
Substructrual Surrogates for Learning Decomposable
Classification Problems: Implementation and First Results

Albert Orriols-Puig1,2, Kumara Sastry2, David E. Goldberg2, Ester Bernadó-Mansilla1

1Group of Research in Intelligent Systems, Enginyeria i Arquitectura La Salle
Universitat Ramon Llull, Barcelona, Spain 08022

2Illinois Genetic Algorithms Laboratory (IlliGAL), Dept. of Industrial and Enterprise Systems Eng.
University of Illinois at Urbana-Champaign, Urbana, IL 61801

aorriols@salle.url.edu, ksastry@uiuc.edu, deg@uiuc.edu, esterb@salle.url.edu

ABSTRACT
This paper presents a learning methodology based on a sub-
structural classification model to solve decomposable classi-
fication problems. The proposed method consists of three
important components: (1) a structural model that repre-
sents salient interactions between attributes for a given data,
(2) a surrogate model which provides a functional approx-
imation of the output as a function of attributes, and (3)
a classification model which predicts the class for new in-
puts. The structural model is used to infer the functional
form of the surrogate and its coefficients are estimated using
linear regression methods. The classification model uses a
maximally-accurate, least-complex surrogate to predict the
output for given inputs. The structural model that yields
an optimal classification model is searched using an iter-
ative greedy search heuristic. Results show that the pro-
posed method successfully detects the interacting variables
in hierarchical problems, group them in linkages groups, and
build maximally accurate classification models. The initial
results on non-trivial hierarchical test problems indicate that
the proposed method holds promise and have also shed light
on several improvements to enhance the capabilities of the
proposed method.

Categories and Subject Descriptors
I.2.6 [Learning]: concept learning, knowledge adquisition

General Terms
Algorithms

Keywords
Estimation of Distribution Algorithms, Structural Learning,
Machine Learning

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-698-1/07/0007 ...$5.00.

1. INTRODUCTION
Nearly decomposable functions play a central role in the

design, analysis and modeling of complex engineering sys-
tems [26, 7, 8]. A design decomposition principle has been
proposed for the successful design of scalable genetic algo-
rithms (GAs) [8, 17, 19], genetic programming [23], and
learning classifier systems and genetics based machine learn-
ing (GBML) [4, 15]. For example, in [4], estimation of distri-
bution algorithms (EDAs) were applied over the rule-based
knowledge evolved by XCS [29] to discover linkages between
the input variables, permitting XCS to solve hierarchical
problems which were intractable with first-generation XCS.

Nonetheless, previous approaches used the probabilistic
models built by EDAs—GAs that replace variation opera-
tors by building and sampling probabilistic models of promis-
ing solution—for recombination. However, the probabilistic
models can also be used to induce the form of surrogates
which can be used for efficiency enhancement of GAs [25,
18, 24] and GBML [16]. In this paper we use the substruc-
tural surrogates for learning from decomposable problems
with nominal attributes. Similar to Sastry, Lima, and Gold-
berg [24], we use the structural model of EDAs to induce the
form of the surrogate and linear regression for estimating the
coefficients of the surrogate. The surrogate is subsequently
used to predict the class of unknown input instances.

In this paper, we discuss the critical components of the
proposed methodology and outline several ways to imple-
ment it. We then propose a greedy search heuristic for dis-
covering the structural model that minimizes the test error
of the classification model constructed from it. We address
this method as greedy Extraction of the Structural Model for

Classification (gESMC). We artificially design a set of hier-
archical problems by means of concatenating essential blocks
which output, provided by a boolean function, serves as the
input of another function that determines the global output
of the example. Thus, these problems may be decomposed
and essential blocks should be correctly processed to predict
the correct output. gESMC is able to detect the interactions
between variables and build accurate classification models.
Moreover, the system is compared to C4.5 and SMO, which
clearly shows the advantage of extracting the problem struc-
ture. Finally, we review the limitations of applying a greedy
search to obtain the best structural model, show in which
circumstances these limitations may appear, and propose
approaches to overcome them.

2875

The paper is organized as follows. Section 2 discusses the
proposed methodology followed by a description of gESMC.
The test problems designed and used in this study are dis-
cussed in Section 4. Section 5 compares the results of gESMC
with C4.5 and SMO on the hierarchical problems. Section 6
discusses some enhancements that are yet to be investigated.
Section 7 provides summary and conclusions.

2. METHODOLOGY FOR LEARNING
χ-ARY INPUT PROBLEMS

In this section, we discuss a methodology for learning the
structural and the classification models from a set of la-
beled examples. The methodology consists of three layers:
(1) the structural model layer, (2) the surrogate model layer,
and (3) the classification model layer. The structural model

layer extracts the dependencies between the attributes of
the examples in the dataset. These dependencies can be ex-
pressed in form of linkage groups [9, 10], matrices [31], or
Bayesian networks [17]. However the dependencies are rep-
resented, the key idea is that the salient interactions between
attributes are used as a basis for determining the output.
The surrogate model layer uses the structural model to infer
the functional form of the surrogate and the coefficients of
the surrogate are determined using linear regression meth-
ods. The resulting surrogate is a function that approximates
the output of each input instance. Finally, the classification

model layer uses the surrogate function to predict the class
of new input instances.

