
Modified Clonal Selection Algorithm for Learning
Qualitative Compartmental Models of Metabolic Systems

Wei Pang and George M. Coghill
∗

Department of Computing Science
University of Aberdeen

Scotland, United Kingdom, AB24 3UE
{wpang,gcoghill}@csd.abdn.ac.uk

ABSTRACT
In this paper, a modified Clonal Selection Algorithm (CSA)
is proposed to learn qualitative compartmental models. Dif-
ferent from traditional AI search algorithm, this population-
based approach employs antibody repertoire to perform ran-
dom search, which is suitable for the ragged and multi-modal
landscape of qualitative model space. Experimental result
shows that this algorithm can obtain the same kernel sets
and learning reliability as previous work for learning the two-
compartment model, and it can also search out the target
model when learning the more complex three-compartment
model. Although this algorithm does not succeed in learn-
ing the four-compartment model, promising result is still
obtained.
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1. INTRODUCTION

1.1 Qualitative Model Learning
Qualitative Model Learning (QML), as a branch of system

identification, plays an important role in the fields of biol-
ogy and physics. It involves extracting the qualitative struc-
tures (namely Qualitative Differential Equations, QDEs) of
the systems from given qualitative data, which are often in-
complete and imprecise. So it can be viewed as the inverse
of Qualitative Simulation such as QSIM [10].

Some related research in this field has been done dur-
ing the last two decades, such as GENMODEL [8], MISQ
[12], QSI [14] and more recently, QSI-ILP [5]. However,
the above systems have different limitations. GENMODEL
cannot introduce hidden variables and perform dimensional
analysis. QSI and MISQ often generate over-constrained
models. None of these systems except QSI-ILP has per-
formed systematic experiments which include conditions of
all the subsets of complete data.

Furthermore, All of the above are based on straightfor-
ward logic reasoning approaches, which mainly depend on
domain knowledge to find models. All these systems are
based on QSIM representation, which cannot deal with fuzzy
data easily. None of them except QSI-ILP has produced
causally ordered models [9], which are physically or biologi-
cally meaningful.

1.2 Clonal Selection Algorithm
Inspired by the clonal selection theory [7] of immune sys-

tem, the clonal selection algorithm [6] can be considered as
a population-based evolutionary algorithm. CSA advocates
that the accumulated blind mutation and affinity-based se-
lection can lead to better solutions. Instead of two main
genetic operators: crossover and mutation in Genetic Algo-
rithm (GA), CSA uses hyper-mutation and re-selection to
fulfill the search task. Classical GA usually tends to con-
verge to a unique solution, which may be a local optimum,
while CSA is particularly suitable for searching in a multi-
modal problem space. Each individual (antibody) is in fact
a local optimum searcher, and the hyper-mutation can be
seen as a process of blind exploration in the search space.
In the re-selection process, the proliferated antibodies are
selected according to their affinity (fitness), and this is a
greedy strategy. After certain generations, the antibodies
will find different optima, probably including the global op-
timum.

In [4, 5], the well-posed model is defined by satisfying sev-
eral criteria, such as the completeness, connection, causal or-
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QDE JMorven Differential Plane 0
f12=M+(c1) func (dt 0 f12) (dt 0 c1)
fo=M+(c2) func (dt 0 fo) (dt 0 c2)
q1=u - f12 sub(dt 0 q1)(dt 0 u)(dt 0 f12)
q2=f12-fo sub(dt 0 q2)(dt 0 f12)(dt 0 fo)
c1’=M+(q1) func(dt1 c1) (dt0 q1)
c2’=M+(q2) func(dt1 c2) (dt0 q2)

Table 1: QDE and JMorven Description for CM2

dering. Given the training data and background knowledge
about the model, there may be many well-posed models,
and the target model is among them. In previous work [5], a
simple generate-and-test strategy is used to learn the target
model, that is, first a traditional search strategy (branch-
bound algorithm) is used to find all the well-posed models
systematically, then these models are tested for coverage
by a qualitative reasoning engine. This approach works well
when dealing with small-sized models, the completeness and
correctness of the algorithm can be guaranteed. But when
the model size and the number of variables are increased,
resulting in the dramatically increasing in search space, tra-
ditional AI approach (such as branch-bound) will not be
very efficient. This becomes one of the motivations to use
CSA as an alternative search strategy.

