
Browser-based Distributed Evolutionary Computation:
Performance and Scaling Behavior

Juan-J. Merelo
Antonio Mora-García

JLJ Laredo
Dpto. Arquitectura y

Tecnología de Computadores
ETS Ingeniería Informática
Universidad de Granada,

Granada 18071
{jmerelo|amorag|juanlu}@geneura.ugr.es

Juan Lupión
The Cocktail

pantulis@gmail.com

Fernando Tricas
Dpto. Informática e Ingeniería

de Sistemas
Centro Politécnico Superior
Universidad de Zaragoza

ftricas@unizar.es

ABSTRACT
The challenge of ad-hoc computing is to find the way of
taking advantage of spare cycles in an efficient way that
takes into account all capabilities of the devices and inter-
connections available to them. In this paper we explore dis-
tributed evolutionary computation based on the Ruby on
Rails framework, which overlays a Model-View-Controller
on evolutionary computation. It allows anybody with a web
browser (that is, mostly everybody connected to the Inter-
net) to participate in an evolutionary computation experi-
ment. Using a straightforward farming model, we consider
different factors, such as the size of the population used. We
are mostly interested in how they impact on performance,
but also the scaling behavior when a non-trivial number of
computers is applied to the problem. Experiments show the
impact of different packet sizes on performance, as well as a
quite limited scaling behavior, due to the characteristics of
the server. Several solutions for that problem are proposed.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
I.2.11 [Artificial intelligence]: Distributed Artificial Intel-
ligence—Multiagent systems

General Terms
Performance

Keywords
Distributed computing, internet computing, world-wide-web,
overlay networks, application level networks, ruby on rails,
parallel computing, implementations

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-698-1/07/0007 ...$5.00.

1. INTRODUCTION
Application–level networks, ALNs, are configured as a set

of clients that can provide their spare CPU cycles by means
of an application that can be downloaded, establishing a dis-
tributed computation network. Some ALN like SETI@Home
have been quite successful, while other experiments such as
Popular Power have not. Many of these ALNs provide spare
or ad hoc computational power for distributed computing
experiments.

The key feature of these application–level networks is the
simplicity of use: we believe that the best way to obtain the
participation of as many users as possible is to avoid trouble.
In particular, it will be easier if they do not need to down-
load a special application to participate. For this reason, we
are exploring the use of elements that are usually installed
in the user’s computer; in this sense, it is clear that the web
browser is an element almost universally installed: it is avail-
able even in some cellular phones. Moreover, most browsers
include a JavaScript interpreter [18, 32, 15]. JavaScript is
an interpreted language, initially proposed by Netscape, and
later adopted as an ECMA standard [11, 12, 13, 14]. In this
way, most browsers are compatible, at least at a language
level (not always at the level of browser objects, where there
exists a reasonable compatibility, anyway).

The ability to use these features for distributed comput-
ing appeared with the XmlHttpRequest object, which allows
asynchronous petitions to the server, in what has been called
AJAX, Asynchronous JavaScript and XML [36]1. The tra-
ditional client/server model becomes then more egalitarian,
or closer to a peer to peer model, since a bidirectional com-
munication line appears: the browser can make calls to the
server, do some computation and later send the results to
the server. The proposed mechanism is as follows: the Xml-

HttpRequest is provided with a request to the server and
a pointer to a callback function. The request generates an
event, which is asynchronously activated when a reply is re-
ceived making use of the callback function. Following this
approach the browser is not locked, providing the way to

1AJAX is just one of the possible ways to perform asyn-
chronous client-server communication, the others being
AJAJ (Asynchronous Javascript and JSON), and remoting
using applets or embedded objects. However, it is quite pop-
ular, and a wide user base and documentation is available
for it.

2851



program applications that are similar to the ones the volun-
teers are used to, in the sense that they do not have to wait
for the application to load and render the whole screen every
time a request is made. On the other side, this provides a
way to use the browser for application level networks and
its use for distributed computing systems, since the request-
response loop does not need the user participation in a fash-
ion very similar to any other distributed computing applica-
tion. This feature can be controlled from the server with any
programming language. Of course, it can also be combined
with other distributed programming frameworks based on
OpenGrid [28].