2.1 Structural Model Layer
The structural model layer is the responsible for identi-

fying salient interactions between attributes (for example,
linkage groups) which need to be processed together to de-
termine their contribution to the output. For example, con-
sider a problem with two binary attributes (x1, x2) and
whose output is determined by the x-or boolean function.
If we considered each of the attributes independently, we
cannot evolve a function that computes the output accu-
rately for all possible inputs. However, when we consider
the two attributes together, we can easily create a function
that can accurately predict the output for all possible input
sequences.

A number of linkage-learning methods [8] can be used to
implement the structural model layer. Here, we will use es-
timation of distribution algorithms (EDAs) [17, 19], which
learn the salient interactions between decision variables by
building probabilistic models of promising candidate solu-
tions. In learning classifier systems (LCSs) or genetics-based
machine learning (GBML) realm, EDAs have been success-
fully combined with LCSs to extract the linkages between
classifiers’ alleles [4, 15, 16]. However, unlike previous stud-
ies which used the structural model as a replacement of re-
combination, in this study we integrate the structural model
and learning with the use of substructural surrogates.

In order to achieve this integration, the first step is to find
the structural model of the given data. This can be done
in several ways. As with EDAs, given a class of permissi-
ble structural models, we can search for the best structural
model. Prior and domain-specific knowledge can also be
used to propose the structural model, and a search mecha-
nism could be used to refine it [1]. In this study we use a
greedy search heuristic that searches for the model structure

that results in the most accurate surrogate model, details of
which are given in Section 3.

2.2 Surrogate Model Layer
The surrogate model layer preprocesses the input exam-

ples according to the structural model and builds a regres-
sion model from these preprocessed examples, as described
in [24]. In this section we summarize the procedure of build-
ing such a surrogate. Consider a matrix D of dimension n×`

that contains all the input examples (where n is the num-
ber of examples and ` the number of attributes). Once the
structural model is built, every linkage group is treated as
a building block [11]. Then, we consider all possible input
combinations within in each linkage group to process the
input examples.

For example, consider the following structural model of
a binary problem of 3 variables: {[x1, x3], [x2]}. That is,
there is salient interaction between variables x1 and x3,
which are independent from the variable x2. In this case, we
consider the following schemata: {0*0, 0*1, 1*0, 1*1, *0*,
1}. In general, given m linkage groups, the total number
of schemata msch to be considered is given by:

msch =
m

∑

i=1

[

Πki

j=1
χi,j

]

, (1)

where χi,j is the alphabet cardinality of the jth variable of
the ith linkage group, and ki is the size of the ith linkage
group.

Then, each example in D is mapped to a vector of size
msch, creating the matrix A of dimensions n×msch:

A =











a1,1 a1,2 · · · a1,msch

a2,1 a2,2 · · · a2,msch

...
...

. . .
...

an,1 an,2 · · · an,msch











, (2)

where ai,j will have value ’1’ if the ith example belongs to
the jth schemata, and ’0’ otherwise. Note that, given an
example, only one of the schemata for each linkage group
can have value ’1’.

We map different labels or classes of the examples to nu-
meric values. For example: {class1, class2, · · · , classk} −→
{Z1, Z2, · · · , Zk}. The label or class ci of each example is
also kept in a matrix C of dimensions n× 1:

C =
(

c1 c2 · · · cn

)τ
. (3)

Now, the task of designing the surrogate can be formulated
into a linear system of equations and our objective is to com-
pute the coefficients of the matrix x of dimensions msch× 1
that satisfy the following equality:

Ax = C. (4)

In practice, we may not find an x that satisfies this ex-
pression. For this reason, we use a multi-dimensional least
squares fitting approach. That is, the problem is reformu-
lated by estimating the vector of coefficients x that minimize
the square error function χ:

χ
2 = (Ax− C)T · (Ax− C) . (5)

The problem of least-squares fitting is well-known, and so we
do not provide insight in the resolution methodology herein.
The interested reader is referred to [6, 22]. Here, we used

2876

the multi-dimensional least squares fitting routine available
with GNU scientific library 1 (GSL).

2.3 Classification Model Layer
Once we obtain the matrix x with the regression coeffi-

cients, the output for a new example is computed as follows.
The example is mapped to a vector ~e of size msch. The map-
ping procedure used is identical to that used to create matrix
A and as outlined in the previous section, the elements of
~e will have a value ’1’ if the example belongs to the corre-
sponding schemata and ’0’ otherwise. Then, the predicted
output is given by:

output = ~e · x. (6)

Note that the output is a continuous value, and has to be
transformed to one of the possible class labels. Therefore,
we convert the continuous output to the closer integer Zi

in {Z1, Z2, · · · , Zk}, and then, return the class label that
corresponds to Zi.

In essence, the proposed method relies on the structural
and the surrogate models extracted from the data to build
the classification model. Therefore, we note that if this
structural model does not reflect the variable interactions
accurately, the accuracy of the classification model will be
limited. In the next section we propose an implementation
of the methodology that search iteratively for the best struc-
tural model, and uses the classification model to evaluate its
quality. We call this implementation as the greedy Extrac-

tion of the Structural Model for Classification (gESMC).

3. IMPLEMENTING THE
METHODOLOGY: GESMC

The pseudocode of the implementation of our proposed
method is shown in Algorithm 1. In the initialization stage,
the algorithm divides the data into training and test sets.
We start with a structural model where all variables are
treated as independent and build a surrogate function via
regression over the training set as explained in the previous
section (see Section 2.2). The quality of the classification
model is evaluated with the test set and stored in the vari-
able mdl.

