities. For
the other parameters specific to Crowding DE and PSO the
usual values are used.

Parameters setting for CESO is presented in Table 2. Nu-
merical results indicate that using small CRDE and SWARM
population size, CESO results are significantly better than
those obtained by other methods as far as the average offline
error is concerned.

4.2 Varying shift severity
Results obtained by CESO for different values of the shift

severity parameter s of the MPB are presented in Table 3.
The Table 3 presents results reported by the multi-CPSO

(mCPSO) 10(5+5q) [1] which, to the best of our knowledge,
are the best results reported until now for this problem. The
SPSO-PD variant [5] reports an average of offline errors of
1.93(0.06) for s = 1. For this setting, CESO reports an
average offline error of 1.38. Results obtained with CESO
are better than those in terms of average and standard error
values.

Table 3: Offline error and standard error for varying
shift severity

s CESO mCPSO

0 0.85± 0.02 1.18± 0.07

1 1.38± 0.02 1.75± 0.06

2 1.78± 0.02 2.40± 0.06

3 2.03± 0.03 3.00± 0.06

4 2.23± 0.05 3.59± 0.10

5 2.52± 0.06 4.24± 0.10

6 2.74± 0.10 4.79± 0.10

Table 4: Offline error and standard error for varying
number of peaks

No. peaks CESO MPSO

1 1.04± 0.00 4.93± 0.07

10 1.38± 0.02 1.75± 0.06

20 1.72± 0.02 2.42± 0.06

30 1.24± 0.01 2.48± 0.06

40 1.30± 0.02 2.55± 0.10

50 1.45± 0.01 2.50± 0.10

100 1.28± 0.02 2.36± 0.10

Table 5: Offline error and standard error for varying
the λ parameter

λ CESO SOS

0.5 1.43± 0.02 4.14

0.9 1.46± 0.03 4.09

1 1.52± 0.02 4.17

4.3 Varying number of peaks
Results obtained for different number of peaks are pre-

sented in Table 4. For MPSO the best results have been
obtained for mCPSO with anticonvergence for the one peak
set-up, mQSO without anticonvergence for the 10 peaks set-
up and for mQSO with anticonvergence for the rest of set-
ups. Results obtained by SOS and SPSO-PD are not better
than those obtained by the MPSO.

4.4 Correlation of shifts
The effects on CESO of changing the MPB correlation

of shifts parameter λ are presented in Table 5. Results are
compared with average values reported by SOS. Results pro-
vided by CESO are significantly better than those reported
by SOS for all values of λ.

4.5 Higher dimensionality
Numerical results for different dimensionality values for

MPB are presented in Table 6.
For dimension ten, mQSO variant of MPSO reports re-

sults in the range between 4.17 and 4.70 for different pa-
rameter settings of the algorithm. For the 10-dimensions
instance of MPB average of offline errors reported by CESO
is 2.51, which is significantly better than those obtained by
mQSO.

A modified version of SOS reports an average offline er-
ror of 16.2 for a 20-dimensions search space and 20 peaks.
For the same settings, the average offline error reported by
CESO is 2.53, i.e. 15.61% of the result obtained by SOS.

4.6 Effect of the collaboration mechanism
The effect of the collaboration mechanism between the

two population can be illustrated by running Crowding DE
and PSO independently. Average offline error after 50 runs,
for the standard setting of scenario 2 of the MPB for the
three methods are presented in table 7. Results indicate
that the proposed collaborative mechanism can be consid-
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Table 6: Offline error and standard error for varying
dimension of the search space

no. dimensions CESO

10 2.51± 0.04

50 6.81± 0.07

100 24.60± 0.25

Table 7: Offline error and standard error for CESO
and for the Crowding DE and PSO without any col-
laboration

Method Value

CESO 1.38± 0.02

Crowding DE 3.98± 0.14

PSO 24.23± 1.30

ered responsible for the results obtained by CESO and that
the results obtained by using only Crowding DE or only the
PSO without any collaboration are not as good.

5. CONCLUSIONS AND FURTHER WORK
A new evolutionary method for solving optimization prob-

lems in dynamical environments is proposed.
The Collaborative Evolutionary-Swarm Optimization al-

gorithm combines the abilities of the Crowding Differential
Evolution algorithm for multimodal optimization and of the
Particle Swarm Optimization by using a collaboration mech-
anism in order to detect and track optima in a changing
environment.

Two populations of individuals are evolved by CESO. The
CRDE population uses the Crowding Differential Evolution
algorithm to detect and to maintain a set of approximation
of local optima while the SWARM population follows the
rules of Particle Swarm Optimization to track the global
optima.

The collaboration mechanism is applied whenever a change
is detected in the search space, or if the best individual in
the SWARM is too close to the best in CRDE the search of
the SWARM is restarted by re-initializing the SWARM with
the positions of individuals in the CRDE population. Due
to the diversity offered by these individuals, the SWARM
population is capable to locate the global optimum. If the
SWARM locates an optimum better than the best individ-
ual in the CRDE population then replaces cbest in order to
enhance the search of the CRDE.

Numerical results obtained by CESO are significantly bet-
ter in terms of average offline error than those obtained by
other evolutionary techniques for optimization in dynamical
environments as reported in the literature. However, the
sensitivity to parameter settings of CESO still has to be
studied and represents the object of current research.
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Environments. Klüwer Academic Publishers, 2001.

[3] Yaochu Jin and Jürgen Branke. Evolutionary
optimization in uncertain environments-a survey.
IEEE Trans. Evolutionary Computation, 9(3):303–317,
2005.

[4] James Kennedy and Russell C. Eberhart. Swarm
intelligence. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2001.

[5] Xiaodong Li, J&#252;rgen Branke, and Tim
Blackwell. Particle swarm with speciation and
adaptation in a dynamic environment. In GECCO ’06:
Proceedings of the 8th annual conference on Genetic
and evolutionary computation, pages 51–58, New
York, NY, USA, 2006. ACM Press.

[6] Rainer Storn and Kenneth Price. Differential
evolution - a simple and efficient adaptive scheme for
global optimization over continuous spaces. Technical
Report TR-95-012, Berkeley, CA, 1995.

[7] Rainer Storn and Kenneth Price. Differential evolution
a simple evolution strategy for fast optimization. Dr.
Dobb’s Journal of Software Tools,, 22(4):18–24, 1997.

[8] Rene Thomsen. Multimodal optimization using
crowding-based differential evolution. In Proceedings
of the 2004 IEEE Congress on Evolutionary
Computation, pages 1382–1389, Portland, Oregon,
20-23 June 2004. IEEE Press.

[9] S. Tsutsui, Y. Fujimoto, and A. Gosh. Forking genetic
algorithms: GAs with search space division.
Evolutionary computation, 5:61–80, 1997.

[10] Rasmus K. Ursem. Multinational GAs: Multimodal
optimization techniques in dynamic environments. In
Proceedings of the Second Genetic and Evolutionary
Computation Conference (GECCO-2000), volume 1,
pages 19–26, Riviera Hotel, Las Vegas, USA, 2000.
Morgan Kauffmann Publishers.

2820


