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ABSTRACT
In recent years, wavelets have been widely applied in state-
of-the-art image processing algorithms, providing efficient
compression while maintaining superior image quality. How-
ever, wavelet performance may not be sufficient when ex-
treme compression ratios are required. Defense applications
often require robust transforms simultaneously minimizing
bandwidth requirements and image resolution loss. Image
processing algorithms take advantage of quantization to pro-
vide substantial lossy compression ratios at the expense of
resolution. Recent research demonstrates that genetic algo-
rithms (GAs) evolve filters outperforming standard discrete
wavelet transforms in conditions subject to high quantiza-
tion error. Evolved filters must be trained using images
appropriate to their intended application. We present a set
of fifty satellite images used to evolve image transforms ap-
propriate for satellite and unmanned aerial vehicle (UAV)
reconnaissance applications. We identify the best training
and test images. Image transforms evolved using appropri-
ate training images reduce the mean squared error (MSE)
by an average of greater than 15% across the entire image
set under conditions subject to high quantization error.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods and Search—Heuristic Methods;
I.4.5 [Image Processing and Computer Vision]: Re-
construction—Transform Methods

Copyright 2007 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.
GECCO’07, July 7-11, 2007, London, England, United Kingdom
Copyright 2007 ACM 978-1-59593-698-1/07/0007 ...$5.00.

General Terms
Algorithms, Design

Keywords
Genetic algorithms, wavelets, image processing

1. INTRODUCTION
Image and signal processing are active areas of defense

and security research. Satellites and Unmanned Aerial Ve-
hicles (UAVs) collect copious amounts of image data dur-
ing surveillance missions. Likewise, sonar and radar sys-
tems process huge amounts of sensor data in real time. The
requirements to maximizing effectiveness while minimizing
mission cost necessitates compression strategies that mini-
mize storage and bandwidth requirements while maintaining
maximum signal information.

With these requirements in mind, quantization of data is
often necessary for military digital signal processing (DSP)
applications. Quantization minimizes storage requirements
by mapping all values in signal γ to a restricted discrete
set of values Q(γ). Though quantization greatly improves
compression ratios, perfect reconstruction of γ from Q(γ) is
impossible due to the loss of low-order bits [18]. Wavelets
[3] are a standard methodology for signal compression al-
gorithms. The discrete wavelet transform (DWT) redistrib-
utes the energy in a signal by transforming a time signal
into a time-frequency domain. A signal may be compressed
by first applying the DWT, followed by quantization, and
then by applying entropy coding. Signals are reconstructed
in a reverse manner. Most information loss occurs during
quantization1.

In recent years, evolutionary algorithms have been em-
ployed in conjunction with wavelets for a variety of im-
age and signal processing applications. In [8], a GA con-

1Further information on the wavelet transform and quanti-
zation as they relate to this research may be found in our
GECCO main conference paper [14].
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trols wavelet-based signal approximation. Grasemann and
Mikkulainen use a GA to control the design of a lifting-
based wavelet for signal compression [5]. In [10], a real-
coded GA to replaces DWT filter coefficients for the re-
construction of quantized one-dimensional signals, including
ramp functions, sine waves, and sets of randomly generated
noise, demonstrating consistent MSE improvement over sig-
nals reconstructed using a Daubechies-4 (DB4) inverse dis-
crete wavelet transform (DWT−1) filter. As wavelets have
become a popular tool for image processing [15], evolution-
ary techniques have been used with wavelets for a number
of applications. Bruckman et al. [1] employ a binary GA to
evolve structures for wavelet packet based image compres-
sion [19]. The GA replaces the best basis algorithm [2] for
selecting the wavelet basis structure, resulting in reduced
distortion during compression. Image texture classification
may be accomplished by configuring a Kohonen self organiz-
ing map (SOM) with a GA in conjunction with a wavelet-
based filter [16]. In [6], a GA applies the lifting technique
to design complementary wavelet filters [17]. The evolved
wavelets outperform the standard FBI wavelet [7] for finger-
print image compression.

