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ABSTRACT
In this work we present a novel and efficient algorithm–
independent stopping criterion, called the MGBM criterion,
suitable for Multiobjective Optimization Evolutionary Al-
gorithms (MOEAs).

The criterion, after each iteration of the optimization algo-
rithm, gathers evidence of the improvement of the solutions
obtained so far. A global (execution–wise) evidence accu-
mulation process inspired by recursive Bayesian estimation
decides when the optimization should be stopped. Evidence
is collected using a novel relative improvement measure con-
structed on top of the Pareto dominance relations. The
evidence gathered after each iteration is accumulated and
updated following a rule based on a simplified version of a
discrete Kalman filter.

Our criterion is particularly useful in complex and/or high-
dimensional problems where the traditional procedure of
stopping after a predefined amount of iterations cannot be
used and the waste of computational resources can induce
to a detriment of the quality of the results.

Although the criterion discussed here is meant for MOEAs,
it can be easily adapted to other softcomputing or numerical
methods by substituting the local improvement metric with
a suitable one.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods and Search; I.2.m [Artificial Intelligence]: Evo-
lutionary Computing and Genetic Algorithms—Multiobjec-
tive Evolutionary Algorithms

General Terms
Algorithms, Experimentation, Performance

Keywords
Stopping Criterion, Multiobjective Optimization Evolution-
ary Algorithms (MOEAs)
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1. INTRODUCTION
Softcomputing, heuristic, non–deterministic or numerical

methods require a stopping criterion. This criterion, which
usually is a heuristic itself, is responsible for minimizing the
waste of computational resources in limit situations by de-
tecting the scenarios where there is no sense in proceeding
with the execution of the method.

In particular it should identify scenarios like:

• the solution yielded so far is satisfactory;

• the method is able to produce a solution but it is not
satisfactory but a better one will not be produced, and;

• the method is unable to converge to any solution.

One particular subclass of the above mentioned methods,
the Multiobjective Optimization Evolutionary Algorithms
(MOEAs) [3], also require a stopping criterion. However,
the formulation of an effective criterion is particularly com-
plex in the case of the multiobjective optimization problem
as judging the advance of the optimization can become as
complex as the optimization itself and it can be very resource
consuming. Furthermore, in this class of problems there is
no “axis reference” in which base the heuristic, unlike other
problems like function approximation, pattern recognition,
etc.

Probably because of these issues, the formulation of an
efficient stopping criterion for MOEAs has been left aside,
although it has been repeatedly nominated as one of the
fundamental topics that must be properly addressed in this
research area [1, 2].

Stopping criteria can be grouped in local (iteration–wise)
criteria, that work with data local to each iteration of the
method, and global (execution–wise) criteria that keep track
of the process advance in order to make decisions relying on
the long–term behavior of the method.

For MOEAs, a local criterion must measure the distance
between the current and optimal Pareto front and decide
when they are close enough. This type of criterion has the
obvious paradoxical shortcoming of requiring a known opti-
mal Pareto front beforehand.

Global approaches can apply relative improvement met-
rics in order to assess the progress by analyzing the algo-
rithm itself and without having to resort to an absolute
comparison with an a priori established threshold. In the
particular case of MOEAs this type of criteria compares the
Pareto sets yielded by different iterations in order to deter-
mine how the optimization process is progressing.
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In this work we introduce a global stopping criterion,
called MGBM criterion, that gathers relative local mea-
surements of the process advance to determine when the
algorithm should be stopped. This combination of local and
global processes makes the criterion particularly suitable for
MOEAs. Our criterion accumulates evidence of algorithm
progress or convergence in a process inspired by recursive
Bayesian estimation. Evidence is collected using a novel
relative improvement metric constructed on top of the dom-
inance relations that is also discussed here. The evidence
gathered after each iteration is accumulated and updated
following a rule based on a discrete Kalman filter with a
simple dynamic model.

It should be noted that, although the criterion discussed
here is meant for MOEAs, it can be easily adapted to other
softcomputing or numerical methods by substituting the lo-
cal improvement metric with a suitable one.