Similar to the extended compact genetic algorithm (eCGA)
[10], in gESMC we use a greedy search heuristic to partition
the set of attributes into non-overlapping clusters such that
the classification error is (locally) minimized. Starting from
a model where variables are treated as independent, we con-
tinue to merge substructures till either (1) the mdl measure
becomes less than a user set threshold of θ, or (2) the search
produces no improvement. In every iteration of the inner
loop (lines 10 to 13), we merge two linkage groups from the
current best model, create the surrogate and the classifica-
tion model, and evaluate it. That is,

(

m

2

)

new structural
models are formed (where m is the number of substructures
in the current best model), and their surrogate functions
created and evaluated. Among the evaluated

(

m

2

)

models,
the one with the lowest classification error is chosen as the
current best model for the next iteration if it significantly

improves the current best model; otherwise, we terminate
the search, and the current best surrogate and classification
models are returned as the (locally) best models.

1http://www.gnu.org/software/gsl

Three elements of the implementation need further expla-
nation: (1) procedure to divide the data into training and
test sets (line 2), (2) evaluation of the model (lines 5 and
12), and (3) procedure for comparing two models and choos-
ing the better one (line 17). Each of the three elements are
discussed in the following paragraph.

Partition of the data. The procedure used to partition
the data into training and test sets affects the estimation of
classification error. Among the different approaches that can
be found in the literature, we used a 10-fold cross validation
[27] with k = 10.

Evaluation of the model. The quality of a structural
model depends on (1) the complexity of this model, and
(2) the test error of the classification model created from it.
Again, a number of measures such as minimum description
length metrics and multiobjective approaches could be used
to measure the relative quality of a given surrogate and clas-
sification model. We use the k-fold cross validation which
provides a measure of both the test error and the model
complexity in terms of overfitting of training data. That is,
if the structural model is more complex than necessary, the
surrogate function will tend to overfit the training instances,
and the test error will increase.

Comparison of models. Given a current-best model, in
gESMC we consider all pairwise merges of the substructures
of the current-best model. We need to choose the best model
among all the models created via the pairwise merges and
compare it to the current-best model. Again, this could be
done in a number of ways. In our implementation, we use a
paired t-test to determine if a new, more complex, structural
model is better than the current best model [27]. We use a
confidence interval of α = 0.01.

Before proceeding with a description of the test functions,
we note two important properties of gESMC. First, in the
current implementation gESMC the structural model is a
partition of the variables into non-overlapping groups. How-
ever, this limitation can easily be relaxed by using other
structural models [31, 17]. Second, because of the greedy
procedure, we need some guidance from lower-order, sub-
optimal structural models towards an optimal structural
model. This limitation can be alleviated by replacing the
greedy search heuristic with a global optimization method.

4. TEST PROBLEMS
In this section, we present a general set of decomposable

problems to investigate the capabilities of gESMC in cor-
rectly identifying salient substructures and building an ac-
curate classification model. Similarly to [3], we propose a
class of two-level hierarchical problems where the lower level
consists of functions that operate on a set of binary-input
blocks and the upper level consists of functions that oper-
ate on the lower-level function values to produce the output.
The lower- and upper-level function used in the study are
explained in Section 4.1 and 4.2, respectively.

4.1 Lower Level of the Hierarchy
At the lower level of the hierarchy, we considered the fol-

lowing two binary functions which operate independently on
m blocks with k variables in each block. Moreover the vari-
ables within a block interact with each other and determine
the output of the function.

2877

Algorithm 1 Building of structural and classification model via a greedy search.

1: function buildModel(data is dataset)
2: [train, test] ←− divideData (data)
3: bestModel ←− [1], [2], ..., [n]
4: function ←− createSurrogateFunction (bestModel, train)
5: mdl ←− evaluateModel (bestModel, test)
6: isImproving ←− true
7: while mdl > θ and isImproving do
8: count ←− 1
9: for i ∈ {1, ..., length(bestModel)− 1} do

10: for j ∈ {i + 1, ..., length(bestModel)− 1} do
11: newModel[count] ←− joinLinkages(bestModel, i, j)
12: newFunction[count] ←− createSurrogateFunction (newModel[count], train)
13: newMdl[count] ←− evaluateModel (newModel[count], test)
14: count ←− count + 1
15: end for
16: end for
17: best −→ position min. mdl(newMdl)
18: if newMdl[best] significantly improves mdl then
19: bestModel = newModels[i]
20: mdl = newMdl[i]
21: else
22: isImproving=false
23: end if
24: end while
25: end function

The position problem. The position problem [2] is de-
fined as follows. Given a binary input of length `, the output
is the position of the left-most one-valued bit. For example,
f(100)=3, f(010)=2, f(001)=1, and f(000)=0. Note that ev-
ery variable is linked to all the variables on its left.

The parity problem. The parity problem [14] is a two-
class binary problem defined as follows. Given a binary
input of length `, the output is the number of one-valued
bits modulo two. For example, f(110)=0, f(100)=1, and
f(111)=1. To predict the output accurately for the parity
problem, all the variables have to be jointly processed. Ad-
ditionally, for a k-bit parity problem, the structural model
that represents all the variables to be independent yields a
classification model of the same accuracy as the one that
contains substructures of size k − 1 or less.