In recent related research, a GA evolves digital filters by
initializing the GA population with values near the original
DWT filter and then searching for improved filters in the
neighborhood of the original wavelet through a local mu-
tation mechanism [9]. The GA successfully improves image
reconstruction both when evolving a single filter for all MRA
levels or when evolving unique filters for each level of MRA
wavelet decomposition. In related work, a GA evolves only
the reconstruction coefficients of a wavelet-based filter to im-
prove image reconstruction in the presence of quantization
error [11]. By focusing on the evolution of optimized re-
construction coefficients, the underlying compression rate of
the forward transform is unaffected. However, the resulting
filters described in [11, 9, 12] are no longer wavelets because
they no longer conform to the mathematical properties of
wavelets, such as biorthogonality of the filters. Evolved with
one or more training images, the resulting filters provide im-
proved reconstruction when applied to images not explicitly
represented by the training image population.

While GAs provide filters providing improved reconstruc-
tion over DWT filters in applications subject to quantization
error [11, 12], filters must be trained using images appropri-
ate for the target application. An evolved transform filter
trained using images of human faces may not provide suffi-
cient reconstruction of an overhead image of a city captured
from a high altitude. The evolution of image transforms for
satellite and UAV applications requires a set of appropri-
ate images for GA training and validation testing of result-
ing filters. This paper describes a set of fifty unclassified
satellite images depicting the types of subjects that may be
observed during a surveillance mission. Such targets may
include cities, factories, airstrips, and military bases and
vessels. Experiments identify the best GA training images
within the set providing transform filters that demonstrate
strong performance across the entire image set. The remain-
ing images are used to validate the performance of evolved
filters. Military image processing systems may benefit from
evolved transforms developed and validated with this image
set.

2. COLLECTED SATELLITE IMAGES
Quantization error may occur in image processing systems

requiring transmission of data through a limited bandwidth.
Micro-unmanned aerial vehicles (mUAVs) and deep-space
exploration satellites represent two possible applications for
image compression and transmission subject to quantization
error. In order to demonstrate the practical applications of
image transform filters evolved to handle quantization error,
we have assembled fifty high-resolution satellite images from
Google Earth Plus [4]. These public domain images are
intended to simulate the type of targets observed by a mUAV
during an intelligence-gathering mission. The purpose of
gathering such images is to demonstrate that filters can be
evolved to provide improved reconstruction over standard
wavelets when subject to quantization, hence maximizing
the amount of intelligence preserved from the original target.

This collection categorizes the images into the following
categories: army (five images), aviation (twelve images),
city (nine images), factory (five images), industry (five im-
ages), landmark (three images), and naval (eleven images).
The images are captured from a variety of global locations.
Upon identifying appropriate images in GoogleEarth, the
images were first captured and printed to a pdf file us-
ing Adobe Acrobat with the high-quality print settings en-
abled. This allows higher-resolution image capturing than
would be possible through a screen-shot capture using stan-
dard GoogleEarth software. The images were next extracted
from the pdfs as full color bitmap images. Each image was
then cropped to 512x512 pixels. After cropping, images were
converted to greyscale representation. Using histogram ad-
justment tools in Adobe Photoshop, the pixel ranges of the
greyscale cropped images are adjusted to cover the full range
of 0-255 (black to white) shades. Hence, each pixel in each
image is represented by an unsigned eight-bit integer.

Figure 1 presents six representative images in the collec-
tion. From left to right, the top row shows views of the
U.S. Army Depot in Anniston, AL, Hopkins International
Airport in Cleveland, OH, USA, and a downtown view of
Moskow, Russia. The bottom row presents a factory near
Detroit, MI, USA, the U.S. capitol building in Washington,
DC, USA, and the U.S. Coronado Naval Base in California.
Images were selected for inclusion in this set based upon
clear focus, appropriate contrast, varieties of textures and
object edges, and potential intelligence images. The perfor-
mance of evolved transforms designed for aerial and satellite
applications may be validated through strong performance
across these images.