As part of this work we will briefly present the background
matters required for our discussion. Afterwards we will dis-
cuss the existing approaches to this issue. Then we will lay
out our proposal thoroughly commenting it from a theoret-
ical point of view. Subsequently, a set of synthetic experi-
ments are performed in order to review the properties of the
criterion from a practical scope. Finally some concluding
comments and remarks are formulated.

2. THEORETICAL BACKGROUND
For the sake of completeness and to establish the nota-

tion we now briefly introduce the theoretical foundations of
our work. However, we recommend the interested reader to
consult the cited references for more comprehensive expla-
nations.

2.1 Multiobjective Optimization Evolutionary
Algorithms

The concept of multiobjective optimization refers to the
process of finding one or more feasible solutions of a problem
which corresponds to the extreme values (either maximum
or minimum) of two or more objective functions subject to
a set of restrictions. This problem can be expressed as

min f1(x), . . . , fM (x) , (1)
subject to g1(x), . . . , gL(x) ≤ 0 ,

with x ∈ S ,

where S is known as the decision space.
For these problems does not exist a unique optimal solu-

tion. Instead, a set of compromise solutions must be yielded
by the optimization algorithm applied. In order to define
the set of optimal solutions a so called dominance relation
has been defined.

Definition 1. A solution x1 dominates x2 (x1 � x2) iff
∀fj, fj(x1) ≤ fj(x2) and ∃fi such as fi(x1) < fi(x2).

The set of non–dominated elements of S is the solution of
the problem stated in (1) and is called the Pareto–optimal
set. Correspondingly, the image of this set in objective space
is called Pareto–optimal front, P∗.

2.2 Kalman Filters
The Kalman filter [7, 10] provides an efficient computa-

tional means to estimate the state of a dynamic system from

a series of incomplete and noisy measurements. It is very
powerful since it supports estimations of past, current, and
future states, and it can do so even when the nature of the
modeled system is not completely known.

The Kalman filter addresses the general problem of esti-
mating the state of a discrete–time controlled process that
is ruled by a linear stochastic difference equation.

The state of the filter is represented by two variables:

• x̂t, the estimate of the state at time t, and;

• Pt, the error covariance matrix which is a measure of
the estimated accuracy of the current state estimate.

The Kalman filter estimates a process state by a recursive
feedback control that can be separated in the prediction and
update phases.

The prediction phase is responsible of making an a priori
estimation of the future state of the system by relying on
the current state and error covariance estimates. The up-
date phase is responsible for the feeding back the (noisy)
measurement of state of the system to obtain an improved
a posteriori estimate.

The Kalman filter assumes a dynamic model given by

xt = Axt−1 + But + wt , (2)

where ut is an optional control input and the random vari-
ables wt ∼ N(0, Q) represents the process noise.

Additionally the measurement process is modeled by

zt = Hxt + vt , (3)

where H relates the real state of the process xt to the mea-
surement zt and vt ∼ N(0, R) is the measurement noise.

As a first step, the a priori estimation, x̂−
t , and its error

covariance, P−
t , are calculated as

x̂−
t = Ax̂−

t−1 + But , (4)

P−
t = AP−

t−1A
T + Q . (5)

Then the update phase proceeds by computing the Kalman
gain,

Kt =
P−

t HT

HP−
t HT + R

. (6)

Having this, the a posteriori estimation is calculated as
the feedback is injected to the filter as

x̂t = x̂−
t + Kt

`
zt − Hx̂−

t

´
. (7)

The next and final step of this phase is to obtain an a
posteriori error covariance estimate

Pt = (I − KtH)P−
t (8)

3. APPROACHES TO THE ISSUE
As we already stated in the introduction of this paper the

stopping criterion issue has been repeatedly left aside in the
framework of MOEAs.

The approach used by almost all the works is simply to
stop when the algorithm reaches a given number of iter-
ations. This class of solution could be valid for simple,
low–dimensional problems where a simple trial–and–error
determination of the required amount of iterations is feasi-
ble. However, more complex problems cannot afford it since
such procedure becomes computationally unfeasible.
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To the best of our knowledge, the stopping criterion issue
has been only previously addressed by Rudenko and Schoe-
nauer [11]. In their work the authors present a local stopping
criterion that computes a stability measure of the spread of
the non–dominated solutions after each iteration that seems
to be bound to the NSGA–II algorithm.

