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ABSTRACT 
This paper introduces a new variety of learning classifier system 
(LCS), called MILCS, which utilizes mutual information as fitness 
feedback. Unlike most LCSs, MILCS is specifically designed for 
supervised learning. MILCS’s design draws on an analogy to the 
structural learning approach of cascade correlation networks. We 
present preliminary results, and contrast them to results from XCS. 
We discuss the explanatory power of the resulting rule sets, and 
introduce a new technique for visualizing explanatory power. Final 
comments include future directions for this research, including 
investigations in neural networks and other systems. 

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning: Induction 

General Terms 
Algorithms 

Keywords 
Learning classifier systems, evolutionary computation, structural 
learning, supervised learning, cascade correlation, information 
theory, mutual information, visualization, explanatory power, rule 
learning. 

1. INTRODUCTION 
This paper presents a new form of learning classifier system (LCS) 
[6][8] that uses mutual information [11][12] as its primary fitness 
feedback, in supervised learning settings. This system is called the 
mutual information learning classifier system (MILCS, pronounced 
“my LCS”). In addition to drawing on current LCS research and 
information theoretic concerns, the system draws on an analogy to 
cascade correlation neural networks (CCNs) [5] in its design. 

The following sections describe these inspirations and the general 
design of MILCS. Afterwards, we discuss preliminary results, with 
comparison to XCS. In this comparison, we are concerned not only 
with accuracy, generalization, and required computational time, but 
also with explanatory power of the resulting rule sets. Since 

explanatory power (in essence, the human understandability of 
machine-learned concepts) is an abstract concept, we introduce a 
new technique for visualizing results. 

The preliminary results presented are promising, and in final 
comments we discuss future directions for this research. This clearly 
includes further research into MILCS performance, but also 
includes extension of the ideas involved to neural networks, and 
possibly other systems.    

2. LCSs and CCNs: An Analogy 
To introduce the ideas in MILCS, it is first useful to consider the 
similarities and differences between LCSs and CCNs. This is done 
in several stages in the following subsections. 

2.1 Parameter versus Structural Learning 
In general, machine learning approaches can be broken into two 
components: the learning of continuous-valued parameters of a 
solution representation, and the learning of discrete connections 
between elements of the solution representation. The terms 
“parameter” and “structural” learning are borrowed from the 
Bayesian Network community [7], where the former is the learning 
of probabilities of events, conditioned on one another (the 
probabilities that reside within Bayesian Network nodes) and the 
latter is the learning of which events are conditioned on which (the 
links in the Bayesian Network). It is generally acknowledged that 
the latter is more difficult than the former. Also, the latter has a 
profound effect on the computational complexity of the former: the 
number of probabilities one must learn goes up exponentially with 
the number of links. Moreover, structural learning is also associated 
with generalization, parsimony, and explanatory power: fewer 
discrete connections make for a more understandable representation 
of a solution.  

2.2 CCN and Structural Learning 
It is also interesting to note that neural networks do not, in general, 
employ sophisticated techniques for structural learning. There are 
many notable exceptions, amongst them the techniques employed in 
CCNs. 
A rough outline of the CCN procedure is as follows: 

1. Begin with a single layer neural network. Repeat until a 
measure of convergence is achieved: 

a. Train existing output layer connection weights 
(parameter learning) to reduce error on training 
data (supervised learning) 

b. Insert a new hidden layer node, with inputs 
from all existing inputs and hidden layer nodes 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee. 
GECCO’07, July 7–11, 2007, London, England, United Kingdom. 
Copyright 2007 ACM  978-1-59593-698-1/07/0007...$5.00. 
 

2945



in the network (cascaded). Note that the output 
of this node is not yet connected to the output 
layer nodes of the network. 

c. Train the input weights of this new node to 
maximize the absolute correlation of the node’s 
output to the error of the existing network’s 
output on the training cases (supervised 
learning). 

d. Connect the output of the new node to all 
output layer nodes.  