4.2 Higher Level of the Hierarchy
At the higher level of the hierarchy, we use the following

problems where each variable contributes independently to
the output. That is, the structural information is contained
in the lower-level of the hierarchy and the upper level func-
tion affects the salience of the substructures.

The decoder problem. The decoder problem [2] is a
binary-input multi-class problem defined as follows. Given
an input of length `, the output is determined by the decimal
value of the input. For example, f(111) = 7, f(101) = 5,
and f(000) = 0. Note that each variable independently con-
tributes to the output.

The count-ones problems. The count-ones is defined
as follows. Given a binary input of size `, the output is
the number of one-valued bits. Again, the output of the
count-ones problems can be predicted by treating the input
variables independently.

As mentioned earlier, we concatenated m blocks of k bits
of the two lower level problems with the two higher level
problems to create four different hierarchical test problems.
Specifically, we used the position at the lower level with
the decoder (HPosDec) and the count-ones (HPosCount) in
the higher level. Similarly, low order parity blocks were
combined again with the decoder (HParDec) and the count-

ones (HParCount). Additionally, we added some irrelevant
bits, which do not contribute to the output, to see if our
method was capable of ignoring them. Therefore, in our
case, ` ≥ m · k, where ` is the length of the input string.

With the above description of the test problems, we present
the results of gESMC and compare with those of C4.5 and
SMO in the following section.

5. RESULTS
This section analyzes the behavior of gESMC for learn-

ing hierarchical problems, and compare the results to those
obtained with two highly competitive learners in terms of
performance and interpretability.

5.1 Experimental Methodology
We use the four hierarchical problems designed in the pre-

vious section to analyze the performance of gESMC. We
start with concatenations of three minimum-order blocks in
the lower level hierarchy (that is, k=2) and add 9 irrelevant
bits to the input. Our aim is to analyze the capabilities of
gESMC in (i) identifying salient substructures of interacting
variables, and (ii) ignoring irrelevant variables, and not con-
sidering them in the classification model. Next, we increase
the order of the lower-order blocks with a two-fold objective.
For the problem with position blocks, we analyze if the sys-
tem is able to identify and efficiently handle larger groups
of linked variables. For the problems with parity blocks, we

2878

Table 1: Test error and standard deviation (in %)
obtained with gESMC, SMO and C4.5 on the prob-
lems HPosDec, HPosCount, HParDec, HParCount
with `=15, m = 3, and k = 2. Results are averaged
over ten runs with different holdouts and random
seeds.

gESMC C4.5 SMO
HPosDec 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
HPosCount 0.0 ± 0.0 0.0 ± 0.0 21.8 ± 0.1
HParDec 0.0 ± 0.0 3.3 ± 2.9 89.1 ± 0.9
HParCount 0.0 ± 0.0 5.1 ± 4.4 62.7 ± 0.2

want to investigate the behavior of gESMC when there is a
lack of guidance toward an accurate substructural model.

To illustrate the need for detecting linkage groups in clas-
sification tasks, we compare the results obtained with gESMC
to those of two widely used learners: the decision tree C4.5
[21], and the support vector machine SMO [20]. Both meth-
ods were run using WEKA [30]. Unless otherwise noted, for
C4.5 we used the default configuration, and for SMO, we
used a polynomial kernel of order 1.

The three methods are compared in terms of performance
(that is, test accuracy) and comprehensibility of the knowl-
edge generated by the learner. As the datasets had a large
number of instances, we used the holdout methodology2 to
estimate the test accuracy; that is, 70% of the instances
were randomly selected and placed in the training set, and
the rest formed the test set. To compare the performance
of each pair of learners on a given problem, we applied a
paired Student t-test [27] on the results. To study the inter-
pretability of each method, we qualitatively compared the
structural and the classification model evolved by gESMC
to the the decision trees generated by C4.5, and the weights
extracted by SMO.

5.2 Results with 2-bit Low Order Blocks
We first run gESMC, C4.5, and SMO on the problems

HPosDec, HPosCount, HParDec, and HParCount with ` =
15, m = 3 and k = 2. Therefore, the problems were formed
by three lower level blocks of two bits, and there were 9 irrel-
evant bits at the end of the binary input. Next, we compare
the results in terms of performance and interpretability.

5.2.1 Comparison of the Performance
Table 1 summarizes the test error resulting of applying

gESMC, C4.5, and SMO on the four hierarchical problems.
All the results were averaged over ten runs with different
holdouts and random seeds.

The results show that gESMC obtained 0% test error for
all the problems tested. This indicates that the method is
able to process the variable linkages and build maximally
accurate classification models. None of the other learners
could achieve 0% error in all the problems. C4.5 achieved
0% test error for the problems HPosCount and HPosDec, the
ones formed by position blocks. Nonetheless, on the prob-
lems that consist of parity blocks, C4.5 was significantly
outperformed by gESMC according to a a paired t-test on
a significance level of 0.99. Finally, SMO presents the worst

2A holdout is the simplest cross-validation approach where
the data is divided in two sets, the train and the test set.

Table 2: Structural models and surrogate functions
build by gESMC for the problems HPosDec (1),
HPosCount (2), HParDec (3), HParCount (4) with
`=15, m = 3, and k = 2.