3. IMAGE RANKING EXPERIMENTS
Some satellite images may represent difficult training ex-

amples. A GA may overtrain a filter for a specific satellite
image that does not perform well on other unseen images.
Likewise, some satellite images may encourage the evolution
of robust filters that provide improved image reconstruction
over unseen images. An initial series of experiments identify
the satellite images that when employed as GA training ex-
amples result in filters providing consistent reconstruction
improvement over the entire set of satellite images. In order
to assess each image in terms of its usefulness as a train-
ing image and as a test image, we conduct one GA run for
each image using standard operators that provided consis-
tent solid performance in previous research [12].
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Figure 1: Six representative satellite images.

Experiments are conducted using a GA previously demon-
strating successful filter evolution [12, 14]. The GA employs
a population size of 50 evolved for 500 generations. The
population is initialized in the local neighborhood of the
Daubechies-4 (DB4) reconstruction wavelet transform to en-
sure that the final evolved filter will be at worst equal to the
original wavelet filter. The GA replaces the eight real-valued
coefficients defining the DB4 filter with eight evolved coef-
ficients representing a new filter. Evolution occurs through
the use of Gaussian mutation with standard deviations that
shrink by generation, Wright’s heuristic crossover [20], and
random selection. In each generation, the two most fit par-
ents survive to the next generation. Of the remaining in-
dividuals for the next generation, 70% are created through
application of the crossover operator, while the remainder
are mutated from a randomly selected parent. While a 30%
mutation rate may seem high, we select this crossover to mu-
tation ratio based upon initial empirical results from a set
of parameter configuration experiments. Image reconstruc-
tion employs a quantization step size = 64 and employs a
single level of filter decomposition. Fitness is assessed as
the MSE between an image reconstructed using a candi-
date filter and the original image. Perhaps the simplest and
most common image error measure, MSE provides a sim-
ple statistical measure to estimate the error of one image as
an approximation of another. Let x = {xi|i = 1, 2, ..., N}
and y = {yi|i = 1, 2, ..., N} represent the original and test
images. The MSE between the test and original images is

defined as:

MSE(x, y) =
1

n

nX

i=1

(xi − yi)
2 (1)

An MSE = 0 in a reconstructed image indicates that image x
is a perfect reconstruction of y; increasing values correspond
to increasing error. An optimization algorithm improves
reconstruction by minimizing MSE as an objective fitness
measure.

Each of the resulting fifty filters is tested on all fifty im-
ages to find the average % MSE improvement over the DB4
wavelet of each filter. In order to track an image’s perfor-
mance as a test image, the average improvement of each
image using all fifty evolved filters is also assessed. Table 1
presents the results of the fifty GA runs. For each image, the
center columns present the rank of each image as a train-
ing image with the average and standard deviation of the
% MSE improvement across all images. The right columns
present the ranks of each image as test images with the aver-
age improvement of each image using all fifty evolved filters.

In general, the image test ranks are less important than
the training ranks. Evolved filters only require one fitness
evaluation for each test image to assess test performance,
but training images are used in many fitness evaluations
during GA execution. Thus, all satellite images can be used
as test images during experimentation, but only one image
will be used as a training image for each GA run. Based
upon the initial experiments, the five best training images
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# image description rank % improve stDev rank % improve stDev
1 AF museum 48 5.4136 5.3643 2 20.5945 2.6381
2 Andrews AFB 35 13.262 2.5424 3 19.4647 4.4735
3 Anniston Depot 23 14.5365 1.9218 36 18.2435 4.1587
4 Anniston Bunkers 3 15.1135 1.7327 28 18.4761 4.3326
5 Baghdad 21 14.64 1.9437 4 19.3658 6.2281
6 Baghdad Landmarks 4 15.0648 1.8919 7 19.157 5.302
7 Boeing Factory 6 15.0557 1.8574 16 18.9026 4.373
8 Boneyard Kingman 1 15.1801 1.8258 31 18.4002 4.5763
9 Buildings New York 33 13.8357 1.7385 38 17.9002 5.4082

