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ABSTRACT
hCHAC, a MOACO implemented to solve the problem of
finding the path that minimizes resources, while maximi-
zing safety for a military unit in realistic battlefields, is
compared with some other approaches: two extreme me-
thods, which only considers one objective in the search, and
a mono-objective algorithm, which combines the two objec-
tives terms of the formulae in a single. In addition, two state
transition rules (combined and dominance-based) have been
used in some of the approaches. All of them have been tested
in different difficulty maps and hCHAC using the combined
state transition rule has been considered the best approach.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
I.6.5 [Computing Methodologies]: Model Development—
Modeling methodologies

General Terms
Algorithms
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Ant Colony Optimization, Multiobjective, Pathfinding, Mi-
litary problems

∗This work has been supported by the NADEWeb project
(TIC2003-09481-C04).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-698-1/07/0007 ...$5.00.

1. INTRODUCTION
Within a battlefield, the choice of the best path for a

military unit must be made taking into account two main
criteria: speed and safety. A safe path is followed when the
situation of the enemy forces is not known, so the unit must
move through hidden zones in order to avoid detection. On
the other hand, a fast path is followed when the unit priority
is get to the destination point as soon as possible because
of requirements of its mission (for example, strong necessity
of resources at destination point). The other criteria must
also be taken into account in both cases: in the safe case
there is a time limit, and in the fast case the unit must
get to destination with enough personnel and supplies to
accomplish its mission.

In this work, we have developed an Ant Colony Optimiza-
tion algorithm [3] adapted to deal with a bi-criteria problem
called the Military Unit Pathfinding Problem. This problem
tries to find the best path from an origin to a destination
point for a military unit in a battlefield taking into account
two different criteria: safety and speed. Since the unit has a
level of energy/health (the sum of the status of vehicles and
health of the soldiers of the unit) and a level of resources
(supplies, fuel and food, for example), the problem tries to
find the path which has a desirable level of associated con-
sumption in both levels. So, we consider that a safe path
corresponds to one with low energy requirements, and a fast
path one with a low resource cost.

The battlefield of our problem is modelled as a realistic
scenario, and is composed by a grid of hexagonal cells over-
laid with an information layer, which assigns to every cell
a type of terrain, height and depth. In addition, there may
be some enemy units watching over and/or shooting their
weapons against the unit or to strategic points in the bat-
tlefield. Fig. 1 shows an example of real world battlefield
and the information layer associated to it.

Every cell corresponds to a 500x500 meters zone in the real
world (the same as a real deployed unit), and there are four
types of terrain: normal (sand), forest, water and obstacle.
In addition, there are two penalization levels associated with
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Figure 1: Example Map (45x45 cells). Right image
is a real world picture of a lake surrounded by some
hills and lots of vegetation. Left image shows its
associated information layer, where it can be seen
the types corresponding to the same hexagons in the
other image, so there are many water and forest cells
and some normal terrain cells. The different shades
in the same color models height (light color) and
depth (dark color). There are two enemies labelled
with ’E’, an origin point (in the top-left corner of the
images) labelled with ’O’ and a destination point (in
the bottom-right) labelled with ’D’. These labels are
black on the image at right and white on the left.

every cell concerning to the consumption in energy/health
and resources which implies going through it. The enemy
weapons impact is considered as an extra (and higher) pe-
nalization in energy/health, with different levels depending
on the shooting direction and distance. It is called lethality.

Finally, there are some restrictions in the problem such
as: enemies and problem units have an acquisition capabi-
lity associated, which is the longest distance that they can
see (to locate other units); in addition, the problem unit
cannot cross artificial obstacles cells and cannot move be-
tween two cells with a difference in height greater than 2
(natural obstacles).

We have developed an application (using Delphi 7) to cre-
ate and edit battlefields, and also to execute the algorithms
and visualize the solutions easily.

Initially, we implemented the CHAC algorithm [7], and
later we improve it with Hexa-CHAC [8]. More details about
the problem definition, restrictions and description and test
of the algorithms are shown in these articles.

In this work, we have implemented some new algorithms
and tested them in the same maps (battlefields) which will
allow us to check whith algorithm works the best and to
establish baselines for the performance. These algorithms
have been implemented to be used by military staff, so the
user can assign a priority level to one objective over the
other, depending on the target of the mission.