1
[x0x1][x2x3][x4][x5][x6][x7][x8][x9][x10][x11][x12][x13][x14]

16.75 + 9(1 − x0x1) − 6x2x3 − 3x2x3 − 1.5x4 + 0.5x5

2
[x0x1][x2x3][x4][x5][x6][x7][x8][x9][x10][x11][x12][x13][x14]

0.75 + x0x1 + (1 − x2x3) + 0.5x4 + 0.5x5

3
[x0x1][x2x3][x4x5][x6][x7][x8][x9][x10][x11][x12][x13][x14]

2 + 4(x0x1 + x0x1) − 2(x2x3 + x2x3) − (x4x5 + x4x5)

4
[x0x1][x2x3][x4x5][x6][x7][x8][x9][x10][x11][x12][x13][x14]

x0x1 + x0x1 + x2x3 + x2x3 + x4x5 + x4x5

behavior of the comparison. The learner could accurately
generalize over the input data only on the HPosDec prob-
lem. For the problems HPosCount, HParDec, and HPar-
Count, the results of SMO significantly degraded those ob-
tained with gESMC and C4.5. Note the big difference in the
test errors; for HParDec, SMO has 89.11% test error, C4.5
has 3.32%, and gESMC is maximally accurate. We repeated
the experiments with a Gaussian kernel [12] to promote the
discovering of the linkage groups, but no significant improve-
ment was found.

These results highlight the importance of learning and
incorporating the structural model into the classification
model. gESMC found highly accurate classification mod-
els only after discovering the problem structure (examples
of some structural and classification models are shown in
the next section). However C4.5 and SMO failed since they
were not able to identify this structure. Note that the prob-
lems formed by parity blocks resulted more problematic for
both learners than the problems based on position blocks.
This could be explained as follows. The variables linkages
in the position are weaker than in the parity. That is, in the
position problem every variable processed from left to right
reduces the uncertainty of the output. In the parity, looking
at a single variable does not reduce the uncertainty, and so,
processing the linkages is crucial. We hypothesize that, for
this reason, problems formed by parity are more difficult to
learn for C4.5 and SMO.

5.2.2 Comparison of the Interpretability
We now analyze the interpretability of the models cre-

ated by gESMC, and qualitatively compare them to those
obtained by C4.5 and SMO. Table 2 shows the structural
models and the associated surrogate functions built for each
problem. For HPosDec and HPosCount, gESMC correctly
detects the linkages between the groups of variables [x0, x1]
and [x2, x3]; all the other variables are considered indepen-
dent. The reason that gESMC incorrectly identifies that
variables x4 and x5 are independent, is because it reaches
the termination criteria of 0% test error. For the prob-
lems HParDec and HParCount, gESMC discovers the link-
age groups [x0, x1], [x2, x3], and [x4, x5]. Differently from
the position problem, now gESMC needs to discover all the
existing parity groups to remove the uncertainty, and so,
build the most accurate classification model.

The availability of the structural model with gESMC is
another advantage over other conventional classification tech-
niques in terms of interpretability. The structural model
facilitates easy visualization of the salient variable interac-
tions and better understand the resulting surrogate func-

2879

Table 3: Test error and standard deviation (in %)
obtained with gESMC, SMO and C4.5 on the prob-
lems HPosDec, HPosCount, HParDec, HParCount
with `=15, m = 3, and k = 3. Results are averages
over ten runs with different holdouts and random
seeds.

gESMC C4.5 SMO
HPosDec 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
HPosCount 0.0 ± 0.0 0.0 ± 0.0 14.2 ± 1.0
HParDec 24.0 ± 25.5 9.0 ± 5.8 76.9 ± 2.0
HParCount 49.9 ± 0.0 12.2 ± 6.6 49.9 ± 0.22

tion. Note that for all the problems, gESMC built easily
interpretable functions and also efficiently ignores irrelevant
variables. For example, consider the problem HParCount,
in which the output is the number of ’1s’ resulting from
the evaluation of each low-order parity block. The function
evolved clearly indicates that if any of the linkage groups
has the schemata ’01’ or ’10’ (values from which the parity
would result in ’1’), the output is incremented by one.

Let us now compare this knowledge representation to those
obtained with C4.5 and SMO. For this purpose, we consider
the size of the trees built by C4.5, and the machines con-
structed by SMO. For HPosDec and HPosCount, C4.5 built
a tree with 53 nodes, from which 27 were leaves. The result-
ing trees specified the output for each combination of the six
relevant bits ; however, they do not show the variable inter-
actions. For HParCount, C4.5 built trees that, on average,
had 136 leaves and 270 nodes. For HParDec, the trees had
142 leaves and 283 nodes. This high number of nodes makes
the interpretability of tree very hard. Additionally, all the
trees had some irrelevant attributes in the decision nodes.
That is, C4.5 was overfitting the train instances to reduce
the train error, resulting in more complicated trees, further
hindering the interpretability of the classification model.

In contrast to gESMC and C4.5, SMO presented the less
interpretable results. In general, SMO creates a machine for
each pair of classes, and adjust `+1 weights for each machine
(where ` is the number of attributes of the problem). For
HPosDec, SMO built 351 machines with 16 weights ranging
from 0 to 1. For HPoscount, HParDec, and HParCount, 6,
6, and 28 machines were created, all them with 16 weights
ranging from 0 to 1. Although some of these weights were
zero, the machines evolved could not be interpreted at all.
Thus, the human expert would not be able to extract any
information from these knowledge models.