The server can be programmed traditionally using any
of the paradigms available (servlets or CGIs, for instance),
but in order to produce a rapid development of the appli-
cation, the use of Ruby on Rails [33, 21, 34] (from now
on RoR) was considered [24]. It is a framework based on
Ruby language and in the Model/View/Controller [16, 20]
paradigm (which has been used before in evolutionary com-
puting; for example, in [5]). In this context the data model
is clearly separated (usually with a database management
system) from the different views (HTML templates that will
be used by the server to fill in the data and send the pages
to the client), and from the control part, the functions that
modify and manage data; in RoR, the controllers are in
charge of receiving client requests and react to them. When
constructing a RoR application we need to setup a data
model, a controller which will distribute the computation
among client an server and a set of views. In our case, these
views will include the client’s computation part (since the
JavaScript programs are included in the pages that will be
served to clients)2.

We are concentrating on distributing, evolutionary com-
putation applications, which has already been adapted to
several paradigms of parallel and distributed computing (for
example, Jini [17], JavaSpaces [31], Java with applets [9],
MPI [8, 7], service oriented architectures [25, 27] and P2P
[3, 26]) and it is adequate for this kind of exercise for several
reasons: it is a population based method, so computation
can be distributed among nodes in many different ways; be-
sides, some works suggest that there are synergies among
evolutionary algorithms and parallelization: isolated popu-
lations that are connected only eventually avoid the loss of
diversity and produce better solutions in fewer time obtain-
ing, in some cases, superlinear accelerations [1].

This work goes a bit further than a mere proof of con-
cept [24]: first, we will try to establish a baseline for the
performance of a JavaScript-based evolutionary algorithm
by running benchmarks on several virtual machines; then,
we will try to see how different elements of the system, es-
pecially latency, influence performance, and, finally, we will
do some measurements of DCoR system (Distributed Com-
putation on Rails) in a real network, in order to see how this
computation scales.

The rest of the paper is organized as follows: next, an ex-
position of the state of the art in volunteer and so-called
parasitic computing is presented. Section 3 presents the
DCoR (Distributed Computation on Rails) system; to be
followed by experiments in browser performance (section 4)

2Please note that this is only one possible arrangement,
which was deemed the simplest for these initial studies. Oth-
ers, including storing JS code in the database (making it
part of the model) are also possible within RoR

and scaling behavior (section 5). Finally, the last section
shows conclusions and future lines of research.

2. STATE OF THE ART
So called volunteer computing [29, 30, 2] takes advantage

of the creation of an infrastructure so that different people
can donate CPU cycles for a joint computing effort. The
best known project is SETI@home3, which, from the user’s
point of view is a screen-saver which has to be downloaded
and installed; when the user’s CPU is not busy it performs
several signal analysis operations. Some companies related
to volunteer computing, such as Popular Power (and others;
they are referenced, for example, in [6]) did some experimen-
tation with Java based clients, but none has had commercial
success.

There are mainly two problems in this kind of networks:
first of all, it is important not to abuse volunteers CPU re-
sources; secondly, a sufficient number of users is needed in
order to be able to do the required computation; this can
also be a problem on its own if there are too many users for
the considered setup. A third problem is that performance
prediction is difficult when neither the number of partici-
pants nor their individual node performances are known in
advance. In any case, we believe that the best way to obtain
enough users is to make it easy for them to participate, using
technologies available in their computers, as the browser is.
In fact, some suggestions have been published (for example,
the one of Jim Culbert in his weblog [10], and in some mail-
ing lists), but we are not aware of any serious study about
it.

The proposed approach could also be considered as para-
sitic computing since, as stated in Section 1, the only par-
ticipation of the user will be to load a web page; in fact, it
could use these resources without his acquiescence (and, in
any case, it would be desirable to run without causing much
trouble). The concept was introduced by Barabsi in [4], and
followed by others (for instance, Kohring in [19]) In that
work they proposed to use the Internet routers to compute
a checksum by means of a set of specially crafted packets
to solve the SAT problem. Anyway, although the concept
is interesting, there seems not to be a continuation for this
work.