2. ACOS IMPLEMENTED
Our main algorithm is CHAC, whose name means Compañ́ıa

de Hormigas ACorazadas (Armored Ant Company) to relate
the ACO algorithms with the military scope. Hexa-CHAC
(or hCHAC) is an Ant Colony System (ACS) [4] adapted to
deal with several objectives, that is, a Multi-objective Ant
Colony Optimization (MOACO) [2, 5] algorithm. The Hexa

prefix refers to the topology of the search space (a grid of
hexagons).

In order to use an ACO algorithm, the problem must be
transformed into a graph where every node corresponds to
a cell in the scenario (map) and an edge between two nodes
is the existent connection between neighbour cells. Every
edge has associated two weights (one for each objective of
the problem) which are the costs in resources and energy
that going through that edge causes to the unit.

The two objectives are named f , minimization the re-
sources consumed in the path (speed maximization) and s,
minimization the energy consumed in the path (safety max-
imization).

The algorithm is a combination of two others: Iredi’s Bi-
Criterion Ant Algorithm [6] and Baran’s MOACS [1]. It
uses two pheromone matrices and two heuristic functions
each pair dedicated to one objective, and a single colony.
We use an Ant Colony System (ACS) to have better con-
trol in the balance between exploration and exploitation by
using the parameter q0 in [0,1], whose value have high influ-
ence in the choice of the next node in the path that an ant
is building, so if it is close to 0, all the nodes have possibilies
of be chosen, on the other hand if it is close to 1, surely the
best node will be chosen. We have implemented two state
transition rules: the first one is similar to the proposed by
Iredi et al. in [6] (Combined State Transition Rule, CSTR)
and the second one, introduced in [7], based on dominance
of neighbours (Dominance State Transition Rule, DSTR).

The local and global pheromone updating formulas are
based in the proposal of Baran et al. [1], with some changes
due to the use of two pheromone matrices. So only the
solutions in the Pareto set make the global updating.

The heuristic functions have been designed respectively to
search for the fastest path (trying to minimize the consump-
tion of resources and the distance to target point), and to
search for the safest path (assigning priority to minimiza-
tion of energy consumption and visibility of the cell from
the enemies point of view). They both use some weights to
assign a priority to every term in the formula.

The evaluation functions assign a cost to every solution
path. Again, there are one function per objective which are
named Ff (cost in resources) and Fs (cost in energy/health).
These functions also use weights in their terms.

All these formulas can be consulted in the previous paper
[7].

In this work, we have also implemented a mono-objective
ACS approach (as a new development). This is a classi-
cal ACS [4], so it uses a single ant colony as well as one
pheromone matrix and one heuristic function. There is a
local pheromone updating in every edge that an ant follows,
while builds a solution, and a global updating (at the end
of every iteration) performed in the edges of the global best
solution. The heuristic and the evaluation functions have
been designed by merging each pair of the same functions in
hCHAC, in order to take into account and evaluate the two
criteria in the search. We call this algorithm mono-hCHAC
from now on.

In addition we will test two extreme approaches of hCHAC,
extremely fast and extremely safe. The first one only con-
siders the minimization of resources consumption objective
(speed), so λ is set to 1 and all the weights related to safety
objective, such as visibility of cells or energy consumption,
take values equal to 0. On the other hand, the second one
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only takes into account the minimization of energy consump-
tion objective (safety), so λ is set to 0 and all the weights
related to speed objective, such as distance to target point
or resources consumption, also take values equal to 0. They
will be described in next section. From now on, we will refer
to both approaches as extr-hCHAC.

3. EXPERIMENTS
We have performed experiments in two different and re-

alistic scenarios, which have been captured from the game
Panzer GeneralTMand modelled using our application.

In these experiments the problem and the enemies units
have associated an acquisition capability of 18 cells (which
corresponds to 9 Km in the real world); the unit cannot
going through cells with a difference in height greater than
2; and finally, we consider that the problem unit has enough
points of energy and resources to follow any path in the
scenario.

Relating to the parameters of the algorithm, we have used
their common values (α=1, β=2, ρ=0.1), excepting q0=0.4
which determines more exploitation as usual. On the other
hand, we have used two sets of weights in heuristic and eval-
uation functions: weights in the first set, take values to tend
to safe paths (low consumption of energy and low visibility)
in the terms of the functions related with the safety objec-
tive; and to tend to fast paths (low consumption of resources
and minimization of distance to target point) in the terms
of the functions related to the speed objective. In the se-
cond set, the weights take values in order to give as high a
priority as possible to the terms directly related to the ob-
jectives in each formula. This means that in the heuristic
function for safety objective, there is a weight equal to 0 for
minimization of distance to target point term; and in the
heuristic and evaluation function for speed objective, there
are weights equal to 0 for the terms concerning to unit visi-
bility, for instance.

