A Parallel Framework For Loopy Belief Propagation

*
A. Mendiburu, R. Santana, J.A. Lozano, and E. Bengoetxea
Intelligent Systems Group, Faculty of Computer Science
The University of the Basque Country, San Sebastian, Spain
{amendiburu,rsantana,ja.lozano,endika}@ehu.es

ABSTRACT

There are many innovative proposals introduced in the liter-
ature under the evolutionary computation field, from which
estimation of distribution algorithms (EDAs) is one of them.
Their main characteristic is the use of probabilistic models
to represent the (in)dependencies between the variables of a
concrete problem. Such probabilistic models have also been
applied to the theoretical analysis of EDAs, providing a plat-
form for the implementation of other optimization methods
that can be incorporated into the EDA framework.

Some of these methods, typically used for probabilistic in-
ference, are belief propagation algorithms. In this paper we
present a parallel approach for one of these inference-based
algorithms, the loopy belief propagation algorithm for fac-
tor graphs. Our parallel implementation was designed to
provide an algorithm that can be executed in clusters of
computers or multiprocessors in order to reduce the total
execution time. In addition, this framework was also de-
signed as a flexible tool where many parameters, such as
scheduling rules or stopping criteria, can be adjusted ac-
cording to the requirements of each particular experiment
and problem.

Categories and Subject Descriptors

G.3 [Probability and Statistics]: Probabilistic algorithms;
1.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search— Heuristic methods

General Terms

Algorithms, Performance

Keywords

Belief propagation, Factor graphs, Parallelism

*This work was supported by the SAIOTEK Autoinmune
(IT) 2006 and Etortek research projects from the Basque
Government, as well as by the Spanish Ministerio de Edu-
cacién y Ciencia under grant TIN 2005-03824.

Permission to make digital or hard copies of all or part of this work for

1. INTRODUCTION

Research on evolutionary computation has experienced a
remarkable development with the integration of results from
other research fields. In some cases, these results have con-
tributed to overcome some of their previously acknowledged
limitations and have allowed to be applied to more complex
and costly problems. One relevant example of these devel-
opments is the conception of evolutionary algorithms that
combine probabilistic models with machine learning tech-
niques to guide the search. Among them, some of the best
known example of such methods are estimation of distribu-
tion algorithms (EDAs) [18].

EDASs are characterized by the use of probabilistic graph-
ical models which serve to represent relevant relationships
between the variables of a concrete problem. It is generally
assumed that it is possible to build a model of the search
space that can be used to guide the search for the optimum
solution. Several probabilistic models can be used to repre-
sent the interactions between the variables, representing dif-
ferent types and degree of probabilistic dependencies. The
algorithms needed to learn the models and sample new so-
lutions from them have different degrees of complexity [11].

EDASs have shown to be very efficient to solve a wide va-
riety of optimization problems [11, 12]. But at the same
time, the probabilistic graphical models usually applied in
EDASs have shown to be useful for the theoretical analysis of
EDAs (e.g. analyzing the relationship between the function
structure and search distributions [17]) and as a framework
for the implementation of other optimization methods that
can be considered within the EDA paradigm.

Belief propagation (BP) algorithms are methods commonly
employed in probabilistic graphical models for inference,
that could also be used as optimization tools [21, 25, 26].
Given a probabilistic graphical model, BP algorithms can
obtain either marginal probabilities or the most probable
state of the distribution. This type of algorithms are based
on applying message-passing operators until the algorithm
converges —or until another stopping condition is satisfied.
BP algorithms do not guarantee convergence for graphs with
cycles but the literature shows many applications for which
optimal solutions are reached [6, 7, 25].

BP method has been used in the optimization of addi-
tively decomposable functions from which the expression of

personal or classroom use is granted without fee provided that copies areiy¢ function is available [25]. The advantage over EDAs is

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
GECCO’07, July 7-11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-698-1/07/000%5.00.

that no function evaluation has to be performed (only local
functions need to be calculated) and that EDA parameters
such as population size and maximum number of generations
are not used. In BP, the iterations of the message passing

scheme substitute the generations of the evolutionary algo-
rithm.