The virtual machine embedded into the browser provides
a way to easily do that kind of sneaky/parasitic computing,
but JavaScript has the problem to be an interpreted lan-
guage and the efficiency of different implementations varies
wildly. Moreover, it is not optimized for numerical compu-
tation but for object tree management (the so called DOM,
document object model) and strings. Nevertheless its wide
availability makes us think about considering it, at least as
a possibility. It is also important to remember that these
resources can be used without the user’s participation (they
only need to visit a web-page) opens a wide set of alternative
possibilities (and dangers, of course).

In this work an evolutionary computation system will be
presented. it has been developed in a Ruby on Rails based
framework that takes advantage of this feature; in this sense
the approaches is new. We will tackle the three main prob-
lems: abundance of clients (via the system itself), possibility
of client CPU abuse (also via de system itself; the JS vir-

3See http://setiathome.berkeley.edu/ for downloading
the software and some reports.

2852



tual machine runs within a sandbox inside the browser), and
performance prediction (which we will try to approach via
several experiments and benchmarks).

3. RESOURCES AND METHODOLOGY
For the experiment we need several clients with JavaScript

equipped browsers and a server running Ruby on Rails. RoR
applications include their own web server, WEBrick, but
there are other options, such as Mongrel4 and lighttpd5 that
are faster and will be preferred for the experiments described
below.

The application follows MVC model; in this sense it is
organized as a model, a view and a controller. We will con-
centrate on the first and the last of them.

The model is a table in the database representing the
population, that could be similar to this6:

create table guy {

cromosoma varchar(256),

fitness float

};

This table will store the population.
We have preferred a traditional representation using a bi-

nary string; the chromosome will be a list of 0s and 1s.
We are also using a scalar fitness, represented with a single
float value7. In any case, the data model is related to the
application we want to optimize and different chromosome
representations and different fitness would need a different
data model.

For the controller, we will need controls that request
new elements from the population pool and send them back
once evaluated. This is also related to the labor division
among clients and server. We need to take into account that
the evolutionary algorithm needs to include several actions:
evaluation, genetic operators (mutation and crossing), and
merging of the population. The simplest way of distribut-
ing tasks is to evaluate fitness, which is usually the most
time consuming operation on the clients and to do the other
steps on the server, as shown in the algorithm; this scheme
is usually called farming. Technically, the evaluation step
should be included in the view, since it is interpreted in the
client; in practice, it will be a JavaScript program that will
be included in the templates stored in the corresponding
directory of the RoR application. Obviously, the fact that
it will be executed on the client has security and authenti-
cation consequences that have to be considered (including,
probably, fraud as shown in [29]). Since we are doing our
experiments in a controlled way, they have not been consid-
ered. We will only consider IP-based authentication (that
is, in this experiment we know in advance which IP ad-
dresses are going to participate in it), and we will suppose
that clients will not send a higher fitness than the computed
one (which would give false results). Of course, there are
other methods to deal with this, such as replicating evalu-
ations in different clients (and comparing them), or using

4http://mongrel.rubyforge.org/
5http://lighttpd.net/
6In fact, it stores also some information about the algorithm
it belongs to: an identifier and the state
7Which limits us, for the time being, to single–objective op-
timization; but, in fact, there is no constraint, since current
database management systems can work with vectorial data
types

some kind of client/server codification that would hinder or
avoid tampering with data. Controls will be needed to gen-
erate individuals and for the genetic operators. They will
be written in Ruby because they will be executed on the
server. The whole system can be sketched as follows, from
the client’s point of view:

1. Loading of the client code, which will be done along
with the web page, identified by an experiment unique
URL: it will start when the web page is loaded on the
browser (by means of onLoad browser’s event) or at
the user’s request.

2. Request individuals to the server in order to evaluate
them. The server sends a prefixed number of individ-
uals (a package). If there are not enough individuals
to be evaluated, they will be generated on the fly (by
applying genetic operators).

3. The client evaluates individuals and send the result
back to the server. It will be evaluated in the server by
the controller’s method populationReady. Several for-
mats can be used for the information interchange. Be-
ing AJAX the selected technology, it would seem natu-
ral to use XML, but we selected JSON (JavaScript Ob-
ject Notation). JSON8 is an object serialization proto-
col that uses alphanumeric strings for data structures.
It can be evaluated in JavaScript in order to convert it
to an object and Ruby can also interpret and produce
it from the database in a very straightforward manner.