In spite of novelty of the proposed stability measure, the
local scope of the criterion hinders the overall comprehension
of progress of the optimization algorithm.

4. THE MGBM CRITERION
As exposed, the MGBM criterion combines a local im-

provement metric and a global evidence accumulation cri-
terion that decides when the evolution of values yielded by
the local metric indicate that when the algorithm should be
stopped.

4.1 Local Improvement Metric
For the evidence gathering we use a metric is based on the

set of non–dominated solutions of two consecutive iterations,
NDt and NDt−1.

In order to simplify the explanation we introduce the func-
tion Δ (A,B) that returns the set of elements of A that are
dominated by at least one element of B. Expressing it in a
more formal fashion.

C = Δ (A,B) , (9)

such that

∀x ∈ C, x ∈ A, and ∃y ∈ B with y � x . (10)

The progress indicator st ∈ [−1, 1] contrasts how many
non–dominated individuals of the iteration t dominate the
non–dominated individuals of the previous one (t − 1) and
vice versa,

st =
‖Δ (NDt−1,NDt) ‖

‖NDt−1‖ − ‖Δ (NDt,NDt−1) ‖
‖NDt‖ . (11)

The st indicator provides different types of information.
If st = 1 it means that the population from iteration t is
completely better than the precedent one. The case st = 0
implies that there has not been any substantial progress.
The worst case, st = −1, indicates that iteration t does not
improves any of the solutions of its predecessor.

As we mentioned in the introduction of this work a stop-
ping criterion should be able to discover three situations
where the algorithm execution should be stopped. From the
stopping point of view all this situations can be interpreted
as if there is or if there is not progress of the algorithm.

The determination of the non–dominated individuals after
each iteration can be computationally expensive. However,
as most MOEAs extract them for their own purpose it would
be reasonable to embed this part of the criterion into the
MOEAs being used.

4.2 Accumulating Evidence
Our approach is based on the recursive estimation pre-

diction/update framework proposed by Kalman filters. Be-
cause of this we will be assuming that noise process present
in the measured progress indicator is uncorrelated between
consecutive iterations. Furthermore, the estimated value of
the progress indicator and its associated covariance follows a
Markov process and therefore the outcome of each iteration
is only dependant on the previous one.

In our case we keep track of the algorithm progress indi-
cator at iteration t, st.

After each iteration, we compute the a priori estimated
indicator ŝ−t by using a simple version of the dynamic model
(12) with A = 1 and B = 0. This implies that we are tak-
ing a positivist stance and predicting that the indicator will
remain the constant across iterations and therefore equal to
the a posteriori estimation, ŝt−1,

ŝ−t = ŝt−1, (12)

eliminating the control input, u, as there is no external in-
teraction.

As this is purely computational process we can disregard
the prediction error in our dynamic model (Q = 0). Corre-
spondingly, the a priori error covariance becomes

P−
t = Pt−1 . (13)

We then rewrite (3) as

zt = st. (14)

where st is calculated following (11). Here we assume that
st contains both the measurement and measurement error
components of (3) and that the measurement error has a
Gaussian nature.

The correction step of the process results as

Kt =
P−

t

P−
t + R

. (15)

here R can be interpreted as the rate at which the criterion
will take into account a single measurement and therefore
provide a faster reaction to changes or if, on the contrary, the
criterion is biased toward a more global (or more inertial)
approach.

Therefore, the a posteriori estimation of the indicator can
be expressed as the current result of the indicator

ŝt = ŝ−t + Kt(zt − ŝ−t ) . (16)

The stopping criterion will fire if the a posteriori estima-
tion ŝt falls bellow a certain threshold

ŝt < ŝmin . (17)

In particular, we would be interested in stopping when no
further progress is predicted, situation that is represented
by ŝmin=0.

4.3 Algorithmics of the Criterion
Relying on the equations introduced above we can formu-

late the algorithmic schema of our stopping criterion. This
algorithm is sketched in Algorithm 1.

Along with the positivist stance expressed before when
formulating (12) will use as the initial a posteriori progress
estimation, ŝ0, equal to 1. This means that we will be as-
suming a full progress from the start and let this indicator
decay as the process advances.