The limitation of BP in comparison to EDAs is that full
information about the function structure must be available
in order to be able to run BP. Thus, black-box optimization,
as conducted by EDAs, can not be accomplished. A solu-
tion to this situation is the conception of hybrid algorithms
that incorporate features from EDAs and BP as those in [9,
16, 23]. However, for this type of algorithms it is crucial to
have flexible and scalable BP implementations. Flexibility is
needed for allowing the manipulation of the BP components
(i.e. initializations methods, scheduling policies, and stop-
ping criteria) according to the search goals, and for the com-
bination of these components with the probabilistic model
learning and sampling steps used by EDAs. Scalability is es-
sential for addressing hard optimization problems with many
variables in reasonable time.

In this paper, we introduce a flexible parallel framework
for BP over factor graphs [10]. Parallelization is shown to be
a suitable alternative for achieving efficient BP implemen-
tations. Similarly to EDAs where parallelization has shown
to achieve important improvements over serial implementa-
tions [14], we show that optimal solution of the optimization
problems addressed can be efficiently found by using our im-
plementation.

The rest of the paper is organized as follows: Section 2
introduces belief propagation and factor graphs. Sections 3
and 4 present an analysis of the BP algorithm and describe
our parallel approach respectively. Results obtained from
some preliminary experiments are discussed in Section 5.
Finally, Section 6 provides general conclusions and future
lines of research.

2. FACTOR GRAPHS AND BELIEF PROP-
AGATION

In probability theory a graphical model is a structure
used to represent the (in)dependencies among random vari-
ables. In that structure (graph), variables are represented by

nodes, and edges are used to express conditional (in)dependencies

among variables.

Within the graphical models family, different represen-
tations exist: from models that use directed graphs, like
Bayesian networks and Gaussian networks, to models that
use undirected graphs like Markov random fields or factor
graphs.

Thanks to the useful properties that graphical models pro-
vide —such as visual representation of dependencies and facil-
ity to obtain factorizations of the probability distribution—
these are widely used in many problem domains, such as
medical diagnosis, speech and image processing, or general
optimization.

This paper focuses on factor graphs [10], which are bi-
partite graphs with two different types of nodes: variable
nodes and factor nodes. Each variable node identifies a sin-
gle variable X; that can take values from a (usually discrete)
domain, while factor nodes f; represent different functions
whose arguments are subsets of variables. This is graphically
represented by edges that connect a particular function node
with its variable nodes (arguments). Figure 1 shows a sim-
ple factor graph with six variable nodes {X1, Xa, ..., X}
and three factor nodes {fa, fp, and fc}.

Factor graphs are appropriated to represent those cases in

2844

Figure 1: Example of a factor graph.

which the joint probability distribution can be expressed as
a factorization of several local functions:

g mn) = 2 [] fites)

jeJ

(1)

where Z = > [[;.; fi(@;) is a normalization constant, n
is the number of variable nodes, J is a discrete index set,
X; is a subset of {X1,...,X,n}, and fj(x;) is a function
containing the variables of X; as arguments.

Applying this factorization to the factor graph presented
in Figure 1, the joint probability distribution would result
in:

Zfa(iv179027$3)fb($27$37904)fc($47$57$6)
(2)

Belief Propagation (BP) [21] is a widely recognized method
to solve graphical models inference problems. It is mainly
applied to two different situations: (1) when the goal is to
obtain marginal probabilities for some of the variables in
the problem, and (2) with the aim of searching for the most
probable global state of a problem given its model. These
two variants are also known as the sum-product and max-
product algorithms.

BP algorithm has been proved to be efficient on tree-
shaped structures, and empirical experiments have often
shown good approximate outcomes even when applied to
cyclic graphs. This has been widely demonstrated in many-
fold applications including low-density parity-check codes [22],
turbo codes [13], image processing [§8], or optimization [3].

The main characteristic of the BP algorithm is that the
inference is calculated using message-passing between nodes.
Each node sends and receives messages until a stable situa-
tion is reached. Messages, locally calculated by each node,
comprise statistical information concerning neighbor nodes.

When using BP with factor graphs, two kind of messages
are identified: messages ni—q(z;) sent from a variable node
i to a factor node a, and messages maai(xi) sent from a
factor node a to a variable node i. Note that a message is
sent for every value of each variable X;.