4. The server uses tournament selection to generate new
individuals and replace unfit ones. In this method from
a number n of individuals, the worst p < n are sup-
pressed and substituted with the offspring of the rest
of individuals; of course it can also be done selecting
the best ones until the number of needed individuals
is reached (usually the same number as in the original
population). This tournament can be done in several
steps by means of random tournaments that will serve
to detect the worst individuals and to eliminate them;
then we will take the remaining ones in order to repro-
duce them. The algorithm terminates when a number
of individuals has been evaluated or when a prefixed
fitness level is reached. In this way a percentage of
the new individuals will be generated by means of the
available genetic operators.

5. The reply is sent to the client where a callback is gen-
erated in order to return to the evaluation step with
these new individuals.

6. The algorithm terminates when the client stops or
when some condition is reached; for example, the pre-
fixed fitness is reached, or the selected number of eval-
uations has been made.

The parameters and the execution of the algorithm are
configured by means of the web page, as shown in Figure 1.
The algorithm can be executed by clicking on Run from its
web page, where it is also possible to modify the param-
eters or to restart it, as is shown in the figure mentioned
above. The system can contain several algorithms at the

8More information at http://www.json.org/

2853



Figure 1: Screen capture of the DCoR application running on the browser. It shows different controls and
algorithm parameters which will be executed in the tests.

Figure 2: The algorithm is executing. It shows the content of each individual and the fitness value for the
64 bits binary knapsack problem.

same time, each one identified by its own URL in a for-
mat similar to http://node:3000/algorithm/generation/

<algorithmID>, that can be used to run it from any browser.
The server can run several algorithms at the same time, al-
though that capability has not been tested in this paper.
A screen capture of an algorithm running is shown in Fig-
ure 2. The web page is dynamically refreshed when new
server requests are received. The source code of the project
is at RubyForge9, and it has been licensed under the GPL;
notice that this is an ongoing work and the software state
at each moment can or cannot correspond to the ideas ex-
pressed in this paper.

4. BROWSER PERFORMANCE
Several experiments on different browsers and with a lim-

ited number of computers ([23, 24], in Spanish), have yielded
the result that different browsers have very different JavaScript
virtual machine performance, with Opera consistently out-
performing the rest, and Konqueror (the default KDE browser)
coming last in performance. With ad-hoc computation you
can’t choose the computer the program is going to run even-
tually on, but it’s always interesting to have this data at
hand when trying to predict the performance of a particular
problem, or estimate how much time a problem is going to
take based on statistics of browser usage in a particular web
site.

9http://rubyforge.org/projects/dconrails/

Performance also varies with the kind of problem (spe-
cially depending on the kind of operations used to compute
fitness, and the data types –integer or floating point–), so,
in this occasion, a floating-point based problem has been
chosen: the 10-variable Griewank [22] function,

F (x) =

n
X

i=1

xi
2

4000
+

n
Y

i=1

cos
xi√

i
+ 1 (1)

xi is in the range -511,512. This function is character-
ized by a high number of local minima, although it can
be easily solved using any global optimization procedure.
We are not really interested in its difficulty, but in the
fact that it has got a size and a complexity adequate to
measure performance. In our experiments, we have chosen
n = 10. The chromosome uses 20 bits to encode each float-
ing point number, so that each gene is decoded by computing
xi = (M − m) ci

1048575
+ m, where M and m are the range

minimum and maximum, and 1048575 the biggest number
that can be coded with 20 bits and ci is the binary value
of the gene. This is probably not representative of the kind
of problems that would have mass appeal so that people
would volunteer cycles to it, but, since it is a floating-point
based problem, it is interesting for benchmarking the kind
of performance that would be expected in this kind of envi-
ronment.