2. MODEL REPRESENTATION

2.1 JMorven
In this paper, a more flexible qualitative reasoning en-

gine, JMorven [2], is used to represent and verify qualitative
models. JMorven, a Java implementation of the Morven
framework [3], possesses all the benefits of QSIM and intro-
duces many new features. The introduction of differential
planes [15] and vector envisionment [11] make it possible
to reason about more than two derivatives. By introducing
fuzzy theory, JMorven uses fuzzy quantity spaces to specify
the variables, and can perform fuzzy vector envisionment
[3], which enables itself to deal with fuzzy qualitative data.
All the above advantages make JMorven a suitable choice
as a model representation and verification component in our
work.

2.2 Compartmental Models of Metabolic Sys-
tems

Metabolic systems are often modeled by compartmental
models (See Figure 1). “c1”, ‘c2”, “c3” and “c4” are the
concentration in the compartment, “f12”, “f23” and “f34”
denote the flow from one compartment to another, “u” and
“fo” are the input and output flow respectively. In the two-
compartment model, if “u” and “fo” do not exist, the model
becomes a coupled closed system, denoted as model CM1 in
this paper. CM2 is defined in a similar way. CM2-EX3 and
CM2-EX4 are the extensions of CM2 with three and four
compartments respectively. Table 1 shows the QDE and
JMorven representation (0th differential plane) for CM2.

The “func” symbol in Table 1 denotes the Function con-
straint in JMorven. JMorven extends the M+ and M- con-
straint in QSIM by introducing a more general function con-
straint, in which two variables can have arbitrary mappings.

In order to simplify the problem and compare our work

Figure 1: Compartmental Metabolic Models

Increase Mappings
neg neg
zer zer
pos pos

Decrease Mappings
neg pos
zer zer
pos neg

Table 2: Increase and Decrease mappings

with previous ones, some assumptions, similar to those in [5],
are imposed upon the models. That is, the compartmental
models in our work are linear systems with constant coeffi-
cients in function relationship. The fuzzy quantity space of
any variable includes only three values: negative, zero and
positive. One reasonable quantity space is shown in Table 3.
For all the observed variables, only the 0th derivative (mag-
nitude) and the first derivative (change of direction) can be
measured qualitatively. All the function relationship has the
corresponding value (zer, zer), and there are only two kinds
of function mappings as shown in Table 2. The models can
be causally ordered, and are in canonical form as described
in [9]. For simplicity and clarity, the rest of this paper will
refer to Inc and Dec as the function constraints which have
the increase and decrease mappings in Table 2.

2.3 One and a Half Differential Plane
Based on the above assumptions, a JMorven representa-

tion with “one and a half” differential planes is adopted to
represent the models. Here “one and a half” means only
the constraints in the 0th differential plane and part of the
constraints in the 1st differential plane can be used to rep-

Quantity Name a b alpha beta
neg -100 -1 0.5 0.5
zer -1 1 0.5 0.5
pos 1 100 0.5 0.5

Table 3: Quantity Space
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Differential Plane 0

C1: Inc (dt 0 f12)(dt 0 c1)
C2: Inc (dt 0 fo)(dt 0 c2)
C3: sub (dt 0 q1)(dt 0 u) (dt 0 f12)
C4: sub (dt 0 q2)(dt 0 f12)(dt 0 fo)
C5: Inc (dt 1 c1)(dt0 q1)
C6: Inc (dt 1 c2)(dt0 q2)

Differential Plane 1

C7: Inc (dt 1 f12)(dt 1 c1)
C8: Inc (dt 1 fo) (dt 1 c2)
C9: sub (dt 1 q1)(dt 1 u)(dt 1 f12)
C10:sub (dt 1 q2)(dt 1 f12)(dt 1 fo)

Table 4: JMorven Model for CM2

resent the model. In the 1st differential plane, the con-
straints which contain the 2nd derivative of a variable cannot
be used, because only the information about 0th and first
derivative of a variable are available. This form is equiv-
alent to QSIM description for the purpose of comparison.
Notice that M+ and M- are implemented by two function
constraints in different differential planes: the corresponding
values can be obtained from the mappings of the correspond-
ing function constraint in the 0th differential plane, and the
function constraints in the 1st differential plane determine
the monotonically increasing or decreasing relation between
two variables.