These messages are updated according to the following

rules:
H Me—i(T)

ceN(i)\a

g($17...,$6) =

®3)

Nima(Ti) ==

ma*,i(tl’i) = Z fa(xa) H njﬂﬂ(xj)

Ta\z; jeN(a)\i

(4)

()

Ma—i(2:) := arg max {fa(xa) | | nj—a(zj)}
Ta\z; eN (a)\i
jeN(a)\z

where N (i)\a represents all the neighboring factor nodes of
node ¢ excluding node a, and Zwa\zi expresses that the
sum is completed taking into account all the possible values
that all variables but X; in X, can take —while variable X;
takes its x; value.

Equations 3 and 4 are used when marginal probabilities
are looked for (sum-product). By contrast, in order to ob-
tain the most probable configurations (max-product), equa-
tions 3 and 5 should be applied.

When the algorithm converges (i.e. messages do not change),

marginal functions (sum-product) or max-marginals (max-
product) are obtained as the normalized product of all mes-
sages received by X;.

gi(w) o< [ma—il@s)

aeN(7)

(6)

Regarding the max-product approach, when the algorithm
converges to the most probable value, each variable in the
optimal solution is assigned the value given by the config-
uration with the highest probability at each max-marginal.
Some theoretical results on BP and modifications for maxi-
mization can be found in [24].

2.1 Application of message-passing algorithms
in optimization

Different variants of message-passing algorithms have been
applied to function optimization. BP method has been used
in the optimization of additively decomposable functions
from which the expression of the function is available [25].
The idea is to associate a probability distribution to the
function to be optimized in such a way that the most prob-
able value of the distribution is reached for the solutions that
optimize the function. Message passing is run until the algo-
rithm eventually converges and the optimal solutions might
be eventually recovered.

Propagation algorithms have also been employed to search
for optimal solutions of constrained problems. In [5, 4],
warning and survey propagation is introduced for the solu-
tion of the satisfiability problem (SAT). Warning and survey
propagation belongs to a new type of propagation algorithms
that intend to find satisfiable assignments to a set of clauses.
The algorithm uses factor graphs to represent the structure
of the problem and organizes the passing of messages.

Another proposal in the literature that relate BP and op-
timization algorithms in the context of EDAs can be found
in [20], where the estimation of higher order marginals from
small marginals is made by applying the iterative propor-
tional fitting (IPF) procedure.

3. ANALYSISOF THE BP ALGORITHM

As described in the previous sections, BP is a widely
studied and used algorithm and has been rediscovered and
adapted repeatedly to particular problems. Thus, different
implementations have been developed since the algorithm
was first proposed, although most of them are sequential
versions and have some limitations regarding the number of
nodes, neighbors, or scheduling policies. Regarding parallel
versions, to the best of our knowledge, recent works have
been designed only for exact inference methods [19].

This fact encouraged us to design a parallel version of
the BP algorithm for factor graphs. In order to do that,
we carefully analyzed the characteristics of the algorithm,

2845

with the aim of designing a flexible tool that could be tuned
and used with different problems, just selecting, for each
parameter, the appropriate value or set of values. In some
cases, allowing the user to establish some particular condi-
tions, can make possible to improve (when affordable) the
performance of the algorithm. In other cases, it allows to
complete several tests in order to observe to which extent
initial decisions can condition the final results.

When studying the BP algorithm, we detected three main
parameters susceptible to be defined by the user: (1) schedul-
ing policies —i.e. when and how the messages are sent and
received— (2) stopping criteria —that fix the conditions that
make the program to finish— and (3) initial values for some
parameters —including for example, initial message values.

3.1 Scheduling policies

An important aspect when using the BP algorithm is the
way messages are spread through the nodes that conform
the factor graph. In many implementations, scheduling is
designed following a synchronous model, where a clock trig-
gers the message-sending. In our implementation, we pro-
pose a rule-based scheduling. This way, the user can deter-
mine the particular conditions that govern the behavior of
each node, allowing to provide different rules for each node
or set of nodes. For each node, two types of rules can be
defined:

Number of messages: This is the simplest rule. This rule
is triggered when the node receives a fixed number of
messages. Then, it calculates the new messages, and
sends them to the neighbor nodes from which messages
were not received.

Sets of messages: This is a more complete rule, which al-
lows to define different pairs (RcvSet,SndSet). RcvSet
and SndSet represent subsets of nodes —including the
empty set for nodes that start sending. When mes-
sages have been received from all the nodes contained
in RcvSet, new messages will be calculated and sent

to all the nodes identified in SndSet.