5.3 Results Increasing the Low Level Block
Size

We now increase the interaction order of the lower-level
blocks to analyze the effect of order of interaction on the
performance of gESMC. Additionally, for the test problems
with parity blocks, we also want to investigate the effect of
having no guidance from lower-order substructures towards
obtaining accurate structural model on the accuracy of the
classification model obtained via gESMC. Specifically, we
use HPosDec, HPosCount, HParDec, and HParCount with
` = 15, m = 2, and k = 3, and compared gESMC to C4.5
and SMO.

Table 3 shows the test errors for gESMC, C4.5 and SMO.
For HPosDec and HPosCount, gESMC obtained 0% error

test and for both problems, two different structural models
were created during independent runs:

M1 : [x0x1][x3x4x5][x2][x6][x7][x8][x9][x10][x11][x12][x13][x14],

M2 : [x0x1x2][x3x4][x5][x6][x7][x8][x9][x10][x11][x12][x13][x14].

In both the above models, the variables of one of the lower-
level blocks are correctly identified, and only two variables of
the other lower-level blocks form a linkage group. Again as
observed in the previous section, because gESMC meets the
convergence criteria of 0% test errors for both the models
even when one of the substructures is partially identified.

The surrogate functions evolved are qualitatively similar
to those obtained in the previous section. In all cases, only
the six relevant variables were taken in consideration, and
specifically, some of their schemata. For example, one of the
surrogate functions created for the HPosDec is

14.9x5 + 15x5 − 2.5x3x4 + x3x4 − 12x0x1x2−

−4x0x1x2 − 8x0x1x2 − 4x0x1x2, (7)

which only contains the six relevant variables x0, x1, · · · , x5.
As expected, for HParDec and HParCount, gESMC yields

poorer results. For HParDec, the average test error was
24% with a high standard deviation. This high deviation
is because gESMC yielded a maximally accurate classifica-
tion model for 50% of the runs. For the rest 50%, gESMC
could not discover accurate structural model. Further inves-
tigation showed that this is due to the stochasticity of the
holdout estimation. Since we randomly select 70% of the in-
stances as the training set, the symmetry of the parity prob-
lem may be broken leading the greedy search heuristic to
yield the accurate structural model. This indicates that in-
troduction of stochasticity might break symmetry of parity-
like functions and render the accurate structural model hill-
climbable. However, the efficacy of adding exogenous noise
to break symmetry needs to be further investigated.

For HPosDec, gESMC was not able to discover the accu-
rate structural model in any of the cases, and therefore yields
a test error of 50%. As mentioned earlier, the reason for this
failure is due of the greedy search of the structural model.
For the k-bit parity function, since all structural models
with substructures of order k−1 or lower yield classification
models with the same error, the optimal structural model
is not hill-climbable. Therefore, the greedy search heuristic
fails to identify the accurate structural model and therefore
yields inaccurate classification models. This limitation can
easily be alleviated by a number of ways, some of which are
outlined in the next section.

Finally, we compare the results of gESMC to those ob-
tained with C4.5 and SMO. All three algorithms perform
equally well in tackling HPosDec, and gESMC and C4.5
outperform SMO on HPosCount. However, on HParDec
and HParCount, C4.5 outperforms both gESMC and C4.5.
However as with the 2-bit lower-order blocks, the trees of
C4.5 had some irrelevant variables in the decision nodes in-
dicating overfitting to the training data.

These results clearly show that gESMC can discover the
accurate structural model given that it is hill-climbable from
lower-order structural models. In the following section, we
discuss some approaches to relax this limitation of gESMC.
We also discuss ways to represent structural models with
overlapping substructures.

2880

6. DISCUSSION
The results presented in the previous section highlighted

both the strengths and limitations of gESMC. In this sec-
tion we discuss some approaches to overcome the limitations
of gESMC which have to be further investigated. We dis-
cuss approaches to discover accurate structural models even
when the there is a lack of guidance from lower-level struc-
tural models. We also discuss ways to represent structural
models with overlapping substructures.

6.1 Lack of Guidance from Lower-Order
Substructures

As mentioned earlier, the greedy search used in gESMC
needs some guidance from lower-order substructural models
towards the optimal structural model. That is, in order to
discover a k-variable substructure the greedy search needs
a classification model built with at least one of the sub-
structures of order 2 to be more accurate than that with
substructures of order 1, and the classification model built
with at least of the substructures of order 3 has to be more
accurate than those with substructures of order 2 and so on.
In the absence of such a guidance, the greedy search may
stop because it cannot find any structural model that de-
creases the classification error. To alleviate this limitation,
we propose the following two approaches:

Increase the order of substructural merges. We can
increase the order of the linkages that the greedy search does
if the test error is high and no better structural model is
found. That is, at each iteration, instead of pairwise merges,
we could permit higher-order merges if the pairwise merges
yield no improvement.

We implemented this approach and tested gESMC on the
four hierarchical problems. The results show that gESMC
obtained 0% test error in all the four problems, and the
structural models are correctly evolved. However, this so-
lution supposes to increase the cost of the algorithm; for
this reason, we do not consider this approach as a general
solution, although it can be really useful in certain domains.

Select randomly one of the new structural models.
If the test error is high, and the greedy search cannot find
any structural model that significantly decreases this test
error, a new structural model can be chosen randomly, or
using a technique similar to simulated annealing [13]. In
this case, we would accept a structural model with a higher
error in the hope of getting a better model in the subsequent
iterations.