The experiments using this setup has been carried out
as follows: first we have measured the individual evalua-
tion rate in several configurations: a stand-alone Javascript

2854



Firefox Firefox−noint SpiderMonkey

50
0

10
00

15
00

vm

in
di

vi
du

os
.s

eg
un

do

Figure 3: Boxplot of the number of evaluated chro-
mosomes per second, for three different JS vir-
tual machines: the SpiderMonkey stand-alone VM,
Mozilla Firefox with script running time extended
to 30 secs, and Firefox with running time limited to
10 secs (default setting).

interpreter (JavaScript-C 1.5 2004-09-24 running on a
Fedora Core 5 and a AMD Athlon(tm) 64 X2 Dual Core
Processor 4200+), and Firefox10 with two different settings:
the default setting, and the no-int, which allows JavaScript
programs to run without interruption for 30 seconds. The
scripts were run several times (5 to 15) in the same machine
with the usual, and similar, workload. Results in number of
individuals evaluated per second are shown in figure 3.

These measures give us a baseline, without any interven-
tion of the evolutionary algorithm, of a few hundred to one
thousand chromosomes evaluated for fitness, per second, for
this particular problem. Incidentally, it also indicates that
the browser architecture and settings have a high impact
on performance, which will have to be taken into account
when trying to predict performance for a particular setting
in advance11.

10Mozilla/5.0 (X11; U; Linux x86 64; es-ES;
rv:1.8.0.8) Gecko/20061108 Fedora/1.5.0.8-1.fc5
Firefox/1.5.0.8

11Preliminary results with the Opera browser, not shown
here, would be closer to the SpiderMonkey VM than to Fire-
fox in either configuration

The second experiment will try to measure the impact of
packet size on overall performance. Chromosomes are sent
to the browser in packets of n individuals, which are then
decoded, evaluated, and sent back to the server (just the ID
and fitness). This takes some time, and generates overhead
in the shape of database requests, data structure conversion,
and the trip back and forth itself (latency). Initially, band-
width is not an issue, at least from the client point of view,
since these tests take place on a local area network (two
computers connected to the same domestic ADSL router
through an Ethernet 100Mbit/s connection).

Experimental setup is as follows: the server runs in the
same computer as above, while the client runs in a Sony
VAIO VGN-S4XP with an Intel Pentium M (2 GHz) run-
ning Firefox on Ubuntu 6.06, upgraded to the latest ver-
sion (Jan 2007). An evolutionary algorithm that used 80%
two-point crossover and 20% single-bit-flip mutation rate,
a population of 512 with an elite (extracted for reproduc-
tion) of 256, and packet sizes of 32, 64, 128 and 256 was
run several times. The number of evaluations was set to
5000, but, since the packet size is not a whole multiple of
that amount, the simulation usually ended with a few more
individuals evaluated. These were taken into account when
computing the chromosome evaluation rate, shown in fig-
ure 4. This figure, which can be fitted by the lineal model
n(s) = 8.36 ± 0.19 ∗ 0.011 ± 0.001s with 99.9% confidence,
shows that a new chromosome can be evaluated for every
100 that are added to the packet, and is obviously related
to the number of petitions. A doubling of packet size slashes
by half the number of request and responses from the server,
decreasing also the number of database queries.

On the other hand, this model predicts that, in order to
achieve a performance similar to the figures shown above
(500-1500 chromosomes/second) the packet size would have
to be an unreasonable 90000; 100 chroms/second could be
achieved with a packet sized around 8000. This hints at a
way of squeezing more performance out of this setup (for in-
stance, using a network with low latency, or increasing the
database performance), but also points to a problem: bigger
packet sizes means the client will be busy for more time, dur-
ing which the client could just turn the computer off or wan-
der away to another web page. In any case, it indicates that
packet sizing will have to be considered carefully in browser-
based distributed evolutionary computation, and also that
the promises of a good performance (better than obtained
in a single computer, anyways) will only be achieved when
more than 20 computers are used to solve the problem.

From these results, it can be claimed that browser-embedded
Javascript is probably not the most powerful technology to
implement a high-performance evolutionary algorithm. In
fact, as is shown above, it can barely outperform itself in
a single machine, not to mention an EA implemented in
high-octane languages such as C++. But the promise of
JavaScript arises not from its intrinsic speed, but from its
ease of use and the ubiquity of the platform it runs. It is very
easy, and quite painless, to get tens of thousands of people
to donate cycles to a single experiment, just by putting it
in second or third-class popular website.