In order to illustrate these scheduling options, two exam-
ples are provided based on the factor graph shown in Fig-
ure 1. One of the options is to use a scheduling based on the
number of messages received. Suppose we fix this number to
1 for all the nodes (different values for each node could also
be used). Under this condition, each time a node receives a
message it calculates its messages and sends them to all the
neighbors (except from the one that sent the message). For
instance, if f; receives a message from Xs, it will compute
and send messages to X2 and Xjy.

Another option is to use a scheduling based on sets of
messages that allow to create a more flexible scheduling. For
example, it would be interesting to define a scheduling policy
such that initially all variable nodes start sending messages.
Next, nodes (either variables or factors) only calculate and
send new messages after receiving messages from all their
neighbors. Table 1 shows the rules that need to be fixed
under configuration in the factor graph of Figure 1.

3.2 Stopping criteria

When the execution starts, each node acts following the
rules and the parameters set in the initial configuration. Ac-
cording to these parameters, each node will receive, calcu-
late, and send different messages. In an acyclic structure,

Table 1: Scheduling rules based on sets of messages

node RevSet SndSet
Xo Jafo Jafo
Xs fa, o fa, o
X4 fo,fe fo,fe
fa X1,X2,X3 | X1,X2,X3
fo | X2, X35,X4 | X2,X35,X4
fe X4,X5,X6 | X4,X5,X6

BP algorithm has been proved to converge —i.e. to reach a
stable situation with fixed message values. However, when
BP is applied to cyclic structures, the algorithm might ob-
tain good results in some cases but it cannot be guaranteed
that a stable situation will be reached.

That is why different stopping criteria need to be defined
in order to guarantee that a particular execution will always
end up. Taking into account the different situations that can
happen during execution, we have defined three different
stopping criteria that are independently checked by each
node. The algorithm will stop if either:

e In the last i iterations (message calculations) the same
message values are obtained, or

e In the last ¢ iterations the same message sequence is
repeated. That is, a cyclic situation is detected, where
message values mi,ma,...,m; are repeatedly obtained,
or

e A maximum given number of messages is calculated.

3.3 Initial settings

In addition to scheduling policies and stopping criteria
there are also different parameters that have to be consid-
ered. Examples of those required to be manually defined by
the user are the function values for each factor node (prob-
lem depending), and the initial message values that nodes
will take. It is also possible to prefer that the messages
sent by a node to its neighbors should have always the same
(fixed) value.

Other additional settings are the following:

Allowed difference: when comparing two messages, they
are said to have the same value when the difference
between them is lower than the value fixed in this pa-
rameter,

Maximum number of messages: this was defined to stop
the execution of the program if a stable situation was
not reached after calculating that number of messages,

Number of comparisons needed: establishes the num-
ber of comparisons (between messages) that should be
done before considering a situation stable.

Cache size: determines the number of messages that each
node will store.

Algorithm: to decide if either sum-product or max-product
will be used.

2846

4. PARALLEL DESIGN

In recent years the availability of computer clusters or
even grids have encouraged the design of parallel applica-
tions. Following this trend, we have designed a parallel ap-
plication that can be executed efficiently in multiprocessors
or clusters of computers.

The application was implemented using the widely known
Message Passing Interface (MPI) paradigm [1]. MPI is an
Application Programming Interface (API) that can be used
by processes to communicate to each others, even when
they are running in the same or in different computers. In
the latter case, message exchange is performed using a net-
work. The MPI forum —a group of academic and indus-
trial experts— designed and standardized this paradigm to
be used in very different types of parallel computers. A wide
set of functions are available for managing, sending and re-
ceiving messages.

Regarding the BP algorithm, looking at its behavior, a
direct parallel approach is possible: each node (process) is
related to a CPU, being only responsible for receiving, cal-
culating, and sending messages according to the scheduling
policies. However, this approach depends directly on the
size of the problem and the computational resources avail-
able. Note that for a network with a thousand of nodes, it
will be necessary to use one thousand of CPUs, which are
not available for most of researchers. When the number of
processors available is lower than the number of nodes in
the factor graph, a possible solution could be to assign more
than one process to each processor. However, overcharging
processors excessively is not advisable since it could nega-
tively affect the performance of the algorithm.