For example, the CM2 model is described in Table 4. In
this description, Constraint C1 in the 0th differential plane
and C7 in the 1st differential plane are equivalent to the
constraint M+(c1 f12) in QSIM (Note the position differ-
ence). The following two constraints in the 1st differential
plane are abandoned for the above mentioned reason:

C11: Inc (dt 2 c1)(dt1 q1)
C12: Inc (dt 2 c2)(dt1 q2)

3. BACKGROUND KNOWLEDGE
Before introducing the algorithm, some preliminary knowl-

edge has to be described in detail. The constraints involved
in this section are only in the 0th differential plane.

3.1 Some Concepts about Qualitative Model-
ing

The state variables in a causally ordered system are the
variables that are directly affected by the integration opera-
tion, and is usually the output of the integrator.[15] Simply
speaking, in a model with the canonical form, only the state
variable can have a first derivative. The magnitude of a
state variable cannot appear on the left side of any equation
in the model. The exogenous variables are those variables
determined from outside the model. All the non-exogenous
variables are also called system variables.

In an experiment, the hidden variables are the unmea-
sured variables which lose both range and dimensional infor-
mation. The number of hidden variables is often unknown,
but it is reasonable to specify a maximum possible number
of hidden variables. If the maximum number is less than

the number of actual hidden variables, only “shallow” mod-
els will be induced; otherwise, unnecessary “deep” models
may be found.

The model size in this paper is referred to as the number
of the constraints in the model. The specification of model
size is another factor that can influence the learning of the
models.

In this paper, additional definitions about qualitative mod-
els are defined in order to illustrate the experimental result:

Complete Data: The qualitative states that are obtained
from the complete envisionment [2].

Training Data: part of the complete data given in an
experiment.

Cover T model : Well-posed Models that can cover the
given training data

OverGeneral T model : Is a Cover T model, and the data
set it generates is a superset of the training data.

Cover C Model : Is an OverGeneral T model, and the
data it generates include all the complete data.

OverGeneral C Model : Is a Cover C Model model, and
the data set it generates is a superset of the complete data.

3.2 Inconsistent Constraints
An inconsistent constraint is a constraint that is inconsis-

tent with the training data and consequently fails to pass
the consistency check. The consistency check module em-
ployed here is the same as the one in JMorven, which uses
the fuzzy interval algebraic operations. For example, con-
straint X=Y-Z is an inconsistent constraint when the cur-
rent training data includes the following qualitative state:
(X,Y,Z)=(pos, neg, pos),The quantities of “pos” and “neg”
are taken from table 3.

3.3 Conflict Constraints

3.3.1 Conflict between two constraints
Two qualitative constraints C1 and C2 are conflicting if

they fall into any of the following three conditions.
a. Logical Conflict: For example, the following two con-

straints are logically conflicting:
C3.1: Inc (dt 1 X) (dt0 Y)
C3.2: Dec (dt 1 X) (dt0 Y)

b. Redundancy: For example, the following two con-
straints:

C3.3: Inc (dt 0 X) (dt0 Y)
C3.4: Inc (dt 0 Y) (dt0 X)

C3.3 and C3.4 are actually describing the same relation if
the causal ordering is ignored. It will be redundant if both
of them appear in one model, and also the system can not
be causally ordered.

Another example is:
C3.5: Sub (dt 0 a)(dt 0 b) (dt 0 c)
C3.6: Sub (dt 0 c)(dt 0 b) (dt 0 x)

x can be any variable in the model. The above two con-
straints can be substituted by a simpler relation: a=x, so
they can not both appear in the same model.

c. dimensional inconsistence: The following condition is
an instance of dimensional conflict:

C3.7: Sub (dt 0 Hid0)(dt 0 a) (dt 0 b)
C3.8: Sub (dt 0 c)(dt 0 Hid0) (dt 0 d)

Suppose both of these two constraints are dimensionally
consistent individually, and the dimension of a and b is dif-
ferent from that of c and d. Hid0 is a hidden variable with
undefined dimension. The confliction occurs because Hid0
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can only have one dimension, either the same as a and b, or
c and d.