10 Chrystler Plant 25 14.4147 1.9644 8 19.1339 7.8508
11 Cleveland Hopkins 28 14.2994 1.7806 14 19.0006 7.2664
12 Coronado 1 42 10.7273 2.3244 48 15.1126 4.6989
13 Coronado 2 22 14.6084 1.8567 19 18.871 5.5468
14 Coronado 3 8 15.0045 1.8522 21 18.7499 5.4681
15 Davis Monthan 30 14.1424 1.9358 33 18.3491 4.3869
16 Davis Monthan B-52s 45 10.1868 3.5754 5 19.3151 4.0291
17 Downtown Munich 5 15.0577 1.6874 22 18.6956 5.4984
18 Downtown New York 14 14.8791 1.7259 13 19.0422 6.4994
19 Factory Detroit 15 14.8639 1.6726 35 18.2444 5.6603
20 Factory Toledo 9 14.9947 1.8385 10 19.0857 6.1791
21 Fort Dix 37 12.1275 2.0705 30 18.4305 3.0378
22 Fort Hood 10 14.9546 1.6536 24 18.6355 5.8032
23 Fort Hood Grounds 2 15.1217 1.7724 32 18.3683 4.1118
24 Groom Lake 50 -9.4513 11.0795 1 22.1512 4.046
25 Industry Detroit 16 14.8565 1.711 17 18.898 4.8943
26 Iron Cleveland 7 15.0442 1.6863 25 18.618 5.4687
27 Kastellet 36 12.3594 2.7449 41 16.5978 3.0789
28 Kennedy Space Center 29 14.1568 1.8264 12 19.0494 3.2167
29 Kennedy Launchpad 39 11.813 1.3876 45 16.0652 4.4106
30 Moskow 24 14.5349 1.8334 15 18.9238 6.9282
31 Munich Train 12 14.8856 1.7284 26 18.5579 3.9602
32 Naval Air Norfolk 32 14.005 1.8038 40 17.2317 3.5275
33 Naval Norfolk Ships 41 11.2327 2.6551 44 16.1823 2.9996
34 Naval Station Norfolk 46 9.0476 3.0051 47 15.9651 3.1672
35 Naval Station Carriers 38 11.8479 2.4575 43 16.3971 3.2486
36 Oil Refinery 17 14.8259 2.1066 18 18.893 6.5343
37 Pearl Harbor Subs 47 6.7446 2.1814 50 12.286 5.8306
38 Pearl Harbor Drydock 20 14.6551 2.1422 20 18.7886 6.5201
39 Pearl Harbor Complex 43 10.6317 2.7398 42 16.5756 6.8539
40 Pinal Airpark 26 14.3444 2.0629 37 17.9472 4.988
41 Seattle Harbor 40 11.6195 2.8656 46 16.0181 3.6441
42 Ships Pearl Harbor 49 -1.3824 5.4811 49 13.4913 3.793
43 Steel Baltimore 18 14.7206 1.7574 11 19.0521 5.2634
44 Steel Cleveland 27 14.3219 2.1419 27 18.4938 3.4355
45 St. Louis Downtown 31 14.0496 1.8938 29 18.4361 4.4393
46 US Capitol 13 14.8822 1.8507 23 18.657 4.2602
47 Washington DC 11 14.8929 1.7728 6 19.3083 6.173
48 WPAFB area A 44 10.5765 2.2597 39 17.6422 2.749
49 WPAFB area B 19 14.6701 1.7393 34 18.3005 2.6796
50 WSU 34 13.8026 1.8673 9 19.1274 3.332

Rank as Training Image Rank as Test Image

Table 1: Initial ranks of satellite images as GA training and test images.
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each have significant object edges. A wavelet filter will typ-
ically produce a large response at the edges in an image due
to the convolution involved in the DWT algorithm. It is
not overly surprising that the best training images contain
more edges (high-spacial frequency information) than the
worst images that are typically edge-sparse. The presence
of edges in a training image allow the GA to develop filters
with an appropriate response to both the high-spacial fre-
quency portions of images (i.e. strong edges) as well as the
lower frequency areas (weak or non-edges).