At first, this may not seem to meet the discrete-optimization criteria 
for structural learning discussed above. However, note that input 
layer node weights are often adjusted to values near zero in step c 
above. In effect, this “turns off” the connection between a hidden 
layer node and a particular input (or another hidden layer node). 
Moreover, there are variations of CCN that employ a population of 
randomly-initialized nodes in step b and c, culling this population to 
one node in step d. If these nodes are initialized with less-than-full 
input connectivity, the discrete optimization of structural learning is 
clear. 
CCN is relatively straightforward algorithm, with the exception of 
the somewhat mysterious element of step c. One must consider why 
one would maximize the absolute correlation between a node’s 
output and existing network error. Upon consideration, it becomes 
clear that this step will allow one to cancel out that existing error 
with the new node, through the weight adjustments in step a. 

2.3 CCN and XCS 
XCS, perhaps the most popular LCS paradigm, has a notable 
similarity to CCN. One of XCS’s innovations is its use of accuracy, 
a second order statistic, as fitness. Similarly, CCN attempts to 
maximize absolute correlation, another second order statistic, in its 
creation of hidden layer nodes. If one imagines an analogy where 
XCS rules are like hidden layer nodes [13], there is a clear 
correspondence. 

However, it is not an exact correspondence, leading one to ask why 
a difference exists. Note that in CCN, correlation to existing error is 
justified by supervised learning training of the output layer weights, 
to cancel out that error. No such “cancellation” exists in XCS, since 
a rule’s “output” (action) is not tuned via supervised learning. 

2.4 Supervised Versus Reinforcement 
Learning 
XCS grows out of the LCS tradition of reinforcement learning [14]. 
Reinforcement learning is defined by the lack of supervisory 
feedback that indicates the correct action the system should take. 
Instead, only “reward” or “punishment” type feedback is available. 
Since XCS grew from reinforcement learning, it generally does not 
employ supervised update of actions. Instead, actions are searched 
for via the GA, or various covering operations.  

However, XCS has been applied to many supervised learning 
problems. In supervised learning problems direct feedback is 
available that indicates the correct actions for the system (often via 
solved training cases). CCN exploits this supervision in its update of 
output layer weights, which justifies its use of correlation to existing 
error in hidden layer weights. 

This suggests the analogy upon which MILCS is built. However, 
rather than employing correlation, we have employed mutual 
information (yet another second order statistic). We feel this 
provides an additional theoretical backing for the system, which is 
discussed below. 

3. The Role of Mutual Information in MILCS 
Shannon’s fundamental work in information theory [11][12] 
addresses the following concern: given an input signal to a 
communication channel, how does one maximize the rate of 
communication, while minimizing error in that communication? 
This is closely related to Shannon’s work on data compressing, 
which considers the maximum compression ratio for lossless 
representation of data. Both problems derive similar results. 

Shannon showed that the zero-error maximum communication rate 
for a channel is given by maximizing the mutual information 
between the channel’s input and output. Maximization of mutual 
information is accomplished by manipulation of the probabilities of 
various inputs to the channel, or through the manipulation of the 
coding of input signals. Since coding is similar to compression, the 
analogy to lossless compression is clear. 

Imagine that the existing error in step c of the CCN procedure is an 
input signal to a communication channel. In this case, the hidden 
layer node plays the role of an encoder for signal. Therefore, we 
find a firm theoretical foundation for using the mutual information 
as the fitness of this node, through Shannon’s theorems. 

Another useful analogy is to sensor placement. Imagine that one is 
set the task of placing temperature sensors in a large space, with the 
goal of delivering maximum information about the temperature 
distribution in that space. If one can estimate the probability 
distribution of temperatures over the space, and one knows the 
response field of the sensors, one can maximize mutual information 
between these distributions to optimally place the sensors. This is 
similar to the placement of the conditions of classifiers (or the 
receptive fields of neurons). 