3.3.2 Conflict Set of a Constraint
After the preprocessing phase of the algorithm, which will

be introduced later, a candidate constraint set is obtained,
denoted as FCS . If C1 ./ C2 is used to represent that C1
and C2 are conflicting, the conflict set for a constraint C1
can be defined as:

ConflictSet(C1) = {Ci|Ci ∈ FCS , C1 ./ Ci}

3.3.3 Conflict involved more than two constraints
The conflict may involve more than two constraints, for

example,

Inc(Hid0, Hid1), Hid0=a-b, a=Hid1-d.

Here the hidden variables Hid0 and Hid1 have the same
dimension derived from the second and third constraint, re-
sulting in no physical meaning for the first function con-
straint. Because the corresponding equation for the first
constraint is:

Hid0= k* Hid1

In this equation, k must have a dimension if we make the
assumption that there is no gain or amplifier in the system
under study. So the dimension of Hid0 and Hid1 cannot be
the same.

3.4 Defining Constraints and Search Space Par-
tition

3.4.1 Defining Constraint
The defining constraint for a variable with specified deriva-

tive (or variable/derivative for short) is the constraint in
which the variable/derivative appears in the leftmost posi-
tion.

For instance, constraint sub (dt1 X) (dt0 Y) (dt0 Z) is
one defining constraint for the first derivative of variable X.
All derivatives of an exogenous variable and 0th derivative
of a state variable do not have defining constraints.

3.4.2 Referring Constraint
The referring constraint of a variable/derivative is the con-

straint in which the variable/derivative appears in any po-
sition except the leftmost position.

For example, Sub(dt0 Y)(dt0 X)(dt0 Z) is a referring con-
straint for both 0th derivative of variable X and 0th deriva-
tive of variable Z.

3.4.3 Dependency Set of a Constraint
For a certain variable/derivative, all its referring constraints

depend on its defining constraints in a causal ordering con-
text. If constraint C1 depends on C2, then this relation is
denoted as follows:

C1 → C2

Suppose the candidate constraint set is FCS , the depen-
dency set for a constraint C1 is defined as:

Dependency(C1) = {Ci|Ci ∈ FCS , C1 → Ci}

For example, constraint sub (dt0 X)(dt0 Y)(dt0 Z), the
dependency set of this constraint may contain the following
constraints:

Inc (dt0 Y)(dt0 A)
Dec (dt0 Z)(dt0 B)
In a causally ordered model, a constraint cannot appear

before any of its dependency constraints, because only after
the defining constraint of a variable/derivative appears, can
other constraints refer to this variable/derivative.

Theorem 3.1
Based on all the assumptions we have made upon the mod-

els, in the 0th differential plane, a well-posed model defined
in [5] must include one and only one defining constraint for
each of the system variables with either 0th or first deriva-
tive.

Proof : Suppose X is a non-exogenous variable in the
model. If X is a state variable, according to the definition
of state variable, there must be a defining constraint for the
first derivative of X. If X is not a state variable, and the
model does not include any defining constraint for the zero
derivative of X, then no referring constraints for X can be
included in the model, resulting in the exclusion of X from
the model. This is contradictory considering the complete-
ness principle of well-posed models, stating that the model
must include all the system variables. So a well-posed model
must include at least one defining constraint for each of the
system variables.

On the other hand, if a model includes more than one
defining constraint for the same variable, it also cannot be
causally ordered. Consequently Theorem 3.1 is sound.

Corollary 3.1
The model size of a target model equals to the number of

system variables (including hidden variables) in the model.

4. ALGORITHM DESCRIPTION

4.1 Preprocessing Phase
First we introduce the preprocessing phase of the algo-

rithm, this includes four modules: Constraint Generation,
Constraint Filtering, Calculation of Conflict Set and Depen-
dency Set, and Constraint Set Partition.