4. VALIDATION EXPERIMENTS
The training ranks obtained in the initial experiment are

the result of a single GA run for each image. While the
approximate rank of each image relative to the entire im-
age set is probably close to its true rank, statistical valida-
tion through experiment replication is required to provide
a more accurate ranking. Hence, the average improvement
obtained with filters trained on the top five images is re-
assessed through a set of replicated experiments. Thirty
GA experiments are conducted with each of the top five im-
ages. The GA and fitness function both employ the same
parameters used in the initial ranking experiments.

Results of the replication experiments are shown in table
2. Average GA MSE and % Improve show the average im-
provement of the training image with the final filter across
all thirty replications. More importantly, the % test imp
column gives the average improvement of all fifty satellite
images across all thirty replications conducted for each of
the top five training images. After the replication exper-
iments, image 6 (Baghdad Landmarks) provides the best
performance, providing filters that improve the reconstruc-
tion MSE of all satellite images by an average of 15.145%.
Two-sided student’s t-tests at a significance level α = 0.5
between replication experiments for each of the top five im-
ages indicate that the average test % improvement is sig-
nificantly different between each replication set except for
that of images 4 and 17. After conducting the replication
validation experiments, the ranks of the top five images are
revised. Image 6 becomes the top-ranked training image.
Image 8 moves down one position to rank two, while im-
age 4 remains the third-ranked training image. Image 17
moves up from the fifth to the fourth ranked training im-
age, while image 23 is now ranked fifth. Figure 2 shows the
top four validated training images: landmarks in Baghdad,
Iraq (image 6, top left), bunkers at the U.S. Army Depot in
Anniston, AL (image 4, top right), the aircraft boneyard in
Kingston, AZ,USA (image 8, bottom left), and downtown
Munich, Germany (image 17, bottom right). In general,
image transforms evolved on one of the top ranking train-
ing images will exhibit strong performance across the entire
satellite image set. Such transforms are well-suited for use
in satellite and UAV reconnaissance applications requiring
the transmission of copious amounts of image data across
limited bandwidth channels.

5. CONCLUSIONS AND FUTURE WORK
The development of military-grade image transforms for

reconnaissance missions requires a robust set of domain-
appropriate images to train and validate evolved transforms.
From a collection of fifty unclassified images, experiments
successfully identify five training images that permit a GA

Figure 2: The four best satellite training images.

to develop reconstruction transforms providing an average
MSE reduction of approximately 15% over the DB4 DWT−1

under high quantization over the entire image set. Images
from this collection are already being employed in the de-
velopment of an evolutionary methodology for the creation
of image transform filters intended for defense and secu-
rity applications [14, 13]. By including images with a vari-
ety of textures, shades, and domain-appropriate structures
and subjects, this collection provides a suitable testbed for
defense-oriented image transforms.

In related research, we exploit edge detection for the tar-
geted improvement of edge transition areas in images [14].
This research employs selected images from this collection
to develop image transforms focused upon accurate recon-
struction of object edges within satellite images. As this
research proceeds, we will conduct experiments to rerank
the images for usefulness in producing high frequency filters
for improving image edges We will initially conduct one GA
experiment with each of the 50 satellite images, followed
by a set of thirty GA replications for each of the top five
ranked images. The top-ranked images will be used to de-
velop increasingly sophisticated filters suitable for defense
applications in image processing and intelligence analysis.
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