Mutual information between variables X and Y is given by: 
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It is useful to examine the terms of this expression. Consider x to be 
the event of an error, and y to be the event of a particular rule 
matching. Thus, ( )p x  is the distribution of existing error of a 

system, and ( )p y  is the distribution of responses (matching or not 

matching) of a rule. In this case, the first term, ( | )p x y , can be 
seen as the relevance of the rule’s output to existing error. The 

second term, ( )p y , is the generality of the rule. The third term, 

( )log ( | ) ( )p x y p x , is a comparison of the error when the 

rule matches to the overall error in the space. This is a sort of 
specificity term. Thus, the mutual information expression offers a 
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balance of accuracy, generality, and specificity, in an optimal 
fashion dictated by Shannon’s Theorems.  

4. The MILCS Process 
Given the above considerations, MILCS operates as follows. Note 
that to conform to the CCN analogy, and articulate all the terms in 
the sums of equation 1.1, we have given each rule two actions: one 
for when the rule matches, and one for when the rule does not 
match. Both are updated via simple supervised learning: 

Starting with a set of random rules 
1) For each random training case, as follows: 

a) Repeat the following for all rules: 
i) Remove a rule from the population set 
ii) Do action selection based on prediction values of  all 

‘mature’ rules (rules which have been trained for 
more than a threshold number of training cases, 
excluding the removed rule) of both matched rule set 
and not-matched rule set and calculate reward based 
on the chosen action 

iii) Update counters necessary for modeling an 
empirical probability distribution over the 
matched/not-matched condition of the removed rule, 
and the error of the remaining rules. MI is calculated 
from this probability bivariate distribution. 

iv) Add that rule back to the population set 
b) Do action selection based on prediction values of  all 

‘mature’ rules (rules which have been trained for more 
than a threshold number of training cases) of both 
matched rule set and not-matched rule set (action with the 
highest prediction wins) and calculate reward based on 
the chosen action 

2) Update actions (output) and prediction values of all rules based 
on the reward and their previously selected actions (supervised 
learning). Note that in the current experiments, we simply keep 
track of which action yields a higher reward (for both the 
matched and not-matched condition), and set the rule’s action 
to that value. More sophisticated supervised learning could be 
used in this step. 

3) Calculate and update the fitness of the action set.  
4) Determine and flag all the rules of the population set that have 

been trained above another threshold, which determines 
whether rules are ‘mature’ enough to subsume other rules and 
participate in a non-panmictic GA. 

5) Subsume rules in the action rule set to keep the population 
compact. Rule A subsumes rule B if: 
a) Both rules are above the maturity threshold for 

subsumption, 
b) Both rules have the same action (determined by 

supervised learning), 
c) A is more general than B, 
d) A has a reward prediction greater than or equal to B. This 

step varies with testing problems 
6) Perform a non-panmictic GA: Select based on these mutual-

information-based fitness values and subsume the offspring to 

the parents if possible (using the subsumption conditions 
previously outlined). Children rules are added to the rule set. If 
the rule set size exceeds a maximum, rules are deleted based on 
the amount of time since their last inclusion in the action set. 
To be deleted, rules must have participated in action selection 
more than “deletion activation threshold” number of trials, and 
they must not have been in the highest-prediction rule for the 
last “deletion threshold” trials.  

7) Reset the MI counters of action rule set. 
8) Repeat from 1), until some convergence criteria is met. 
Note that the removing and adding procedures (step 1)a) ) are there 
to conform of the CCN analogy that the new hidden layer node is 
not yet fully connected to the network thus the new rule’s future 
parent should not have any effect on the system 

5. Results 
We have tested MILCS on the multiplexer problem and on the 
coordination number (CN) protein structure prediction problem.   