The user will decide the value for λ parameter, which gives
relative importance to one objective over the other, so if it
is near 1, finding the fastest path would be more important
and if it is near 0, the other way round.

As we previously said, we have performed new experi-
ments (relating to those made in our previous work), using
each extreme value for λ, 0 and 1, and the set of weights
which assigns the highest priority to each objective, in or-
der to obtain extreme results. So the algorithm yields so-
lutions considering only one objective. In addition, there is
a comparison with mono-objective results, which have been
obtained using almost extreme values for λ, 0.1 and 0.9, and
the other set of weights (as well as hCHAC results), in or-
der to consider both objectives (one with higher priority, of
course).

hCHAC yields a set of non-dominated solutions (it is a
MO algorithm), but less as usual in common MO algorithms,
because it only searches in the region of the ideal Pareto
front determined by the λ parameter. In addition, we only
consider one (chosen by military participation considering
their own criteria and the features of every problem).

We have carried out 30 runs for every scenario, using each
state transition rule and using each value for λ (0, 0.1, 0.9
and 1) in order to find the fastest or the safest path in each
case. All the algorithms use the same number of iterations
(1500) and ants (50).

3.1 Map One (single enemy unit)
First scenario presents only one enemy located in the mid-

dle of the straightforward path between origin and destina-
tion points. There are some patches of forest and 3 different
rivers (and bridges). In addition, there are some hills in
the map. Figure 2 shows this map along with the best so-
lutions found. Cells marked with black and white border
compose the solution; those with black border are seen by
enemy and those with white border are hidden. We have
labelled in white: origin and destination cells with ’O’ and
’D’ respectively, and enemy unit with ’E’. Looking at Table
1, it is possible to notice that, in general, results obtained
by hCHAC using CSTR are better than those yielded using
DSTR because this last method has associated a higher ex-
ploration factor, so it needs to increase the explotation by
running more iterations, for instance. Even so, the solutions
are close to the CSTR ones. Both results are rather differ-
ent (and worse) from the extremes values, more in the com-
parison between DSTR in normal hCHAC and in extreme
configuration. This is a logical matter, because in hCHAC
executions both objectives are always considered (with dif-
ferent priority level, of course), and in extreme approaches
only the main objective is taken into account.

In all cases, differences between the safety cost Fs) when
it is the primary and secondary objective are enormous. The
reason is that fast paths are usually unsafe due to the visibil-
ity of the cells, and the visibility term is too much penalized
in the cost function because a detected unit will be attacked
immediately after.

Looking at the visual solutions in the map (Fig. 2), in the
fastest paths, the unit goes in a rather straight way to the
destination point, more straight in extreme (fastest) solu-
tions, and less straight in DSTR method and mono-objective
algorithm. All the paths have visible (from enemy) cells be-
cause they move near the enemy, but they also have hidden
ones because they go through forest or behind hills, the rea-
son being that safety is important even when searching for
fast paths. This does not occur in the fastest path. The
safest path found with CSTR and DSTR (in both configu-
rations) represents a curve (distance to target point has little
importance) which increases speed cost, but the unit goes
through all hidden cells. Each solution moves by a zone of
the map, but they two surround the enemy acquisition ca-
pability area and go through some forest cells or through
mountains to avoid to be seen (safe cells). This behaviour
is excellent from military tactical point of view.

The mono-objective solution tends to be on the safe side,
yielding a path similar to those obtained by hCHAC with
priority in searching for safe paths, but it is a little more di-
rect in some sections. The reason is that security is more im-
portant than speed, so the weights of the aggregative func-
tion are set to ensure this.