4.1.1 Constraint Generation
The constraint generation is similar to GENMODEL [8]

except performing an additional dimensional check [1]. In
this phase, given all the observed variables, maximum num-
ber of possible hidden variables, maximum number of deriva-
tives for each variable (2 in our problem), range and dimen-
sion (if available) for each derivative, and all possible con-
straint types (Subtract, Inc and Dec in this paper), the con-
straint generator will generate all the possible constraints,
denoted as Initial Candidate Constraint Set (ICCS).

4.1.2 Constraint Filtering
Second, all the constraints in ICCS will be checked for

consistency by the constraint filter. The inconsistent con-
straints defined in Section 3.1 will be filtered out. After this
phase, a filtered constraint set (FCS) is obtained. Given
complete behaviors of the systems, FCS will have the min-
imum size; otherwise, the size of FCS may be very large
because some inconsistent constraints may not be filtered
out provided incomplete data.
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4.1.3 Calculation of Conflict Set and Dependency Set
In this phase, for each constraint in FCS , we calculate

the conflict set (Section 3.3.3) and dependency set (Section
3.4.3) and store the result into two matrixes: ConflictMatrix
and DependencyMatrix. They will be used for later CSA.

4.1.4 Constraint Set Partition
FCS is divided into several subsets, each of these subsets

contains all the defining constraints for the same variable.
If Si is the subset containing the defining constraints for a
hidden variable, an “empty” constraint φ is appended on
this subset: Si = Si

S
{φ}. DS is a set that takes each of

these subsets as an element, denoted as DS= {Sn} (n=1 to
N) N is the number of variables (including hidden variables).
For example, in the CM2 model, a subset for variable f12
may contain the following constraints:

Inc (dt0 f12) (dt0 c1)
Dec (dt1 f12) (dt0 c2)
Sub (dt0 f12) (dt0 fo)(dt0 u)

4.2 Clonal Selection Algorithm for Searching
the Model Space

The basic idea is that each antibody is encoded to repre-
sent a potential model, and in the process of evolutionary
search the antibodies are expected to find the target models.

It should be pointed out that not all the antibodies can
find the target models. Some antibody may find a local opti-
mum (for example, a well-posed model cannot cover all the
training data), and stay at that position for a intolerable
long time, because it cannot find its neighbor with better
affinity. To avoid the unwanted domination of these anti-
bodies in the antibody repertoire, each antibody is attached
with a survival time. If an antibody exceeds its survival
time, it will be replaced by a randomly generated antibody.
This can enhance the search ability of the algorithm.

To save computational cost, all the well-posed models
found during the search are recorded into the memory pool,
which is implemented by a hash set. This can avoid repeated
computation.

A model repository is constructed to store all the candi-
date models found by the algorithm, including the Cover T,
OverGeneral T, Cover C and OverGeneral C models. This
repository is updated by the newly found candidate models
in each generation.

4.2.1 Antibody Encoding
The intuitive integer encoding method is adopted in CSA.

The antibody is composed of several slots, each of which
corresponds to a different Si in DS , which is introduced in
Section 4.1.4. Each slot will be assigned to an integer num-
ber, which indicates a qualitative constraint selected from
different Si in DS . The correctness of this encoding strat-
egy is guaranteed by Theorem 3.1 and Corollary 3.1. Figure
2 shows an example of antibody encoding for CM2. In this
antibody, S0, S1, S2 and Si contains all the defining con-
straints for “f12”, “fo”, “c1” and “Hid0”, respectively.

Note there is an “empty” constraint in the last subset Si,
because this subset contains all the defining constraints for
the hidden variable Hid0. The “empty” constraint intro-
duced here is to deal with the redundant hidden variables.
When the number of maximum possible hidden variables is
greater than that of the hidden variables the system actu-
ally has, some generated hidden variables cannot be intro-

Figure 2: Antibody Encoding for CM2

duced to the system. For example, a system has two hid-
den variables, but the maximum possible number of hidden
variables is 3, resulting in the generation of three subsets
in DS for these three hidden variable. The target model
in fact chooses constraints from only two of these subsets;
for another subset, the target model will select the “empty”
constraint.

4.2.2 Hyper-mutation
Each antibody in the repertoire will be cloned to several

copies. All the cloned antibodies, which form a temporary
population, will undergo the hyper-mutation scheme.