5.1 Multiplexer Problems 
We have evaluated results on the 6, 11, and 20 multiplexer 
problems. In order to show a thorough comparison, we present these 
results, along with results obtained from XCS (using [4]). Three 
lines appear on each plot: the percentage correct over the past 50 
training cases (solid line), the difference between reward and 
predicted reward over the past 50 training cases (dashed line), and 
the number of macro-classifiers (unique classifiers) in the 
population (dash-dotted line) divided by 1000. Graphs reflect the 
average of 10 runs.  
For XCS, we employ the parameter settings reported in [16]. 
MILCS parameter settings are shown in Table 1. 

Table 1: MILCS parameters for the multiplexer problems 
Multiplexer problem size 6 11 20 
Maximum Pop Size 50 510 500 
GA Maturity Threshold 5 25 125 
Probability of #s 0.33 0.33 0.66 
Initial Pop Size 30 50 50 
Action Selection Maturity 
Threshold 

25 1024 10500 

Maturity for Subsumption 16 330 2100 

Figure 1 and Figure 2 show results from XCS and MILCS applied to 
the 6 multiplexer. Note that MILCS converges more rapidly, and to 
a smaller final population of unique classifiers. 
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Figure 1: Results from XCS applied to the 6 multiplexer 
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Figure 2: Results from MILCS on the 6 multiplexer 

Figure 3 and Figure 4 show results from XCS and MILCS applied to 
the 11 multiplexer. While convergence times are similar, MILCS 
still converges to a smaller final population of unique classifiers. 
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Figure 3: Results from XCS on the 11 multiplexer 
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Figure 4: Results from MILCS on the 11 multiplexer 

Figure 5 and Figure 6 show results from XCS and MILCS applied to 
the 20 multiplexer. In this case, XCS converges more rapidly, but 
MILCS maintains a smaller final population of unique classifiers as 
before. 
However, we note that with XCS and MILCS, we ran complete tests 
on all possible inputs for each of the multiplexer problems. Each 
system passed this “full test” in each situation, with the exception of 
XCS applied to the 20 multiplexer, which failed on a small number 
of cases at the end of some runs portrayed in the average of 10 
shown in Figure 5. While we did not overcome this difficult with the 
code provided in [2], we were able to reproduce perfect behavior in 
approximately 75,000 explore problems using [10]. This is 
consistent with the results on XCS scaling for the multiplexer 
problems provided in [18]. 
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Figure 5: Results from XCS on the 20 multiplexer. 
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Figure 6: Results from MILCS on the 20 multiplexer. 

6. Scalability 
Our results reveal MILCS scaling up slightly worse than XCS (see 
Figure 7) 
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Figure 7: Log-log plot of polynomial scaling of MILCS and XCS 

on the multiplexer problems. 
However, both are scaling as low-order polynomials. While there is 
an apparent difference in the scalability between the algorithms, it is 
not of significant order. Moreover, the previous results indicate that 
MILCS is ending with a substantially smaller set of unique 
classifiers. Hand examination of rule sets has revealed that almost 
all of the mature rules at the end of our MILCS runs are best-
possible-generalized rules for the multiplexers. However, this 
examination relies on our knowledge of the underlying problem. In 
the following section, we introduce a method of visualizing the 
comparative explanatory power of the final rule sets. 

7. Explanatory Power 
While accuracy and compute time are important metrics for 
machine learning systems, it is also important to consider their 
explanatory power. While this term has no formal definition, it is 
considered to be the subjective human understandability of the 
representation of the knowledge learned by the system. As a 
subjective quality, it is somewhat difficult to present, particularly 
when the knowledge representation exists in a highly multi-
dimensional space. It is also important that we avoid using out pre-
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existing knowledge of a problem’s structure in evaluating the 
explanatory power of resulting knowledge representations. 