Based on this initial design, we propose a solution where
each process is responsible for a group of nodes of the factor
graph. This way, the number of processors does not have to
equal the number of nodes, making the algorithm affordable
for a wider set of scenarios. Obviously, the size of each group
will directly depend on the particular characteristics of the
problem as well as on the communication - computation
ratio of each process.

For the MPI implementation, the well-known manager-
worker scheme was chosen. The manager-process is respon-
sible for loading the problem structure and the user-defined
settings. Once it has sent all the information to the workers,
it waits until all workers have finished, gathering all partial
results and storing them.

Regarding worker-processes, each of them is responsible
for a set of nodes (variables or factors). The distribution of
nodes between workers is fixed once the application starts,
and is kept unchanged until the execution ends. Inside the
worker, a shift-based scheme is used, where each node will
be attended sequentially checking if any of its rules is ful-
filled; Every time this happens, messages are calculated and
sent. The messages calculated by each node will be sent to
other workers or queued in the sending worker depending on
whether the sender and receiver belongs to the same worker
or not. Figure 2 illustrates this manager-worker scheme as-
suming that three workers are running. The node distribu-
tion presented is according to the factor graph introduced
in Figure 1. In our method this distribution has been done
trying to equally distribute variable and factor nodes. How-
ever, a deeper study to weigh the incidence that different
distributions could have on the algorithm’s performance is
regarded as a future work to be done.

\ \ \
‘Worker 1 ‘ ‘Worker2 ‘ ‘Worker 3 ‘

X4, Xo, o Xa, X4, fo Xs, Xe, fo

Figure 2: Manager-worker scheme. Node distribu-
tion is shown for the factor graph in Figure 1 using
three workers.

Pseudo-code for the manager

Step 1. Get the structure of the factor graph from file

Step 2. Get the configuration from file

Step 3. Send the structure of the FG to the workers

Step 4. Send the configuration to the workers

Step 5. numWorkersEnded = 0

Step 6. While numWorkersEnded != numWorkers
Wait for a worker to finish
Store messages from the worker
numWorkersEnded = numWorkersEnded + 1

End While

Step 7. Send stop order

Step 8. Show results

Step 9. Stop.

Figure 3: Pseudo-code for the manager.

Figures 3 and 4 describe the pseudo-code for the manager
and workers.

5. EXPERIMENTS

In order to test the performance of our parallel approach,
we have conducted a number of experiments using as a test
bed a well known optimization function (checkerboard) and
running the experiments using a cluster of computers.

The checkerboard function was firstly introduced in [2].
In this problem, a s x s grid is given. Each point of the
grid can take a value 0 or 1. The goal of the problem is
to create a checkerboard pattern of 0’s and 1’s on the grid.
Each point with a value of 1 should be surrounded in all four
basic directions by a value of 0, and vice versa. The eval-
uation counts the number of correct surrounding bits. The
maximum value is 2s(s — 1), and the problem dimension is
n = s2. If we consider the grid as a matrix x = [@ij)i=1,....s
and interpret d(a,b) as the Kronecker’s delta function, the
checkerboard function can be written as’:

S

s—1
FChecke'rBoa'rd(w) - 25(5 - 1) - Z Z (5(‘1'”7 x¢j+1) —
i=1 j=1

s s—1

SN (@i, wivry). (7)

j=1i=1

This problem is represented using factor graphs by adding

!This is a slightly different formulation that the used in [2]

2847

Pseudo-code for workers
Step 1. Receive the structure of the factor graph
from the manager
Receive the configuration from the manager
For each node n in worker
If startsSending
Look for a scheduling-rule
Calculate messages
Send messages according to the rule
End If
End For
While not allNodesFixed
Wait for a message
For each active node n in worker
Look for a scheduling-rule
If ruleFound
Calculate messages
Check stopping criteria
Send messages according to the rule
End If
End For
End While
Send final messages to the manager
Wait for the stop order
Stop.

Step 2.
Step 3.

Step 4.

Step 5.
Step 6.
Step 7.

Figure 4: Pseudo-code for the workers.

factor nodes, horizontally and vertically, between each pair
of points of the grid (variable nodes). The factor function
takes value 0 when its arguments have the same value and
1 otherwise. A factor graph representation for the 3 x 3
checkerboard problem is shown in Figure 5.