The hyper-mutation is also modified due to the modifi-
cation of the antibody encoding. That is, for each slot of
the antibody, its value will be replaced by a randomly gen-
erated integer with a high probability. The range of this
randomly generated integer is from 1 to N, N is the num-
ber of the constraints in the corresponding subset Si. This
means each constraint in the model will be replaced by an-
other constraint in the same defining subset Si. Each mu-
tated antibody can be seen as a neighborhood of the original
antibody.

4.2.3 Affinity Evaluation
The following criteria, similar to the one in [5], are set up

to evaluate the model which an antibody represents:
a. Model Confliction: This module will calculate the num-

ber of conflicting constraints in the model. The calculation
is based on the ConflictMatrix, which is obtained from the
preprocessing phase.

b. Dimensional Consistency : This module can detect the
dimensional inconsistency described in Section 3.3.4.

c. Model Language: Check whether the model has in-
cluded all types of the constraints.

d. Model Connection: Check whether a model is con-
nected, a model is connected if all intermediate (hidden)
variables appear in at least two qualitative constraints.

e. Model Completeness: Check whether the model has
included all the variables provided by the training data.

f. Model singularity : No disjoint sub-model in the model.
g. Causal Ordering : Whether the model can be causally

ordered. In our work, Iwasaki’s causal ordering algorithm [9]
is slightly modified to check the causal ordering of a model.
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The dependency relation among constraints can be obtained
from the DependencyMatrix, which is constructed during the
preprocessing phase.

h. Coverage: Check whether the model can cover all the
training data. The JMorven package is tailored and slightly
modified as an embedded module to support the model cov-
erage test.

If a model satisfies criteria avg, it is referred to as a well-
posed model. Because of the relatively expensive computa-
tional cost of JMorven simulation, the model coverage test
h is arranged in the final stage, only the well-posed models
are allowed to be simulated by JMorven.

The above criteria establish a scoring system for evaluat-
ing the affinity of an antibody. The more criteria a model
satisfies, the higher score it will get. For example, for the
Model Confliction criterion, if there is no conflicting con-
straint in the model, a full weighted score will be added to
the affinity value. Otherwise, the score can be calculated as
follows:

ConflictScore =
W1 ∗ (1−NumberOfConflicting/ModelSize)

In the above formula, W1 is the weight, NumberOfCon-
flicting indicates the number of conflicting constraints in this
model. The scores for other criteria can be calculated in a
similar way. The weights for all the criteria are currently
the same.

4.2.4 Re-selection
The re-selection process is based on the above-mentioned

scoring system. The antibodies, which have higher scores
and have not exceeded the survival time, will be selected to
form a new generation of population.

4.3 Pseudo Code of The CSA Algorithm
The pseudo code is quite straightforward and the frame-

work of the algorithm is basically the same as the original
CSA. Notice the stop criteria of the algorithm depend on
different experiments, which will be described later.

Step 1: Initialization
parameter setting: The hyper-mutation probability ρ;
maximum running time: MaxTime; maximum generation:
MaxGen; population size: PopSize; clonal size: ClonalSize;
survival time for each antibody: SurviveTime.

Repertoire Initialization: Randomly generating Pop-
Size antibodies to construct the initial antibody repertoire
(population). Initializing the modelrepository.

Step 2: Evolutionary Iteration
While (Stop Criteria not satisfied), iterate the following
steps:

Step2-1 Selection: All the antibodies in the population
are selected for further operations.

Step2-2 Clonal Expansion: Each antibody in the popula-
tion are cloned for ClonalSize copies, and all these copies
are stored to a temporary population tempPop.

Step2-3 Hyper-Mutation: All the antibodies in the tempo-
rary population undergo the hyper mutation process. Note,
we will keep one copy unchanged for each of the original
antibodies.

Step2-4 Affinity Evaluation: for each antibody in temp-
Pop, calculate the affinity.