On the other hand, we have not yet demonstrated the
convergence of our criterion and, therefore, there is no theo-
retical guaranty of the stopping of the optimization process.
This implies that a maximum limit to the amount of itera-
tions, tmax, must be used as a safety measure.

The remaining issue is the choice of the process noise co-
variance R, that in our case represents degree of inertia of
the system. As this is the only free parameter of the cri-
terion to choose it incorrectly could lead to an undesired
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behavior. In the next section we show how the performance
and robustness of the criterion under different values of R.

Algorithm 1 Algorithmic description of the stopping cri-
terion.

Initialize t = 0 and ŝ0 = 1.
Set R,
Set tmax, the maximum amount of iterations.
Set ŝmin, the minimum accepted value of the a posteriori
estimation.
while ŝt ≥ ŝmin and t < tmax do

Execute one iteration of the MOEA.
t = t + 1.
Compute the a priori progress estimation, ŝ−t , following
(12).
Calculate measured rate of improvement, zt, as speci-
fied in (11) and (14).
Determine the a posteriori estimation ŝt from equations
(13)–(16).

end while

5. EXPERIMENTS
We will now experimentally illustrate the accuracy of the

MGBM criterion by analyzing the performance of the esti-
mations in a set of experiments.

In particular we will present the results of applying two
well established MOEAs: the Nondominated Sorting Ge-
netic Algorithm II (NSGA–II) [4] and the improved Strength
Pareto Evolutionary Algorithm (SPEA2) [15] when solving
two scalable multiobjective test problems: the DTLZ3 and
DTLZ7 [5,6] problems under different initial conditions.

The initial conditions intend to a priori bias the algorithm
so we can test whether our criterion can resolve all possible
end situations and while we also study the impact of the
criterion parameters.

5.1 Test Problems
The DTLZ3 and DTLZ7 problems are part of a family of

scalable multiobjective test problems originally introduced
to study and compare the performance of different MOEAs
in problems in high–dimensional problems.

These problems were selected for out experiments because
of the relative simplicity of their specification and the exis-
tence of an a priori known Pareto–optimal front.

The DTLZ3 problem is a M–objective problem with a
n–dimensional decision vector.

The Pareto–optimal front lies on the first orthant of a unit
hypersphere (see Figure 1(a) for a 3-D representation). This
problem was introduced to test the ability of a MOEA to
converge to the global Pareto–optimal front, since there are
3n−M+1 − 1 suboptimal fronts parallel to the optimal one.

On the other hand, the DTLZ7 problem has a Pareto–
optimal front that consists of a heavily disconnected set of
Pareto–optimal regions (2M−1) that test an algorithm abil-
ity to maintain a robust coverage of all optimal regions.

A 3-D graphical representation of the Pareto–optimal front
of DTLZ7 is presented on Figure 1(b).

5.2 Algorithms
An exhaustive description of NSGA–II and SPEA2 is out

of the scope of this work and, on the other hand, impossible

due to the length restrictions. Therefore, we will now briefly
describe them and state how they were configured in our
experiments.

Both algorithms exploit elitism by explicitly keeping a
population with non–dominated solutions, so the selection
operators are based on comparisons with them. Both SPEA2
and NSGA-II use density information in order to guide the
search together with the Pareto-dominance sorting, but have
different approaches when implementing elitism and density
estimation.

The Strength Pareto Evolutionary Algorithm (SPEA) [16]
implements elitism by preserving an external population.
This population stores a fixed amount of non–dominated
individuals discovered since the beginning of the simula-
tion. After every iteration of the algorithm, if a new non–
dominated solution is found it is compared with the ones
present in the external population to preserve the best so-
lutions.

SPEA goes beyond than just keeping an elite set of solu-
tions. It uses the solutions stored along with the dominated
solutions in all genetic operations with the hope of inducing
a better performance of the search in the solution space.

