
Fuzzy-UCS: Preliminary Results

Albert Orriols-Puig1, Jorge Casillas2, Ester Bernadó-Mansilla1

1Group of Research in Intelligent Systems, Enginyeria i Arquitectura La Salle
Ramon Llull University, 08022, Barcelona, Spain

2Dept. Computer Science and Artificial Intelligence.
University of Granada, 18071, Granada, Spain

aorriols@salle.url.edu, casillas@decsai.urg.es, esterb@salle.url.edu

ABSTRACT
This paper presents Fuzzy-UCS, a Michigan-style Learn-
ing Fuzzy-Classifier System designed for supervised learning
tasks. Fuzzy-UCS combines the generalization capabilities
of UCS with the good interpretability of fuzzy rules to evolve
highly accurate and understandable rulesets. Fuzzy-UCS is
tested on a set of real-world problems, and compared to
UCS and two of the most used machine learning techniques:
C4.5 and SMO. The results show that Fuzzy-UCS is highly
competitive to the three learners in terms of performance,
and that the fuzzy representation permits a much better un-
derstandability of the evolved knowledge. These promising
results allow for further investigation on Fuzzy-UCS.

Categories and Subject Descriptors
I.2.6 [Learning]: concept learning, knowledge acquisition

General Terms
Algorithms

Keywords
Evolutionary Computation, Genetic Algorithms, Machine
Learning, Learning Classifier Systems, Fuzzy Logic

1. INTRODUCTION
Michigan-style Learning Classifier Systems (LCSs) are on-

line machine learning techniques that use Genetic Algorithms
(GAs) to evolve a rule-based knowledge. Among the differ-
ent uses, several LCSs have been designed to be applied on
supervised learning problems. Typically, LCSs deal with nu-
merical attributes by means of evolving a set of intervalar
rules that cooperate to predict the output of new unlabeled
examples. Although the competence of LCSs in terms of
accuracy have been widely shown, this excellence has been
hindered by a poor interpretability of the evolved rulesets,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-698-1/07/0007 ...$5.00.

which typically consist of large sets of overlapping intervalar
rules that can hardly be read by the human expert.

During the last decade, the interest in Fuzzy Rule-Based
Systems (FRBSs) has increased since they provide a robust,
flexible, and powerful methodology to deal with noisy, im-

precise and incomplete data. Besides, the fuzzy representa-
tion allows for a better interpretability of the rules. This led
to the first analyses and designs of Learning Fuzzy-Classifier

Systems (LFCS) [4], mostly applied to reinforcement learn-
ing and control tasks, which resulted in the creation of ef-
ficient systems with better linguistic interpretability. These
first successful steps toward the design of competent LFCS
warrants for further investigation, specially in the supervised
learning paradigm.

In this paper, we address the problem of interpretability
in LCSs, and propose Fuzzy-UCS, an online accuracy-based
LFCS architecture that works under a supervised learning
paradigm. We depart from the UCS classifier system, which
has been shown to be highly competitive with respect to
some of the most used machine learning techniques [1]. We
introduce the fuzzy representation to UCS, and redesign
most of its components to permit the system to deal with
fuzzy rules. With the inclusion of fuzzy rules, we seek for a
better interpretability of the evolved knowledge whilst main-
taining the same performance, as well as a significant reduc-
tion of the search space.

The remaining of this paper is organized as follows. Sec-
tion 2 deeply explains the proposed Fuzzy-UCS architecture,
specially focusing on the differences from the original UCS.
In Sect. 3, we test Fuzzy-UCS on a testbed consisting of
eight real-world problems, analyze the evolved fuzzy rules,
and compare the system to UCS, C4.5, and SMO. Finally,
Sect. 4 concludes and proposes further work.

2. DESCRIPTION OF FUZZY-UCS
Figure 1 shows the learning process of Fuzzy-UCS. The

learner works in two different modes: learning or exploration
mode and testing or exploitation mode. During explore,
Fuzzy-UCS evaluates online the classifiers and evolves the
ruleset by means of the GA. During test, Fuzzy-UCS uses
the rules to infer the output of a given input instance. The
different components of the system are detailed as follows.