6.2 Creating Structural Models with
Overlapping Substructures

Finally, we look at problems with overlapping linkages
where some variables interact with different groups of vari-
ables depending on the given input. A widely used test
problem with overlapping linkages is the multiplexer prob-
lem [5, 28], which is defined as follows. Given a bit string
of length `, where the first log

2
` bits are the address bits

and the remaining bits are the position bits, the output is
the value of the position bit referred by the decimal value
of the address bits. For example, for the 6-bit multiplexer,
f(00 0101)=0 and f(10 1011)=1. Thus, a surrogate with a
group formed by all the address bits and the corresponding
position bit as a basis accurately determines the output.

We tested gESMC on the 6-bit and 11-bit multiplexer
problems. The structural models evolved contained all the
address and the position bits in the same linkage group. For
example, we obtained the following structural model for the
6-bit multiplexer:

[x0x1x2x3x4x5],

which resulted in a 0% test error. Since gESMC builds struc-
tural model with non-overlapping substructures, one way to
handle overlapping substructures is by grouping the sub-
structures together. However, such a merger is unnecessary
and other methods which can build structural model with
overlapping surrogates such as the design structure matrix
genetic algorithm (DSMGA) [31, 16], can evolve a structural
model such as:

[x0x1x2][x0x1x3][x0x1x4][x0x1x5],

The above structural model also yields a surrogate with 0%
test error, and gives more information that the former one.
Therefore, we will investigate the use of DSMGA and other
similar methods that can discover structural models with
overlapping variables in developing maximally accurate clas-
sification models.

7. SUMMARY AND CONCLUSIONS
In this paper, we proposed a methodology for learning by

building a classification model that uses the structural and
surrogate model of a data set. First, we discover the struc-
tural model of a set of examples, identifying salient groups
of interacting variables to determine the output. Then, we
use the structural model is used to infer the functional form
of a surrogate function and the coefficients of the surrogate
are estimated using linear regression. Finally, using the sub-
structural surrogate, we build a classification model to pre-
dict the class of a given new set of inputs.

We presented gESMC, an implementation of the method-
ology which uses a greedy search heuristic to search for the
structural, surrogate, and classification models that mini-
mize the classification error. Without any problem knowl-
edge, gESMC starts with a simplest model of independent
variables and proceeds to explore more complex structural
model till the classification error no longer improves or is
below a user-defined threshold.

The results of using gESMC on four hierarchical test prob-
lems, and its comparison with C4.5 and SMO shows that
gESMC significantly outperforms C4.5 and SMO in prob-
lems that consisted of 2-bit low order blocks in terms of
learning accuracy and interpretability. The main difference
between gESMC and other learners is that gESMC detects
the structure of the data and uses it to predict the class of
given inputs. That is, gESMC not only provides the classi-
fication model, but also the structure of the data, making it
amenable to human interpretation.

Along with the strengths, the results also highlighted some
limitations of gESMC. Specifically, the accuracy of the struc-
tural model to capture salient variable interactions depend
on the guidance from lower-order substructures. Therefore,
the accuracy of the structural model and consequently the
accuracy of the classification model suffers when there is no
guidance from lower-order substructures. This limitation is
expected given that we use a minimum description length
style metric and also a greedy search heuristic which only

2881

considers pairwise merges of the substructures. Several ap-
proaches were outlined to overcome this limitation which
need further investigation.

Acknowledgments
We thank the support of Enginyeria i Arquitectura La Salle,
Ramon Llull University, Ministerio de Ciencia y Tecnoloǵıa

under project TIN2005-08386-C05-04, and Generalitat de

Catalunya under Grants 2005FI-00252 and 2005SGR-00302.
This work was also sponsored by the Air Force Office of

Scientific Research, Air Force Materiel Command, USAF,
under grant F49620-03-1-0129, the National Science Foun-
dation under grant ITR grant DMR-03-25939 at the Mate-
rials Computation Center. The U.S. Government is autho-
rized to reproduce and distribute reprints for government
purposes notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed
or implied, of the Air Force Office of Scientific Research, the
National Science Foundation, or the U.S. Government.

8. REFERENCES
[1] S. Baluja. Incorporating a priori knowledge in

probabilistic-model based optimization. In Martin Pelikan,
Kumara Sastry, and Erick Cantú-Paz, editors, Scalable
Optimization via Probabilistic Modeling: From Algorithms
to Applications, chapter 9, pages 205–219. Springer, Berlin,
2006.

[2] E. Bernadó-Mansilla and J.M. Garrell. Accuracy-Based
Learning Classifier Systems: Models, Analysis and
Applications to Classification Tasks. Evolutionary
Computation, 11(3):209–238, 2003.

[3] M.V. Butz. Rule-Based Evolutionary Online Learning
Systems: A Principled Approach to LCS Analysis and
Design, volume 109 of Studies in Fuzziness and Soft
Computing. Springer, 2006.

[4] M.V. Butz, M. Pelikan, X. Llorà, and D.E. Goldberg.
Automated Global Structure Extraction for Effective Local
Building Block Processing in XCS. Evolutionary
Computation, 14(3):345–380, 2006.