Experiment Given Hidden Specified
ID Variable Variable State

Variable
CM1 c1, c2, f12, f21 qx None
CM2 c1, c2, f12, fo, u q1, q2 None
CM2-EX3-E1 c1, c2, c3, f12, q3 c1, c2, c3

f23, u, fo, q1, q2
CM2-EX3-E2 c1,c2, c3,f12, q2, q3 c1, c2, c3

f23,u,fo, q1
CM2-EX3-E3 c1,c2, c3, q1,q2,q3 c1, c2, c3

f12,f23,u,fo
CM2-EX4 c1, c2, c3,c4, q1, q2 c1, c2

f12, f23, f34, q3, q4 c3, c4
fo, u

Table 5: Experimental Conditions

Step2-5 Update Model Repository: Record the newly found
Cover T, Cover C, OverGeneral T and OverGeneral C mod-
els during the evaluation process.

Step 2-6 Reselection: After evaluation, PopSize best an-
tibodies are selected from the tempPop, forming a new gen-
eration antibody repertoire. If an antibody’s surviving time
exceeds the SurviveTime, it will be replaced by a new ran-
domly generated antibody.

5. EXPERIMENTAL RESULTS
The reliability and scalability of the algorithm are tested

by different experiments. The conditions of all the experi-
ments are described in Table 5. For simplifying the problem,
in all the experiments, the input u is supposed to {pos, zer},
and the maximum possible number of hidden variables is as-
sumed to equal to the actual hidden variables.

5.1 Reliability Test
For simple models with small number of training data,

CM1 and CM2, the learning reliability of the algorithm is
tested by providing all the subsets of the complete data to
test the experiments. So there are 2N − 1 experiments, N is
the number of the complete data. Each of these experiments
takes one of the subsets of the complete data as training
data. Thus, the kernel set and learning curve, defined in [5],
can be obtained. The traditional AI search algorithm will
also be performed to test the correctness of the result.

For CM1 and CM2, the repertoire sizes are 10 and 100
respectively, and the clonal size is 10. The survival time of
the antibody is 100 generations. There are two stop criteria
for each of the subset training data experiments: One is
the running time exceeds 60 seconds; the other is that the
algorithm searches out a model that is a Cover T model,
but is not the target model (This means that we cannot
discriminate the target model from other Cover T models).
The algorithm will stop if either of the above is satisfied. The
second criterion is actually a fail-fast strategy, resulting in
saving computation time.

Figure 3 shows the learning reliability of the algorithm in
CM1 and CM2 experiments. For CM1, The elements in the
kernel set are all pairs:

(1,2) (1,3) (1,5) (2,3) (2,4)
The number in the pairs stands for the State ID in the

complete envisionment, which is shown in Appendix A. This
means for learning CM1, the above pairs and all subsets
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Figure 3: Learning Reliability of CM1 and CM2

including these pairs can successfully learn the target model.
For CM2, The kernel set found is as follows:

(0,2,5) (0,2,7) (0,2,11) (0,2,13) (0,4,7)
(0,4,5,6) (0,4,6,11) (0,4,6,13)
A traditional AI search algorithm, backtracking algorithm

with forward checking [13], is also performed on learning
CM1 and CM2, indicating that the above kernel set and
learning reliability are correct.

Figure 4 and Figure 5 shows two example experiments for
CM1 and CM2 experiments with two sates. The qualitative
states in these two experiment are both (0, 1). These two
experiments are forced to run 80 and 1000 generations re-
spectively, to demonstrate the evolutionary search process
of the algorithm.

5.2 Scalability Test
For CM2-EX3 and CM2-EX4, the scalability of the algo-

rithm is tested by providing complete data but with different
hidden variables.

For all the experiments in CM2-EX3 and CM2-EX4, the
hyper-mutation probability is 0.5. Clonal Size is 10. The
stop criterion of the algorithm is: The algorithm finds at
least one Cover T model. The complexity of the experi-
ments and other parameter settings are shown in Table 6.

In CM2-EX3-E1, E2 and E3, there are 68, 48, and 48
qualitative states in the complete envisionment respectively.
In CM2-EX4, there are 164 states. The CSA can find one
solution in all the three CM2-EX3 experiments, and the so-
lution it finds is both Cover T and target model. For CM2-
EX4, the algorithm cannot find the any Cover T models af-
ter 42,122 seconds, 100,000 generation. This is because the
complexity of the model, but we still obtain 988 well-posed
models.