2.1 Representation
Fuzzy-UCS evolves a population [P] of classifiers, where

each classifier consists of a fuzzy rule and a set of parameters.
The fuzzy rule is represented as follows:

2871

23

15

11

10

15

12

exp

.9.95.05(*,M)

. . .

Fw1w0

1

.8

.1

.2

0

10(SM,S)

.6.2(L,L)

.8.9(S,L)

.6.8(L,M)

11(S,M)

23

15

11

10

15

12

exp

.9.95.05(*,M)

. . .

Fw1w0

1

.8

.1

.2

0

10(SM,S)

.6.2(L,L)

.8.9(S,L)

.6.8(L,M)

11(S,M)

10.8.1.9(S,L)

23

15

12

.95

1

0

.9.05(*,M)

10(SM,S)

11(S,M)

10.8.1.9(S,L)

23

15

12

.95

1

0

.9.05(*,M)

10(SM,S)

11(S,M)
Correct Set [C]

Population

Match Set [M]Match Set [M]

Instance: (3.15, 1.8) Class: 1

matching

exploration

23

15110(SM,S)

.95 .9.05(*,M) 23

15110(SM,S)

.95 .9.05(*,M)

S
L

M

1

0 10
3.151.8

Dataset

sampling

Parameter’s
Update

Apply
EA?

GA = selection +
crossover + mutation

explotation
Reasoning = Infer class

Figure 1: Scheme of Fuzzy-UCS.

IF x1 is A
k
1 and ... and xn is A

k
n THEN

c
k
1 WITH r

k
1 , ... , c

k
m WITH r

k
m (1)

where each input variable xi is represented by a disjunction
(T-conorm operator) of linguistic terms Ak

i = {Ai1 or ... or
Aini

}, and the consequent maintains, for each of the m pos-
sible classes, a weight rj that indicates the soundness with
which the rule predicts the class j for an example that fully
matches this rule. Note that this type of rule intrinsically
permits generalization as each variable can take an arbitrary
number of linguistic terms. For example, the representation
supports the absence of a variable xi by making Ai be the
whole set of linguistic terms.

Each classifier has four main parameters: a) the fitness
F , which estimates the accuracy of the rule, b) the correct
set size cs, which averages the sizes of the correct sets in
which the classifier has participated, c) the experience exp,
which reckons the contributions of the rule to classify the
input instances, and d) the numerosity num, which counts
the number of copies of the classifier in the population.

To implement this representation, we propose to use a
binary coding for the antecedent of the rule. That is, a
one-valued allele indicates that the corresponding linguistic
term is used in this variable. The consequent weights rj are
codified in an array of floats. For instance, if we have three
linguistic labels {S [small], M [medium], L [large]} for each
input and two possible classes, the fuzzy rule

IF x1 is S and x2 is {S or L} THEN c1

WITH 0.8, c2 WITH 0.2 (2)

is encoded as: [100|101||0.8|0.2].

2.2 Performance Component
UCS learns under a supervised learning scheme. Given

an input example e with its associated class c UCS creates
the match set [M] with all the classifiers in [P] that match

the input instance. Then, [M] is used differently depending
on whether the system is running on explore or on exploit
mode. In explore mode, UCS forms the correct set [C], which

consists of all the classifiers in [M] that advocate the input
example. If [C] is empty, covering is triggered. In exploit
mode, the best action selected from the vote (weighted by
fitness) of all classifiers in [M] is returned as the predicted
output.

Fuzzy-UCS follows this process, but the role of the match-
ing and the inference processes changes as it is adapted to
deal with linguistic terms. In the following, the phases fol-
lowed during explore are detailed. The inference mechanism
used during test is explained in Sect. 2.5.1.

Creation of the match set. Given the input e, all the
classifiers with a matching degree greater than zero form
the match set. The matching degree µk(e) of the rule k is
determined as follows. For each variable, we compute the
membership function for each of its linguistic terms, and ag-
gregate them by means of a T-conorm. Then, the matching
degree of the rule is determined by the T-norm of all the
input variables. We used the product (a · b) as T-norm and
the bounded sum (min{1, a + b}) as T-conorm. Note that
we used a bounded sum instead of other typical operators
for the T-conorm to emulate the don’t care used in the crisp
representation. That is, with the bounded sum, a variable
will have no influence if all its linguistic terms are set to ’1’.