7.1 Visualization of Explanatory Power 
In an attempt to visualize the relative explanatory power of 
knowledge representations, we have developed the following 
procedure. Consider a structural element of the knowledge 
representation (in particular, a rule). We will represent this rule as a 
circle, where the diameter reflects the element’s generality. We will 
characterize the overlap of the receptive fields (conditions) of these 
elements by the overlap of the circles. The color of the circles will 
represent their output (actions). If rules do not overlap, we consider 
the difference between them to determine the relaxed spring 
distance between corresponding circles. 
Each circle will act as a simulated mass, connected to the other 
circles via springs, whose spring force is zero when the desired 
overlap is obtained. Dampers between the circles are added (to 
insure convergence). Given this, we can use a simple dynamic 
systems simulation that iterates to an equilibrium, which will 
represent the nature of the knowledge in the system in a simple, 
two-dimensional space. 
To make a valid comparison that is not built on pre-existing 
knowledge of the problem at hand, the visualization will include all 
elements (rules) that play a role in the output determination of the 
final system. In XCS exploitation mode, the following factor is 
computed: 

( ) ( )prediction fitness fitness×∑ ∑  

over all matching rules, for all actions, and the action with the 
highest factor is selected. Therefore, since all the rules participate in 
action selection, we include all these rules in our visualization.  
However, in MILCS on an “exploitation” trial, only the rules with 
action-selection maturity above a threshold are employed. The rule, 
either matched or not matched, with the maximum predicted reward 
is always selected as the rule that acts. Therefore, only these rules 
are used in our visualization.  

 
Figure 8: Visualization of the final rule set developed by XCS on 

the 6 multiplexer. 
Figure 8 and Figure 9 show visualizations of the final rule sets from 
XCS and MILCS (respectively) applied to the 6 multiplexer. The 
smaller, final MILCS rule set, and its inclusion of only perfect 
generalizations is clear. We believe that this visualization shows the 
superior explanatory power of the resulting rule set in a way that 

does not depend on human understanding of the rule-form of a 
correct final solution for this particular problem. 

 
Figure 9: Visualization of the final rule set developed by MILCS 

on the 6 multiplexer. 
Figure 10 and Figure 11 show visualizations of the final rule sets 
from XCS and MILCS (respectively) applied to the 11 multiplexer. 
Once again, the superior explanatory power of the MILCS rule set is 
apparent. As in the 6 multiplexer, a decision surface between the 
two actions is apparent, even after the projection of the rule set to a 
two dimensional space. 

 
Figure 10: Visualization of the final rule set developed by XCS 

on the 11 multiplexer. 

 
Figure 11: Visualization of the final rule set developed by 

MILCS on the 11 multiplexer. 
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Figure 12 and Figure 13 show visualizations of the final rule sets 
from XCS and MILCS (respectively) applied to the 20 multiplexer. 
While a linear decision surface is no longer apparent in the MILCS 
result, the less complex structure of the MILCS rule set when 
compared to the XCS rule set is apparent. Note that while only some 
small portion of the final XCS rule set are perfect generalizations, 
and a human could detect these with knowledge of the multiplexer. 
That would not be the case in a problem of unknown structure. 

 
Figure 12: Visualization of the final rule set developed by XCS 

on the 20 multiplexer. 

 
Figure 13: Visualization of the final rule set developed by MICS 

on the 20 multiplexer. 

7.2 Coordination Number Problem 
Coordination Number Prediction is one of the popular approaches to 
prediction the 3D structure of a protein. It is defined as the 
prediction, for a given residue, of the number of residues from the 
same protein that are in contact with it. Two residues are said to be 
in contact when the distance between the two is below a certain 
threshold. A simplified protein model, the HP model, has been used 
to understand protein structure prediction. This model represents the 
sequence of a protein using two residue types: hydrophobic can 
polar. We have produced preliminary results on this simplified, two-
state CN prediction of real proteins with source data provided by 
Stout et al. in [15]. In order to show a thorough comparison, we 

present these results, along with results obtained from XCS (using 
[2]) and GAssist [1]. GAssist is a Pittsburgh-style learning classifier 
system which has been recently used for many protein structure 
prediction problems and achieved significant results [15]. Accuracy 
results presented here use the same training and testing procedures 
as those in [15]. 
We tested all three classifier systems on 3 different window sizes for 
2 state predictions. 
For XCS, we employ the same parameter settings for the 20 
multiplexer problem whereas MILCS parameter settings are shown 
in Table 2.  