That is why it is interesting to see how the server, which
is the bottleneck in scaling, behaves when the number of
concurrent clients increases. This is what we are going to
do next.

2855



32 64 128 256

8
9

10
11

12

Evaluation rate vs. packet size

packet size

C
hr

om
os

om
es

 e
va

lu
at

ed
 p

er
 s

ec
on

d

Figure 4: Boxplot of the number of chromosomes
whose fitness is evaluated in 1 second, depending on
packet size in a client/server setup. Clearly, per-
formance increases with packet size, which implies
that latency and other overhead have a measurable
impact on overall performance.

5. SCALING BEHAVIOR
In order to perform this experiment, an assortment of dif-

ferent computers, with speeds ranging from 750MHz to 2.8
GHz, were added, one by one. Packet size was set to 100
and equal to population size; the rest of the parameters are
irrelevant. Connections also varied from a local connection
in a 2-processor computer, to Fast Ethernet to WiFi. Ex-
periment did not start at the same time in all computers,
but more or less sequentially (actually, some people had to
physically set the browser URL). Besides, very few of them
were fully dedicated to the task; the URL was loaded while
other people were working on the computer. That is why
an improvement in averages should not really be expected,
but we should expect, at least, an improvement in the best
case, when all computers are started in a short period, and
there is no net congestion or CPU overload in any of them.
In every case, experiment was repeated several times.

That is what can be observed in figure 5, which shows the
boxplot of the evaluation rate (total number of chromosomes
evaluated divided by time in seconds, as measured from the
information stored in the server log) vs. number of nodes.
Scaling is dramatic from in the first steps, but it lowers down

1 2 3 4 5

14
16

18
20

22
24

1 2 3 4 5

14
16

18
20

22
24

Scaling behavior DCoR

Nodes

E
va

lu
at

io
n 

ra
te

Figure 5: Boxplot of evaluation rate for a single
server, and several clients, ranging from 1 to 5.

when 4 or 5 computers are added. Best-case result always
improves, but not dramatically, and average improvement
slows down to a halt. This is due to a number of factors,
not the least being that the last computer added was one
of the slowest, but also to the fact that the server is not
running in full production mode, and is spending some time
logging information. There is also an architecture problem
with the RoR server: while all requests run in its own thread,
the request/response loop is sequential, so that just a single
response can be served to the client simultaneously.

However, what is really important is the fact that we can
obtain a best-case improvement, as we are showing here. If
debugging is turned off (which we haven’t done here for the
full experiment since the information is needed to check that
the algorithm is running correctly), some improvement can
be obtained, as is shown in figure 6

The experiment shown in figure 6 was done using the
same algorithm configuration as in 4, and an improvement of
around 20% on average is obtained. This has an added ad-
vantage: logging messages are sequential, which means that
threads handling a client must wait until other threads finish
writing in that single file, provoking interlocking problems,
which might also account for the poor average performance
improvement observed above. We will try to fix this in the
next version of the DCoR package.

2856



no yes

9
10

11
12

13
14

Debugging info enabled?

C
hr

om
s/

se
co

nd

Figure 6: Boxplot of evaluation rate for a single
server and client, in production mode and with de-
bugging messages to log-file turned off (left), and
in development mode with debugging messages on
(right).

6. CONCLUSIONS AND FUTURE WORK
The main purpose of this paper has been to introduce

the DCoR (Distributed Computation on Rails) framework,
make some measures to find out what kind of performance
we can expect from it, and run scaling experiments on a
simple configuration to highlight scaling problems with it.
We conclude that, barring major optimization and tweak-
ing of server performance, and using in each case the best
browser/client combination available, a good amount of clients
is needed to equal the performance of a stand-alone machine
running the same algorithm. But the problem is that, in
the current setup, using a multi-threaded but single-process
server, that amount of scaling cannot be achieved, with per-
formance peaking when a few clients are added.