3.2 Map Two (no enemy unit)
This scenario represents a rough terrain. It is located in a

hill-covered zone and shows the origin and destination points
in the top of two mountains; the destination hill is higher
and rather craggy. Since there is no enemy, there are no
absolutely visible or hidden cells, which means that all of
them are visible in some measure (the algorithm calculates
the visibility in a radius surrounding the unit in each step
of the path, depending on the type and height of the cells
inside that radio). Figure 3 shows this map along with the
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Table 1: Results for Map One. (1500 iterations, 50 ants)
Fastest (λ=0.9) Safest (λ=0.1)

Ff Fs Ff Fs

hCHAC-CSTR
Best 68.50 295.40 80.50 7.30

Mean 75.20 ±7.87 184.54 ±132.49 85.00 ±3.32 8.10 ±0.49

hCHAC-DSTR
Best 76.00 306.10 95.50 9.40
Mean 81.63 ±3.02 271.11 ±39.98 108.00 ±5.70 10.40 ±0.52

Extreme Fast (λ=1) Extreme Safe (λ=0)
Ff Fs Ff Fs

extr-hCHAC-CSTR
Best 55.03 285.50 80.50 7.30

Mean 58.73 ±1.79 309.53 ±27.63 84.07 ±3.56 7.89 ±0.56

extr-hCHAC-DSTR
Best 57.54 375.60 93.00 8.40
Mean 63.63 ±2.45 329.29 ±38.09 106.90 ±5.85 10.22 ±0.65

mono-hCHAC
Best 78.00 7.50
Mean 85.63 ±3.68 8.41 ±0.43

Table 2: Results for Map Two. (1500 iterations, 50 ants)
Fastest (λ=0.9) Safest (λ=0.1)

Ff Fs Ff Fs

hCHAC-CSTR
Best 75.15 348.58 80.59 335.28
Mean 77.26 ±1.58 352.03 ±5.68 80.53 ±1.98 344.96 ±4.51

hCHAC-DSTR
Best 79.36 352.77 82.74 350.21
Mean 86.26 ±3.52 371.02 ±10.37 86.70 ±3.50 368.81 ±9.71

Extreme Fast (λ=1) Extreme Safe (λ=0)
Ff Fs Ff Fs

extr-hCHAC-CSTR
Best 60.03 301.60 63.03 271.51

Mean 64.40 ±2.13 305.21 ±8.90 63.89 ±1.52 283.37 ±4.26

extr-hCHAC-DSTR
Best 61.03 289.35 65.53 285.04
Mean 66.61 ±3.05 312.58 ±12.76 68.61 ±2.75 300.90 ±9.33

mono-hCHAC
Best 73.78 281.03
Mean 75.32 ±1.59 286.21 ±4.46

best solutions found by every approach. Cells marked with
black border compose the solution, because there are no
absolutely seen or hidden cells (there is no enemy watching
over); the labels are the same as before.

The previous explained matter (about visibility when there
are no enemy), is the reason why the results in the security
cost (Fs) are high in all cases (see Table 2). In addition, all
the solutions have similar costs in both objectives because
a straight path to destination point is a good result even
when searching for safe routes (it moves through mountain
cells which are often hidden). The extreme solutions are
again better, but the differences are less important than in
the previous scenario.

Visually (in Fig. 3), all solutions are similar (straightfor-
ward paths from origin to destination point), and avoid to
climb the higher mountain when searching for fast paths by
surrounding its more difficult side (which corresponds to a
natural obstacle for the unit), and sometimes, scaling the
less difficult side in the safe paths (where it is feasible) to
get a higher hidden level from surrounding cells. Again, all
of this actions correspond to a sensible military behaviour.

4. CONCLUSIONS
In this work we have implemented, tested and compared

5 different ACS approaches to solve the bi-criteria military
pathfinding problem (find the best path considering speed
and safety as objectives). There are a multi-objective and
a mono-objective algorithm and some approaches based on
the configuration os parameters and weights (including ex-
treme searches, which only consider one of the objectives).

In addition, some of them use two different searching me-
thods (CSTR and DSTR).

As result of the comparison, we consider that hCHAC-
CSTR is the best approach because it maintains a very good
balance between speed and safety in all cases, by considering
always both objectives (with different priorities, depending
on the search). This is a better method than extreme ones;
even more so in difficult maps, where the cost for the obje-
tive is not being minimized can be increased dramatically.
mono-objective algorithm yield good solutions too, generally
better than hCHAC-DSTR approach, but worse than those
obtained by hCHAC-CSTR.
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Figure 3: Map Two (No enemy unit). From top
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hCHAC-CSTR, extreme hCHAC-DSTR, and mono-
hCHAC results. Fastest (left) and safest (right).
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