Experiments were carried out in a cluster of computers
with 4 nodes. Each node has two Intel Xeon processors
(2.4GHz, hyper-threading disabled), with 512KB of cache
memory each and 2GB of (shared) RAM, all under Linux.
The chosen MPI implementation is MPICH2? (version 1.0.5),
installed using default parameters. C++ compiler is version
3.3.3 of GCC. Nodes are interconnected using a switched
Gigabit Ethernet network.

Regarding the problem complexity, two different sizes were
selected: 40 and 50 —which consequently requires a factor

http:/ /www-unix.mcs.anl.gov/mpi/mpich2

Figure 5: Factor graph representation for a 3 x 3
checkerboard problem.

graph structure with 4,720 and 7,400 nodes respectively.
The rest of parameters were fixed as follows:

e The scheduling-policy was defined based on sets of
nodes. Particularly, variable nodes start sending mes-
sages and the subsequent information-interchanging is
completed for each node (either variable or factor) ev-
ery time it receives a message from all its neighbors
(these scheduling-rules are the same as those in Fig-
ure 1).

e Allowed difference is 1.0e-3, maximum number of mes-
sages are 30, cache-size is 20, 10 is the number of com-
parisons needed to fix a node, and the algorithm is
max-product.

e Graph is partitioned taking into account the number of
MPI process available. The distribution will be com-
pleted trying to distribute in each MPI process a sim-
ilar number of variable nodes and factor nodes.

It must be noted that in these experiments we do not
intent to proof the suitability of the BP algorithm to solve
this particular problem. These preliminary runs have been
designed to study the execution time and scalability of the
parallel approach.

Tables 2 and 3 show the execution time (in seconds) for
the 40 x 40 and 50 x 50 problems respectively. Taking into
account the nature of the BP algorithm, the parallel applica-
tion has high communication requirements due to a constant
message exchange until a stopping criterion is met. That is
why we decided to run different experiments changing the
number of MPI processes running in each node.

Looking at the results, it can be seen that our parallel
proposal presents, in general, an acceptable scalability. In
addition, varying the number of MPI processes executed in
each CPU allows to notably reduce the execution time.

Since this is a preliminary approach, additional experi-
ments should be conducted in order to properly tune the
parallel application. However, some interesting conclusions
can be obtained from our findings:

e Overcharging CPUs is useful only when non CPU in-
tensive applications are executed. These results con-
firm our initial hunch, in the sense that communica-
tion plays an important role in this application. Thus,
looking for communication bottlenecks will be essen-
tial to improve the general behavior of the application
as well as its scalability.

e Workload distribution is really important when design-
ing a parallel algorithm. Particularly, in our applica-
tion, the way the graph is partitioned can give rise to
non well balanced tasks (as seems to be the case).

e The available MPICH2 installation was configured with
default options. When applying these, the communi-
cation between the MPI processes is performed though
sockets, even when communicating processes are in
a same machine. Obviously, this fact affects to all
intra-node communications, and it is our aim to com-
plete a deeper study using the different communica-
tion devices provided by MPICH2: only sockets, socket
plus shared memory, and nemesis (a particular high-
performance device).

e As mentioned when describing the characteristic of the
cluster, hyper-threading was disabled. This technol-
ogy provides thread-level parallelism on each proces-
sor, resulting in a more efficient use of processor re-
sources, and a higher processing throughput. As ob-
served in previous works [15], using this technology can
be really helpful, helping to increase the performance
of parallel implementations.

6. CONCLUSIONSAND FUTURE WORK

This paper introduces a parallel framework for a proba-
bilistic inference algorithm. Among the different approaches
available, we have focused on the belief propagation algo-
rithm over factor graphs. BP is generally used to obtain
marginal probabilities or the most probable state of the dis-
tribution. The algorithm is based on message-passing oper-
ations that are applied until a stopping condition is reached.

Before designing our parallel approach, BP algorithm was
studied deeply trying to create a framework as flexible as
possible. This solution allows the user, for example, to de-
fine the most suitable scheduling policy for a problem, to
fix initial message values for a set of nodes or to decide
the criterion that should be reached to stop the execution.
This parallel framework has been implemented using the
well-known message-passing paradigm MPI. The manager-
worker scheme has been adopted, where manager loads ini-
tial information, sends it to the workers, and waits to gather
the final results. On the other hand, workers manage a set
of nodes (variables or factors), sending, calculating, and re-
ceiving messages according to the scheduling policies and
parameters established initially.