This leaves several possible paths for improvement: mak-
ing DCoR fully reentrant, so that multiple copies can easily
run at the same time in a server, and using a configuration
of server clusters with a reverse proxy (which is not trivial,
but not too difficult either), or changing the DCoR model
so that more computation is moved to the clients, leaving
the server as just a hub for information interchange among
clients; that information interchange will have to be reduced
to the minimum, and, if possible, a single chromosome per
generation. That will make this model closer to the island
model, being every browser running the experiment a more
or less independent island, with just the migration policies
regulated by the server. That way, the server bottleneck is
almost eliminated. In the near future, we will try to pursue
research along these two lines.

Acknowledgments
This paper has been funded in part by the Spanish MI-
CYT project NADEWeb: Nuevos Algoritmos Distribuidos
Evolutivos en la web, code TIC2003-09481-C04. We also ac-
knowledge the support of the Spanish Rails (ror-es) mailing
list.

7. REFERENCES
[1] E. Alba. Puede un algoritmo evolutivo paralelo

proporcionar ganancia superlineal?, 1999. Actas
CAEPIA-TTIA’99 Vol. 2, pp. 89-97.

[2] D. P. Anderson, E. Korpela, and R. Walton.
High-performance task distribution for volunteer
computing. In E-SCIENCE ’05: Proceedings of the
First International Conference on e-Science and Grid
Computing, pages 196–203, Washington, DC, USA,
2005. IEEE Computer Society.

[3] M. Arenas, L. Foucart, J.-J. Merelo-Guervós, and
P. A. Castillo. JEO: a framework for Evolving Objects
in Java. In Actas Jornadas de Paralelismo [35], pages
185–191. http:
//geneura.ugr.es/pub/papers/jornadas2001.pdf.

[4] A.-L. Barabási, V. W. Freeh, H. Jeong, and J. B.
Brockman. Parasitic computing. Nature,
412(6850):894–897, August 2001.

[5] C. Baray. Genetic algorithms as virtual user
managers, November 1999.
http://cristobal.baray.com/indiana/GAVUM/, last
accessed Aug/2006.

[6] P. Cappello and D. Mourloukos. A scalable, robust
network for parallel computing. In JGI ’01:
Proceedings of the 2001 joint ACM-ISCOPE
conference on Java Grande, pages 78–86, New York,
NY, USA, 2001. ACM Press.

[7] J. Castellano, P. Castillo, J.-J. Merelo-Guervós, and
G. Romero. Paralelización de evolving objects library
usando MPI. In Actas Jornadas de Paralelismo [35],
pages 265–270.

[8] J. G. Castellano, M. Garćıa-Arenas, P. A. Castillo,
J. Carpio, M. Cillero, J.-J. Merelo-Guervós, A. Prieto,
V. Rivas, and G. Romero. Objetos evolutivos
paralelos. In U. d. G. Depto. ATC, editor, XI
Jornadas de Paralelismo, pages 247–252, 2000.

[9] P. Chong. Java based distributed genetic
programming on the internet. In Evolutionary
computation and parallel processing Workshop,
GECCO 99 conference, 1999.

[10] J. Culbert. Ajax and distributed computation
thoughts. Published at http://culbert.net/?p=6,
March 2006. Last access Mayo 2006.

[11] ECMA. ECMA-262: ECMAScript Language
Specification. ECMA (European Association for
Standardizing Information and Communication
Systems), Geneva, Switzerland, third edition, Dec.
1999.

[12] ECMA. ECMA-290: ECMAScript Components
Specification. ECMA (European Association for
Standardizing Information and Communication
Systems), Geneva, Switzerland, June 1999.

[13] ECMA. ECMA-327: ECMAScript 3: Compact Profile.
ECMA (European Association for Standardizing

2857



Information and Communication Systems), Geneva,
Switzerland, third edition, June 2001.

[14] ECMA. ECMA-357: ECMAScript for XML (E4X)
Specification. ECMA (European Association for
Standardizing Information and Communication
Systems), Geneva, Switzerland, June 2004.

[15] D. Flanagan. JavaScript Pocket Reference (2nd
Edition). O’Reilly, October 2002.

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design patterns: Abstraction and reuse of
object-oriented design. Lecture Notes in Computer
Science, 707:406–431, 1993.