Creation of the correct set. Next, all the classifiers in
[M] in which their higher weight rk

c corresponds to the class
c of the input example form the correct set[C]. If there is not
any rule in [C] that matches e with the maximum matching
degree, the covering operator is triggered. We create the
rule that matches e with maximum degree as follows. For
each variable xi, the linguistic term with maximum match-
ing with ei is activated. Then, the rule is generalized by
setting each linguistic term to ’1’ with probability P#. In
the consequent, the weight corresponding to the class c is set
to 1, and the others to 0. The parameters of the classifier
are initialized to: f=1, exp=0, num=1, and cs is set to the
size of [C]. Finally, this rule is introduced in the population
if there is not any rule in [C] with the same matching degree.

2.3 Parameter’s Update
At the end of each learning iteration, the parameters of

all the classifiers that belong to the match set are updated

2872

according to their matching degree with the input example
e of class c. First, for each class j, we compute the sum of
correct matchings cmj of each classifier k:

cm
k
j = cm

k
j + m(k, j) (3)

where

m(k, j) =

{

µk(e) if j = c

0 otherwise
(4)

that is, we compute separately the sum of matching degrees
of every rule with the examples of different classes. We also
calculate the sum of all matching degrees sm:

sm
k = sm

k + µk(e) (5)

Then, the weight of each class is computed as:

r
k
j =

cmk
j

smk
(6)

For example, if a rule k only matches examples of class j, the
weight rk

j will be 1 and the remaining weights 0. Rules that
match instances of both classes will have weights ranging
from 0 to 1. In all cases, the sum of all the weights is 1.

Then, the fitness is computed from the class weights with
the aim of favoring classifiers that match instances of only
one class. For this purpose, we compute the fitness as fol-
lows:

F
k =

r
k
max −

∑

j|j 6=max

r
k
j

ν

(7)

where ν ≥ 0 permits to regulate the fitness pressure toward
accurate classifiers. In the equation, we select the weight
rk

max with maximum value and substract the values of the
other weights. Note that this formula can result in classifiers
with zero or negative fitness (for example, if the class weights
are equal).

Next, the correct set size csk is calculated as the arith-
metic average of all the correct sets the classifier has be-
longed to. Finally, the experience is computed as the sum
of all the matching degrees of the classifier obtained when
participating in [M].

2.4 Discovery Component
Similarly to UCS, Fuzzy-UCS uses a genetic algorithm

(GA) for discovering new promising rules. The GA is ap-
plied on [C] if the average time since its last application on
the classifiers in [C] is greater than θGA. In this case, two
parents are selected from [C] with probability proportional
to their fitness. The fitness of young classifiers is decreased
since they receive a minimum number of updates. Then, the
parents are crossed and mutated with probabilities χ and µ
respectively. The consequent part and the parameters of the
offspring are initialized as in covering.

The crossover operator crosses the rule antecedent by two
points. This could result in classifiers containing variables
with no linguistic terms, which would indicate that the rule
is not applicable. If this is the case, we copy a linguistic
term from one of the parents. Crossover does not modify
the consequent of the rule.

The mutation operator randomly decides if an attribute
has to be mutated. If a variable is selected, three types of

mutation can be applied: expansion, contraction, or shift.
Expansion chooses a linguistic term not represented in the
corresponding variable and adds it to this variable; thus,
it can only be applied on variables that do not have all
the linguistic terms. Contraction is the opposite process: is
removes a linguistic term from one variable; so, it can only
be applied if the variable has more than one linguistic term.
Shift changes a linguistic term for its immediately inferior
or superior.

Finally, the new offspring are inserted into the popula-
tion. First, each offspring is checked for subsumption with
its parents. If either of the parents is enough experienced
(exp > θsub), highly accurate (F > F0), and more gen-
eral than the offspring, its numerosity is incremented. If
the offspring cannot be subsumed by any of its parents, the
same process is used to find a subsumer in [C]. If there is
no subsumer, the offspring is inserted in the population. A
classifier is deleted if the population is full; in this case, each
classifier is given a deletion probability of

Pdelk =

{

csk · numk · F
Fk

if exp > θdel and δF > Fk

csk · numk otherwise

(8)

where F is the average fitness of classifiers in [P], and δ and
θdel are two parameters set by the user (0 < δ < 1 and
θdel >0). Thus, this method gives a higher deletion proba-
bilities to numerous classifiers that belong to large correct
sets; moreover, it also penalizes experienced classifiers with
low fitness.