Experiment Search Reper- Survival First
ID Space toire Time Solution

Size size (Gen) Found
(Gen)

CM2-EX3-E1 1.06× 108 100 100 5217
CM2-EX3-E2 1.31× 1010 1000 1000 201368
CM2-EX3-E3 2.31× 1011 1000 1000 131624
CM2-EX4 3.65× 1017 1000 1000 N/A

Table 6: parameter setting and Model Complexity

Figure 4: A Typical Run for CM1

5.3 Conclusions and Future Work
In this paper, an alternative approach is proposed to deal

with the same problem as in [4] and [5]. The contributions
of our work are twofold:

First, a modified clonal selection algorithm is proposed to
learn the qualitative compartmental models. The reliability
and scalability of the algorithm are evaluated. Experimen-
tal results indicate our algorithm can achieve the same re-
liability and obtain the same kernel sets as the traditional
AI algorithm. Experiments on more complex models shows
that the algorithm can also get promising results. Second,
JMorven, a more flexible model representation is adopted.
This is not only an alternative representation method, but
also has the potential ability to deal with fuzzy data and
reason about more than two derivatives.

Future works will involve the followings:
First, local search can be integrated into the algorithm.

The convergence speed of pure evolutionary algorithm will
slow down when dealing with extreme complicated problems
(CM2-EX4, for example), and local search can accelerate the
search process. One possible local search strategy is that
each antibody is refined by traditional AI search algorithms
(such as backtracking method) in a limited computational
cost.

Second, the precision of the model can also be improved
by adding more quantities in the quantity space. Currently
only three quantities are used. Under this circumstance, the
learning task will become more challenging.
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7. APPENDIX A
The JMorven Model for CM1:

Differential Plane 0

C1: Inc (dt 0 f12)(dt 0 c1)
C2: Inc (dt 0 f21)(dt 0 c2)
C3: sub (dt 0 qx)(dt 0 f12) (dt 0 f21)
C4: Inc (dt 1 c1)(dt0 qx)
C5: Dec (dt 1 c2)(dt0 qx)

Differential Plane 1

C6: Inc (dt 1 f12)(dt 1 c1)
C7: Inc (dt 1 f21)(dt 1 c2)
C8: sub (dt 1 qx)(dt 1 f12)(dt 1 f21)

Complete Fuzzy Vector Envisionment for CM1. c1={pos,
neg} means that the zero derivative of c1 is “positive” while
the first derivative of c1 is “negative”.

State c1 c2 f12 f21
ID
0 {zer , zer} {zer , zer} {zer , zer} {zer , zer}
1 {zer , pos} {pos , neg} {zer , pos} {pos , neg}
2 {pos , neg} {zer , pos} {pos , neg} {zer , pos}
3 {pos , zer} {pos , zer} {pos , zer} {pos , zer}
4 {pos , pos} {pos , neg} {pos , pos} {pos , neg}
5 {pos , neg} {pos , pos} {pos , neg} {pos , pos}

8. APPENDIX B
Compete Envisionment for CM2, supposing inflow u={pos,

zer}

State c1 c2 f12 fo
ID
0 {zer , pos} {zer , zer} {zer , pos} {zer , zer}
1 {zer , pos} {pos , neg} {zer , pos} {pos , neg}
2 {pos , zer} {zer , pos} {pos , zer} {zer , pos}
3 {pos , pos} {zer , pos} {pos , pos} {zer , pos}
4 {pos , neg} {zer , pos} {pos , neg} {zer , pos}
5 {pos , zer} {pos , zer} {pos , zer} {pos , zer}
6 {pos , zer} {pos , pos} {pos , zer} {pos , pos}
7 {pos , zer} {pos , neg} {pos , zer} {pos , neg}
8 {pos , pos} {pos , zer} {pos , pos} {pos , zer}
9 {pos , pos} {pos , pos} {pos , pos} {pos , pos}
10 {pos , pos} {pos , neg} {pos , pos} {pos , neg}
11 {pos , neg} {pos , zer} {pos , neg} {pos , zer}
12 {pos , neg} {pos , pos} {pos , neg} {pos , pos}
13 {pos , neg} {pos , neg} {pos , neg} {pos , neg}

2894