Our experiments prove that our parallel proposal shows
an acceptable scalability, being able to make a efficient use
of up to 6 or 8 CPUs for the different problems defined.

Regarding the future research lines, we aim to extend this
work to different scopes:

Test schedulings: once the user has designed the proper
scheduling rules for the problem, it would be necessary
to check if blocking situations can occur. That is, a
node is waiting for messages from its neighbors, but
these messages will never arrive because senders are
also waiting for receiving other messages.

Optimum node distribution: taking into account that
each MPI-worker executes the message-interchanging
of a group of nodes (variables and/or factors), the way
these nodes are distributed among the workers is re-
ally important and can condition the performance. It
would be necessary to apply an optimization technique
to properly distribute the nodes according to the struc-
ture of the factor graph, number of workers, cardinality
of the variable nodes, and so on.

Performance analysis: We have presented some prelim-
inary results using MPICH2’s default configuration.
In addition to this work, it could be interesting to ex-
tend the experiments completing an exhaustive perfor-
mance analysis, taking into account the configurations
available (communication devices via shared memory
or nemesis).

Analysis of BP: Although some theoretical works there
exist for BP algorithm, there is not a whole knowl-
edge about its behavior. Therefore, the flexibility of

Table 2: Execution time (seconds) for the 40 x 40 problem, using up to 4 nodes (8 CPUs) and different number
of MPI processes per node. Best results are presented in bold.

40 x 40
nodes (# CPUs) # processes per node
2 4 8 10 12 14 18
1(2) 354.05 | 132.64 | 43.65 | 38.69 | 46.61 | 36.53 | 39.34
2 (4) 120.76 50.11 25.01 | 22.59 | 22.76 | 23.56 | 24.46
3 (6) 63.45 27.89 | 20.16 | 19.50 | 21.94 | 24.47 | 24.81
4 (8) 41.57 22.55 | 15.64 16.74 | 19.35 20.10 | 23.80

Table 3: Execution time (seconds) for the 50 x 50 problem, using up to 4 nodes (8 CPUs) and different number
of MPI processes per node. Best results are presented in bold.

50 x 50

nodes (# CPUs) # processes per node

2 4 8 10 12 14 18
1(2) 921.33 | 330.18 | 162.56 | 138.09 | 116.60 | 108.06 | 83.03
2 (4) 296.99 | 120.81 72.35 | 54.46 | 53.97 | 48.98 | 52.35
3 (6) 157.50 | 67.53 | 48.72 | 44.09 | 43.75 | 48.21 | 51.88
4 (8) 100.61 50.93 | 36.05 | 36.12 | 39.17 | 43.80 | 48.02

our tool to set different configurations can be useful to [9] R. Hons, R. Santana, P. Larrafiaga, and J. A. Lozano.

empirically study some properties of the algorithm.

EDAs: Finally, we also plan to include BP as a part of

7.
1]

2]

3]

[4]

[5]

(6]

[7]

8]

the EDA framework. Particularly, BP can be used to
complete individual sampling.

REFERENCES

Anonymous. MPI: A message-passing interface
standard. International Journal of Supercomputer
Applications, 8(3/4):159-416, 1994.

S. Baluja and S. Davies. Using optimal
dependency-trees for combinatorial optimization:
Learning the structure of the search space. Technical
report, Carnegie Mellon Report, CMU-CS-97-107,
1997.

M. Bayati, D. Shah, and M. Sharma. Maximum
weight matching via max-product belief propagation.
IEEFE Transactions on Information Theory, Accepted
for publication.

A. Braunstein, M. Mézard, and R. Zecchina. Survey
propagation: An algorithm for satisfiability. Random
Structures and Algorithms, 27(2):201-226, 2005.

A. Braunstein and R. Zecchina. Survey and belief
propagation on random k-sat. Lecture Notes in
Computer Science, 2919:519-528, 2004.

J. M. Coughlan and S. J. Ferreira. Finding deformable
shapes using loopy belief propagation. In ECCV "02:
Proceedings of the 7th Furopean Conference on
Computer Vision-Part 111, pages 453-468, London,
UK, 2002. Springer-Verlag.