2.5 Fuzzy-UCS in test mode
Fuzzy-UCS aims at obtaining a highly accurate ruleset

with minimum size. To obtain high accuracy, we need to
define an effective reasoning method to infer the output class
from the final population. To obtain a compact ruleset, some
reduction strategies may be applied to remove classifiers that
are not important for the reasoning. In the following, we
discuss two reasoning approaches which lead to two different
ruleset reduction mechanisms.

2.5.1 Class Inference
In test mode, given a new unlabeled instance e, several

rules can match (with different degrees) this instance, ad-
vocating with a certain soundness ri to each of the classes.
Thus, a reasoning process needs to be applied to decide the
output. Here, we propose two fuzzy-inference approaches:

Winner rule. This approach proposes to select the rule
k that maximizes µk(e) · F k, and chose as output the class
associated to the weight with maximum value. Note that
following this strategy, the rules can be rewritten as:

IF x1 is A
k
1 and... and xn is A

k
n THEN cj WITH F

k (9)

That is, the rule predicts the class j that have a maximum
weight wj with a soundness equal to its fitness, providing a
better interpretability.

Average vote. This approach infers the class from the
information provided by all the rules with enough experience
(exp > θexploit). Each experienced rule k votes for each
action j according to µk(e) · wk

j . We add all the votes per
class, and the most-voted class is returned as the output.

2873

Table 1: Comparison of the test accuracy of Fuzzy-
UCS with the winner rule inference (WInf) and the
average vote inference (AVote), C4.5, and SMO on
eight real-world problems. The symbols ◦ and •

indicate that Fuzzy-UCS with WInf and AVote re-
spectively performed significantly different than the
algorithm in the column according to a paired t-test
at 0.95 significance level.

Fuzzy-UCS
UCS C4.5 SMO

WRule Avote

bal 83.20 • 86.38 ◦ 77.88 ◦• 77.42 ◦• 86.89 ◦

bpa 65.21 64.08 68.42 62.31 58.28 ◦•

irs 96.67 90.00 93.33 94.00 96.67 •

h-c 80.48 83.12 79.15 • 78.45 • 85.15 ◦

pim 76.69 75.39 75.39 74.23 76.97
thy 89.33 87.98 84.89 94.91 ◦• 88.91
wbcd 96.71 97.57 96.14 94.99 96.85
wne 94.41 97.75 94.97 • 93.89 • 99.44

2.5.2 Ruleset Reduction
At the end of the learning, the population is reduced to

obtain a minimum set of rules with the same train accu-
racy. The applied reduction strategy depends on the type
of inference used.

Winner rule. For each instance in the training dataset,
we create the match set and infer the output. The classifier
used for the inference is copied to the final population. The
process is repeated for all the input instances, obtaining a
reduced set of rules that achieve the same training accuracy
than the whole population.

Average vote. In this strategy, as all the rules participate
in the inference process, we can hardly find an efficient pro-
cess to reduce the population without loss of training accu-
racy. Thus, in this case, we only remove from the population
the rules that are not experienced enough (exp < θexploit)
and those with zero or negative fitness.

3. EXPERIMENTATION
We selected eight real-world problems from the UCI repos-

itory [2]: balance-scale (bal), bupa (bpa), Heart-C (h-c),
Iris (irs), pima (pim), thyroid (thy), Wisconsin breast can-

cer (wbcd), and wine (wne). We ran Fuzzy-UCS on these
problems with the two types of inference presented in Sect.
2.5.1 and the following configuration: learning iterations
= 100 000, population size 6400, F0=0.99, ν=10, θGA=50,
χ=0.8, µ=0.04, θdel=50, θsub=50, δ=0.1, P#=0.6. More-
over, we used five triangular shape linguistic terms uniformly
distributed. We compared the results to those obtained by
UCS, C4.5, and SMO with lineal kernels (C4.5 and SMO
were run using WEKA [5]). To get good estimates of the
test accuracy, we used a ten-fold cross validation [3].