Table 2: MILCS parameters for the CN problem 

Window size 1 2 3 
Maximum Pop Size 100 200 300 
GA Maturity Threshold 25 25 25 
Probability of #s 0.66 0.66 0.66 
Initial Pop Size 50 50 50 
Action Selection Maturity 
Threshold 

450 450 450 

Maturity for Subsumption 400 400 400 
Deletion Threshold 1600 1600 1600 
Deletion Activation Threshold 450 450 450 

GAssist results were generously provided by the authors of [15]. 
Results are shown in Table 3. In XCS and MILCS, the 
representation was one bit each for the “H”, “P”, and “not present” 
conditions of the neighboring residues, and one bit each for the “H” 
and “P” conditions of the target residue. For instance, with window 
size 1 this yields a 7-bit condition, given that there are two 
neighboring residues (3 bits each), and the target residue (2 bits). 
This sparse encoding was used for consistency with the GAssist 
representation. 

Table 3: Results of XCS, MILCS, and GAssist on two-state (HP) 
CN problems of various window sizes. 

Window 
Size 

Method Accuracy Final 
Rule Size 

Max Evals 

1 XCS 60.3% 
±4.7% 

53.1 100000 

1 MILCS 63.5% 
±0.5% 

8.7 100000 

1 GAssist 63.6% 
±0.6% 

4 8000000 

2 XCS 61.1% 
±3.6% 

197.8 100000 

2 MILCS 63.8% 
±0.6% 

20.6 100000 

2 GAssist 63.9% 
±0.6% 

4.4 8000000 

3 XCS 61.6% 
±3.3% 

371.2 250000 

3 MILCS 63.0%  
±0.8% 

55.2 100000 

3 GAssist 64.4% 
±0.5% 

4.8 8000000 

Note that for each algorithm, “Max Evals” is the number of 
evaluations in a run, and this most likely represents a high upper 
bound on the number of evaluations required to get results of the 
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indicated quality. However, these numbers do indicate the relative 
order of magnitudes of convergence times for results shown. Rule 
set size reflects the number of rules participating in action selection 
at the end of each run. MILCS performance is statistically similar to 
GAssist, which provides the best results. MILCS results in larger 
rule sets that GAssist, but converges an order of magnitude faster. 
XCS does not perform as well as MILCS or GAssist overall. While 
these results are preliminary, and we feel we can improve MILCS 
performance, they are promising. 

Final Comments and Future Directions 
Preliminary results with MILCS are promising, with respect to 
accuracy, speed, and explanatory power. While MILCS seems to 
scale slightly worse than XCS, this may not be an entirely fair 
comparison, since our preliminary results show that MILCS finds a 
smaller, more explanatory rule set. We believe this superior effect is 
to be expected, given the firm information theoretic basis of the 
mutual information fitness function. 
Evaluating the system on more problems is the clearest direction for 
further investigation.  
However, the concepts in MILCS are not specific to the particulars 
of a rule learning system. Exploring a neural network system that 
employs a similar structural learning paradigm is also a promising 
direction for future investigation. The use of mutual information in 
this fashion may also have application in supervised learning of 
other knowledge representations. 
While the focus of this work has been on supervised learning, it is 
possible that the system may be adapted to reinforcement learning. 
Note that to some extent, XCS already adapts reinforcement 
learning to supervised learning, in its tendency to learn a complete 
“model” of the long term payoff function across the state/action 
space. The mapping from state/action to payoff is a supervised 
learning problem, drawing on Bellman optimality and Q-learning 
the appropriate target values and error functions. 
It will also be interesting to further investigate the visualization 
technique employed in this paper to compare explanatory power in a 
larger variety of knowledge representations. 
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