[5] K.A. De Jong and W.M. Spears Learning Concept
Classification Rules Using Genetic Algorithms. In
Proceedings of the International Joint Conference on
Artificial Intelligence, pages 651–656. Sidney, Australia,
1991.

[6] N.R. Drapper and H. Smith. Applied Regression Analysis.
John Wiley & Sons, New York, USA, 1966.

[7] J.J. Gibson. The Ecological Approach to Visual Perception.
Mahwah, NJ: Lawrence Erlbaum Associates, 1979.

[8] D.E. Goldberg. The Design of Innovation: Lessons from
and for Competent Genetic Algorithms. Kluwer Academic
Publishers, 1 edition, 2002.

[9] G.R. Harik. Linkage Learning via Probabilistic Modeling in
the ECGA. Technical report, (IlliGAL Report No.
99010).Urbana, IL: University of Illinois at
Urbana-Champaign, January 1999.

[10] G.R. Harik, F. Lobo, and K. Sastry. Linkage learning via
probabilistic modeling in the ECGA. In Martin Pelikan,
Kumara Sastry, and Erick Cantú-Paz, editors, Scalable
Optimization via Probabilistic Modeling: From Algorithms
to Applications, chapter 3, pages 39–61. Springer, Berlin,
2006. (Also IlliGAL Report No. 99010).

[11] J.H. Holland. Adaptation in Natural and Artificial
Systems. The University of Michigan Press, 1975.

[12] S.S. Keerthi and C.J. Lin. Asymptotic Behaviors of
Support Vector Machines with Gaussian Kernel. Neural
Computation, 15(7):1667–1689, 2003.

[13] J. Korst and E. Aarts. Simulated Annealing and Boltzmann
Machines. Wiley-Interscience, New York, 1997.

[14] T. Kovacs. Deletion Schemes for Classifier Systems. In
GECCO’99: Proceedings of the Genetic and Evolutionary
Computation Conference, pages 329–336. Morgan
Kaufmann, 1999.

[15] X. Llorà, K. Sastry, D. E. Goldberg, and L. de la Ossa. The
χ-ary extended compact genetic algorithm: Linkage
learning in pittsburgh lcs. In T. Kovacs, X. Llorà, and
K. Takadama, editors, Advances at the frontier of LCS.
Springer, Berlin, 2007. (Also IlliGAL Report No. 2006015).

[16] X. Llorà, K. Sastry, T.-L. Yu, and D. E. Goldberg. Do not
match, inherit: Fitness surrogates for genetics-based
machine learning. Proceedings of the 2007 Genetic and
Evolutionary Computation Conference, page Accepted,
2007.

[17] M. Pelikan. Hierarchical Bayesian Optimization Algorithm:
Toward a new Generation of Evolutionary Algorithms.
Berlin: Springer Verlag, 2005.

[18] M. Pelikan and K. Sastry. Fitness inheritance in the
Bayesian optimization algorithm. Proceedings of the 2004
Genetic and Evolutionary Computation Conference,
2:48–59, 2004. (Also IlliGAL Report No. 2004009).

[19] M. Pelikan, K. Sastry, and E. Cantú-Paz, editors. Scalable
Optimization via Probabilistic Modeling: From Algorithms
to Applications, volume 33 of Studies in Computational
Intelligence. Springer, 2006.

[20] J. Platt. Fast Training of Support Vector Machines using
Sequential Minimal Optimization. In Advances in Kernel
Methods - Support Vector Learning, pages 557–563. MIT
Press, 1998.

[21] J.R. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers, San Mateo, California, 1995.

[22] C.R. Rao and H. Toutenburg. Linear Models: Least
Squares and Alternatives. Springer, Berlin, 1999.

[23] K. Sastry and D.E. Goldberg. Probabilistic Model Building
and Competent Genetic Programming. In Rick L. Riolo
and Bill Worzel, editors, Genetic Programming Theory and
Practise, chapter 13, pages 205–220. Kluwer, 2003.

[24] K. Sastry, C.F. Lima, and D.E. Goldberg. Evaluation
Relaxation Using Substructural Information and Linear
Estimation. In GECCO’06: Proceedings of the 8th annual
Conference on Genetic and Evolutionary Computation,
pages 419–426, New York, NY, USA, 2006. ACM Press.

[25] K. Sastry, M. Pelikan, and D. E. Goldberg. Efficiency
enhancement of genetic algorithms via building-block-wise
fitness estimation. Proceedings of the IEEE International
Conference on Evolutionary Computation, pages 720–727,
2004. Also IlliGAL Report No. 2004010.

[26] H.A. Simon. Sciences of the Artificial. Cambridge, MA:
MIT Press, 1969.

[27] T.G. Dietterich. Approximate Statistical Tests for
Comparing Supervised Classification Learning Algorithms.
Neural Comp., 10(7):1895–1924, 1998.

[28] S.W. Wilson. Quasi-Darwinian Learning in a Classifier
System. In 4th IWML, pages 59–65. Morgan kaufman, 1987.

[29] S.W. Wilson. Classifier Fitness Based on Accuracy.
Evolutionary Computation, 3(2):149–175, 1995.

[30] I.H Witten and E. Frank. Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, San
Francisco, 2nd edition, 2005.

[31] T.-L. Yu. A matrix approach for finding extrema: Problems
with modularity, hierarchy, and overlap. PhD thesis,
University of Illinois at Urbana-Champaign, Urbana, IL,
2006.

2882