[17] M. Garćıa-Arenas, J. G. Castellano, P. A. Castillo,
J. Carpio, M. Cillero, J.-J. Merelo-Guervós, A. Prieto,
V. Rivas, and G. Romero. Speedup measurements for
a distributed evolutionary algorithm that uses Jini. In
U. d. G. Depto. ATC, editor, XI Jornadas de
Paralelismo, pages 241–246, 2000.

[18] Gilorien. DHTML and JavaScript. Prentice-Hall PTR,
Upper Saddle River, NJ 07458, USA, 2000.

[19] G. A. Kohring. Implicit simulations using messaging
protocols. COMPUTERS AND PHYSICS, 14:203,
2003.

[20] G. E. Krasner and S. T. Pope. A cookbook for using
the model-view-controller user interface paradigma in
smalltalk-80. Journal of Object Oriented Programming
(JOOP), 1(3):26–49, 1988.

[21] R. M. Lerner. At the forge: assessing Ruby on Rails.
Linux J., 2006(142), February 2006.

[22] M. Locatelli. A note on the Griewank test function. J.
of Global Optimization, 25(2):169–174, 2003.

[23] J. J. Merelo, A. M. Garca, and J. Lupin. Escalado de
computacin distribuida sobre rales. In
F. Almeida-Rodrguez, B. Melin-Batista, J. A.
Moreno-Prez, and J. M. Moreno-Vega, editors, Actas
MAEB 2007, pages 143–150, 2007.

[24] J. J. Merelo and J. Lupión. Computacin distribuida
sobre railes. In G. de Redes y Arquitecturas de
Altas Prestaciones, editor, Actas Jornadas de
Paralelismo, pages 367–372. Thomson, Septiembre
2006.

[25] J.-J. Merelo-Guervós, J. Castellano, P. Castillo, and
G. Romero. Algoritmos genticos distribuidos usando
SOAP. In Actas Jornadas de Paralelismo [35], pages
99–103.

[26] V. M. Molina, J. J. M. Guervós, J. L. J. Laredo, and
M. G. Arenas. Algoritmos evolutivos en Java:
resolucin del TSP usando DREAM. In Actas XVI
Jornadas de Paralelismo, incluido en CEDI’2005.
Granada, septiembre 2005, pages 667–683. Thomson,
Septiembre 2005.

[27] D. S. Myers and M. P. Cummings. Necessity is the
mother of invention: a simple grid computing system
using commodity tools. J. Parallel Distrib. Comput.,
63(5):578–589, 2003.

[28] Towards Open Grid Services Architecture.
http://www.globus.org/ogsa/.

[29] L. F. G. Sarmenta. Sabotage-tolerance mechanisms for
volunteer computing systems. Future Generation
Computer Systems, 18(4):561–572, 2002.

[30] L. F. G. Sarmenta and S. Hirano. Bayanihan: building
and studying Web-based volunteer computing systems
using Java. Future Generation Computer Systems,
15(5-6):675–686, 1999.

[31] C. Setzkorn and R. C. Paton. Javaspaces - an
affordable technology for the simple implementation of
reusable parallel evolutionary algorithms. In J. A.
López, E. Benfenati, and W. Dubitzky, editors,
Proceedings of the International Symposium on
Knowledge Exploration in Life Science Informatics,
KELSI 2004, volume 3303 of Lecture Notes in
Artificial Inteligence, pages 151–160, Milan, Italy,
25-26 Nov. 2004. Springer.

[32] R. Shah. A beginner’s guide to JavaScript.
JavaWorld: IDG’s magazine for the Java community,
1(1), Mar. 1996.

[33] D. Thomas, C. Fowler, and A. Hunt. Programming
Ruby: The Pragmatic Programmers’ Guide, Second
Edition. Pragmatic Bookshelf, October 2004.

[34] D. Thomas, D. Hansson, L. Breedt, M. Clark,
T. Fuchs, and A. Schwarz. Agile Web Development
with Rails (The Facets of Ruby Series). Pragmatic
Bookshelf, July 2005.

[35] UPV. Actas XII Jornadas de Paralelismo. Universidad
Politécnica de Valencia, 2001.

[36] Wikipedia. Ajax (programming) — Wikipedia, the
free encyclopedia, 2007. [Online; accessed
16-January-2007].

2858