C. Crick and A. Pfeffer. Loopy belief propagation as a
basis for communication in sensor networks. In
Proceedings of the 19th Annual Conference on
Uncertainty in Artificial Intelligence (UAI-2003),
pages 159-166. Morgan Kaufmann Publishers, 2003.
W. T. Freeman, E. C. Pasztor, and O. T. Carmichael.
Learning low-level vision. International Journal of
Computer Vision, 40(1):25-47, 2000.

(10]

(11]

(12]

(17]

(18]

2849

Optimization by max-propagation using Kikuchi
approximations. Submitted for publication, 2007.

F. R. Kschischang, B. J. Frey, and H.-A. Loeliger.
Factor graphs and the sum-product algorithm. IEEE
Transactions on Information Theory, 47(2):498-519,
2001.

P. Larranaga and J. A. Lozano. Estimation of
Distribution Algorithms: A New Tool for Evolutionary
Computation. Kluwer Academic Publishers, 2002.

J. A. Lozano, P. Larranaga, I. Inza, and

E. Bengoetxea, editors. Towards a New Evolutionary
Computation: Advances on Estimation of Distribution
Algorithms. Springer-Verlag, 2006.

R. J. McEliece, D. J. C. MacKay, and J.-F. Cheng.
Turbo Decoding as an Instance of Pearl’s ” Belief
Propagation” Algorithm. IEEE Journal on Selected
Areas in Communications, 16(2):140-152, 1998.

A. Mendiburu, J. Lozano, and J. Miguel-Alonso.
Parallel implementation of EDAs based on
probabilistic graphical models. IEEFE Transactions on
Evolutionary Computation, 9(4):406-423, 2005.

A. Mendiburu, J. Miguel-Alonso, and J. A. Lozano.
Implementation and performance evaluation of a
parallelization of estimation of bayesian network
algorithms. Parallel Processing Letters, 16(1):133-148,
2006.

H. Miihlenbein and R. Hons. The factorized
distributions and the minimum relative entropy
principle. In M. Pelikan, K. Sastry, and E. Canti-Paz,
editors, Scalable Optimization via Probabilistic
Modeling: From Algorithms to Applications, Studies in
Computational Intelligence, pages 11-38.
Springer-Verlag, 2006.

H. Miihlenbein, T. Mahnig, and A. Ochoa. Schemata,
distributions and graphical models in evolutionary
optimization. Journal of Heuristics, 5(2):213-247,
1999.

H. Miihlenbein and G. Paafl. From recombination of

(21]

(22]

genes to the estimation of distributions I. Binary
parameters. In H. M. Voigt, W. Ebeling,

I. Rechenberger, and H. P. Schwefel, editors, PPSN
1V, volume 1141 of Lecture Notes in Computer
Science, pages 178-187. Springer, 1996.

V. K. Namasivayam and V. K. Prasanna. Scalable
Parallel Implementation of Exact Inference in
Bayesian Networks. In JCPADS (1), pages 143-150.
IEEE Computer Society, 2006.

A. Ochoa, R. Hons, M. R. Soto, and H. Miihlenbein.
A maximum entropy approach to sampling in EDA-
the single connected case. In Progress in pattern

recognition, speech and image analysis, volume 2905 of

Lectures Notes in Computer Science, pages 683—690,
2003.

J. Pearl. Probabilistic Reasoning in Intelligent
Systems. Morgan Kaufmann, Palo Alto, CA, 1988.

T. J. Richardson and R. L. Urbanke. The capacity of
low-density parity-check codes under message-passing
decoding. IEEE Transactions on Information Theory,
47(2):599-618, 2001.

2850

23]

24]

25]

(26]

R. Santana. Advances in Probabilistic Graphical
Models for Optimization and Learning: Applications
in Protein Modelling. PhD thesis, 2006.

M. Wainwright, T. Jaakkola, and A. Willsky. Tree
consistency and bounds on the performance of the
max-product algorithm and its generalizations.
Statistics and Computing, 14:143-166, 2004.

C. Yanover and Y. Weiss. Finding the M most
probable configurations using loopy belief
propagation. In S. Thrun, L. Saul, and B. Schélkopf,
editors, Advances in Neural Information Processing
Systems 16. MIT Press, Cambridge, MA, 2004.

J. S. Yedidia, W. T. Freeman, and Y. Weiss.
Constructing free energy approximations and
generalized belief propagation algorithms. IEEFE
Transactions on Information Theory, 51(7):2282-2312,
2005.