Although SPEA have produced a number of relevant re-
sults it has been pointed out that it has some potential weak-
nesses [15]. SPEA2 [14, 15] was proposed as an attempt
to overcome the limitations of SPEA. It keeps the overall
scheme of its predecessor but, in contrast to SPEA, SPEA2
uses a fine–grained fitness assignment strategy which incor-
porates density information. Furthermore, the external pop-
ulation has a fixed size; therefore, whenever the number of
non–dominated solutions is less than the predefined archive
size, the archive is filled up by dominated individuals. Fi-
nally, the clustering technique used to prune the external
population has been replaced by an alternative truncation
method which has similar features but does not miss bound-
ary points.

The NSGA-II algorithm is an improvement over the origi-
nal NSGA [12,13]. There are two key concepts in the NSGA
family: fast non-dominated sorting of the population and a
crowding distance calculation for maintain diversity in the
population.

NSGA–II introduces a faster algorithm to sort the popu-
lation that takes O(Mn2) computations, instead of the orig-
inal O(Mn3) of NSGA, where M is the number of objectives
and n is the number of population members. A crowding
distance considers the size of the largest cuboid enclosing
each individual without including any other of the popula-
tion. This feature is used to keep diversity in the popula-
tion and points belonging to the same front and with higher
crowding distance are assigned a better fitness than those
with lower crowding distance, avoiding the use of the fitness
sharing factor.

For the sake of reproducibility and to compare results we
used in this study the values of the internal parameters as
the ones described in [9] except for the population size that
was set to 100 elements.

5.3 Experiments Results
As we already stated we are interested in showing that our

criterion can resolve positive and negative end conditions.
With that in mind we have devised a set of experiments
that test our criterion in a controlled environment.

We have grouped these experiments as expected successes
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(a) DTLZ3 test problem.
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Figure 1: Sample of the Pareto–optimal front of DTLZ3 and DTLZ7 test problems with three objectives
(M = 3).

and expected failures. The results of each set of experiments
are detailed in the rest of this section.

It should be noted that all the results presented here are
the average over 30 run of the algorithms under the same
initial conditions.

5.3.1 Expected Successes
In these tests we will plot the mean over all simulations of

the distance of the set of non–dominated solutions yielded
by an iteration t, NDt, to the Pareto–optimal front, P∗.

On these plots we will then point out the moments at
which the criterion suggested an algorithm stop. To test the
robustness of the criterion we used in this analysis different
values of R. In particular R = 0.05, R = 0.1 and R = 0.15.

When calculating the distance, if the Pareto–optimal front
is not available directly from the problem statement, as is
the case of problem DTLZ7, it must be substituted by a
set P̌∗ sampled elements of P∗. In this case the distance is
measured from element i of NDt and the closest element in
P̌∗,

di =
|P̌∗|
min
j=1

vuut MX
k=1

„
fk(i) − fk(j)

fmax
k − fmin

k

«2

, (18)

where fmax
k and fmin

k are the maximum and minimum values
of the k–th objective function.

For the case of the DTLZ3 problem this distance can be
simplified as it is the distance from a point i of NDt to
the first orthant of a hypersphere of radius 1. Therefore the
distance can be stated as the norm of the vector of objective
functions minus 1:

di = ‖{f1(i), . . . fM (i)})‖ − 1 . (19)

Having computed the distance of each element of NDt

they are combined as the combined measure

Dt =

P|NDt|
i=1 di

|NDt| (20)

that is a convergence metric that represent how close a NDt

is to the optimum.
In order to assure the success of the algorithms three di-

mensional functions were used. The algorithms were left to
run for 500 iterations, what was found sufficient in the initial
trials.

The results when solving the DTLZ3 problem using NSGA–
II and SPEA2 can be observed in Figures 2(a) and 2(b)
respectively. Correspondingly, the results for DTLZ7 are
shown on Figures 2(c) and 2(d). The plots show the dis-
tance after each iteration from the obtained set of non–
dominated solutions to the Pareto-optimal set. The points
in time where the MGBM criterion suggested to stop (for
different values of R) are marked with a circle.

In both cases the stopping criterion fired when the algo-
rithms have become stable and close to the optimum. De-
pending on the value of R the criterion had a quicker or
more inertial response.