Table 1 summarizes the results obtained with the five
learners. Fuzzy-UCS with both inference systems present
highly competitive results with respect to the other learn-
ers. Note that Fuzzy-UCS presents similar test accuracies
than those of UCS, and that outperforms C4.5, one of the
most-known and widely-used machine learning technique, in
most of the domains.

Besides its high accuracy, Fuzzy-UCS creates models that
are easier to understand than those built by the other learn-
ers. For example, let us compare the interpretability of rule-

based knowledge evolved by UCS and Fuzzy-UCS in the irs

problem. UCS evolved rulesets that consisted of 800 rules
on average, in which the most numerous and accurate rules
created for each class were:

1. IF x1 ∈ [4.30, 7.76] and x2 ∈ [2.91, 4.40] and x3 ∈ [1.00,
3.77] and x4 ∈ [0.10, 2.19] THEN Iris-setosa

2. IF x1 ∈ [4.30, 6.06] and x2 ∈ [2.00, 2.53] and x3 ∈ [4.30,
6.90] and x4 ∈ [0.10, 2.50] THEN Iris-virginica

3. IF x1 ∈ [4.30, 7.71] and x2 ∈ [2.00, 3.90] and x3 ∈ [2.63,
6.90] and x4 ∈ [0.10, 1.39] THEN Iris-versicolor

Fuzzy-UCS with average vote evolved a similar number of
rules, all of them used in the inference process. On the other
hand, Fuzzy-UCS with a winner rule inference evolved an
average of 20 rules. Having configured the system with five
linguistic terms {XS,S,M,L,XL}, the most numerous and ac-
curate rules evolved for each class were:

1. IF x3 is {XS, S or L} and x4 is {XS or S} THEN Iris-setosa
WITH F =1

2. IF x1 is not M and x4 is {L or XL} THEN Iris-virginica
WITH F =1

3. IF x3 is M and x4 is not L THEN Iris-versicolor WITH

F =1

Note that some of the variables are completely generalized.
Moreover, the fuzzy rules generated by Fuzzy-UCS are by
far easier to be interpreted than the intervalar rules evolved
by UCS.

4. CONCLUSIONS AND FURTHER WORK
This paper proposed Fuzzy-UCS, an LFCS that uses a

GA to evolve a set of fuzzy rules. We showed that the
performance of Fuzzy-UCS is comparable to those obtained
with UCS, C4.5 and SMO, and that the interpretability of
the fuzzy rules created is much better than those evolved
by UCS. These promising results lead to further investiga-
tion. As further work, we will compare Fuzzy-UCS to other
fuzzy and crisp machine learning methods on a large set of
datasets. Moreover, a deeper analysis on the generalization
capacity of Fuzzy-UCS will be conducted, as well as on the
interpretability of the fuzzy-rules compared to other knowl-
edge representations.

Acknowledgements
This work was supported by MCyT under projects TIN2005-
08386-C05-01 and TIN2005-08386-C05-04, and Generalitat

de Catalunya under grants 2005FI-00252 and 2005SGR-00302.

5. REFERENCES
[1] E. Bernadó-Mansilla and J. Garrell. Accuracy-Based

Learning Classifier Systems: Models, Analysis and
Applications to Classification Tasks. Evolutionary
Computation, 11(3):209–238, 2003.

[2] C. Blake and C. Merz. UCI Repository of ML Databases:
http://www.ics.uc.edu/ mlearn/MLRepository.html. Univ. of
California, 1998.

[3] T.G. Dietterich. Approximate Statistical Tests for
Comparing Supervised Classification Learning Algorithms.
Neural Comp., 10(7):1895–1924, 1998.

[4] M. Valenzuela-Radón. The Fuzzy Classifier System: A
Classifier System for Continuously Varying Variables. In 4th
ICGA, pages 346–353. Morgan Kaufmann, 1991.

[5] I. Witten and E. Frank. Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, San
Francisco, 2nd edition, 2005.

2874