It should be noted that in similar DTLZ3 tests performed
by Khare [8] the algorithms were left to run for more iter-
ations than the ones suggested by the criterion. A set of
analogous DTLZ3 and DTLZ7 tests were performed by Deb
et. al. [6] with the same population size as ours but with un-
specified internal parameters. For DTLZ3 our criterion also
suggested to halt the optimization with less iterations than
the ones used. However, in the case of DTLZ7 the criterion
suggested to keep running the processes for a longer term
than the one used; indicating that further processing was
need to reach the optimum. These results are summarized
in Table 1.

5.3.2 Expected Failures
In these tests we force the failure of the algorithms by at-

tempting to solve problems whose complexity exceeds their
capacity as they are configured.

For these tests, to show the progress of the algorithms by
measuring the distance of the NDt’s to P∗ lacks sense since
it would not show any usefull information.
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(b) DTLZ3 solved using SPEA2.

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

3.5

4

Iterations (t)

P
ar

et
o−

op
tim

al
 d

is
ta

nc
e

R=0.05,
t=237±16

R=0.10,
t=259±7

R=0.15,
t=275±6

(c) DTLZ7 solved using NSGA-II.
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(d) DTLZ7 solved using SPEA2.

Figure 2: Testing the MGBM criterion when solving the DTLZ3 and DTLZ7 problems with combination
of initial parameters that assured the algorithms success. The plots show the distance after each iteration
from the obtained set of non–dominated solutions to the Pareto-optimal set. The points in time where the
criterion suggested to stop (for different values of R) are marked with a circle.

Instead it is more interesting to plot the variation of the
a posteriori progress estimation, ŝt as it will show how it
moves towards zero.

Again, different values of R (0.05, 0.1 and 0.15) were used.
To induce the failure a 10–objective DTLZ3 test problem is
used. The algorithms are left to run for 200 iterations as
it allows to have a clear perspective of the evolution of the
values of ŝt.

The results of these tests can be observed in Figure 3.
There it can be noticed how depending on R the estimation
of progress descend with a bigger o lesser rate until it points
out that there is no progress and the algorithm execution
can be stopped.

6. FINAL REMARKS
On this work we have presented a novel stopping crite-

rion to be used in multiobjective optimization problems.
The criterion after each iteration of the optimization algo-

rithm gathers evidence of the improvement of the solutions
obtained so far. A global (execution–wise) evidence accu-
mulation process decides when the optimization should be
stopped.

Our criterion is particularly useful in complex and/or high-
dimensional problems where the traditional procedure of
stopping after a predefined amount of iterations cannot be
used and the waste of computational resources can induce
to a detriment of the quality of the results.

As part of this paper we have described the criterion the-
oretically and have examined its performance in some test
problems. However, since this is an initial approach to this
issue some questions remain yet to be properly handled.
For example, a better understanding of the impact of the
R parameter must be achieved and a proper study on the
complexity of the evidence accumulation algorithm must be
made.

One salient issue is the interpretation of the final state of
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Experiment MGBM stop Deb et. al. Khare
DTLZ3 using NSGA–II 91,104,115 500 500

DTLZ3 using SPEA2 121,132,149 500 500
DTLZ7 using NSGA–II 237,259,275 200 —

DTLZ7 using SPEA2 269,305,330 200 —

Table 1: Stop iterations suggested by the MGBM criterion with different values of R and the amount of
iterations used by Deb et. al. [6] and Khare [9] when solving DTLZ3 and DTLZ7 with similar configurations
of NSGA–II and SPEA2.
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(a) DTLZ3 solved using NSGA-II.
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(b) DTLZ3 solved using SPEA2.

Figure 3: Expected failure tests applying NSGA-II and SPEA2 to the DTLZ3 problem with 10 objectives.
The plots show the evolution of the a posteriori progress estimation, ŝt, after each iteration.

the algorithm in order to establish the reason of the process
halt. Evidences obtained during the production of this work
that indicate that, by analyzing amount of dominated and
non–dominated individuals in the population, some conclu-
sions can be extracted. If a large part (or in the worst case,
all) of the population is non–dominated then the algorithm
might had stopped because it was unable to reach satis-
factory solutions. On the other hand, if there is a “healthy”
relation between dominated and non–dominated individuals
it is probable that the algorithm stopped with success.
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