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 ABSTRACT 

The topological properties of a network directly impact the flow 
of information through a system. In evolving populations, the 
topology of inter-individual interactions affects the rate of 
dissemination of advantageous genetic information and thus 
affects selective pressure. In this study, we investigate the 
selective pressures induced by several scale-free population 
structures using takeover time analysis. Previous results have 
shown that the selective pressures induced by scale-free 
interaction topologies are at least as strong as those induced by 
random and panmictic interaction topologies. In contrast, our 
results show that the selective pressures induced by scale-free 
interaction topologies are heavily influenced by their underlying 
topological properties, and can be tuned from a selective pressure 
close to that of a random or panmictic topology to a selective 
pressure that is weaker than that of a two-dimensional toroidal 
lattice with 3x3 rectangular neighborhoods of interactions. We 
also provide a detailed topological analysis of these population 
structures and discuss their influence on the observed dynamics in 
takeover times. We show that the expected takeover times 
observed on all population structures considered herein can be 
rapidly estimated using only a few readily computable metrics of 
the underlying topology, precluding the need to run expensive 
simulations or recursive probabilistic formulations.  
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1. INTRODUCTION 
Network topology plays a large role in governing the flow of 
information through a system. For example, in evolving systems, 
different mating interaction topologies affect the rate of flow of 
genetic information and thus affect selective pressure.  In classical 
quantitative genetics [8] and canonical evolutionary algorithms 
[12], mating interactions are typically assumed or allowed to be 
random. In such panmictic systems, deleterious alleles are rapidly 
eliminated and advantageous alleles spread quickly. In contrast, in 
the cellular evolutionary algorithm (cEA) [10][27][28], 
populations are structured on low-order regular graphs, such as 
one-dimensional and two-dimensional lattices, where mating 
events are restricted to occur within spatially localized, 
overlapping neighborhoods. In such lattice-structured topologies, 
the localization of recombination events mitigates selective 
pressure by slowing the dissemination of advantageous genetic 
information throughout the population [10].  Evolving natural 
biological populations also exhibit spatial structure in mating 
interactions that are often observed to be somewhere in between 
these two extremes of random and strictly local (e.g. [19]). Recent 
research has shown that many other types of interaction 
topologies of practical interest are also spatially structured. For 
example, “scale-free” topologies possessing a power law 
distribution of vertex connectivity have been shown to be 
pervasive in both natural and manmade systems [3], including the 
world wide web [1], protein-protein interactions [14], the internet 
[32], societal interactions [7][17], and semantic relationships 
between words in the English language [18]. In scale-free 
networks, the probability that a given node has k connections 
follows a power law P(k) = k-γ, so while the majority of nodes 
have very few connections, a few nodes possess the majority of 
connections, acting as “hubs” in the network.  Studying the flow 
of information through these networks can lead to insights into 
important processes such as network robustness [6][14] and 
spread of disease [23]. Thus, whether studying natural or artificial 
evolutionary or other interacting systems, it is important to 
understand the influence of the interconnection topology on the 
flow of information through the system. 

One useful method for quantifying how the flow of information is 
controlled by a given population structure is through the analysis 
of takeover time [11]. Takeover time is defined as the expected 
number of generations until a population consists entirely of 
copies of the best individual, starting from only one copy of the 
best individual in the initial population. In evolutionary systems, 
this analysis removes the disruptive effects of recombination and 
mutation by letting selection act as the only evolutionary operator. 
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Higher takeover times suggest lower selective pressure, and vice 
versa.  

Takeover times in panmictic population structures have been 
thoroughly analyzed under a variety of selection mechanisms and 
have been shown to be quite rapid [11]. Takeover times in one-
dimensional and two-dimensional cEA’s have also received a 
large amount of attention. Rudolph [27] analytically derived 
lower and upper bounds for one-dimensional non-toroidal lattices 
and exact solutions for one-dimensional toroidal lattices. Sarma 
and De Jong [28] analyzed two-dimensional toroidal lattices using 
several neighborhood sizes and shapes and showed that selection 
pressure is largely governed by the radius of the local mating 
neighborhood. Giacobini et al. [10] derived mathematical models 
of takeover times in one-dimensional and two-dimensional 
toroidal lattices with synchronous and asynchronous updating 
policies. The general result of these studies is that lattice 
population structures reduce selective pressure, relative to 
panmictic mating interactions, and can thus enhance the 
exploratory power of evolutionary search [10]. 

Giacobini et al. [9] extended their analysis of takeover time in 
regular one-dimensional and two-dimensional lattices to include 
non-regular topologies as well, including random graphs [20]. 
Their analytical approximations and empirical simulations showed 
that the selective pressure induced by random graph topologies is 
qualitatively similar to the selective pressure induced by 
panmictic population structures.  

In their extension of takeover time analysis to non-regular 
topologies, Giacobini et al. [9] also studied one particular instance 
of a scale-free topology, generated using the algorithm proposed 
by Albert and Barabàsi (AB) [3]. Their empirical simulations of 
takeover times showed that the selective pressure induced by this 
particular AB scale-free topology was qualitatively similar to that 
induced by a random or panmictic population structure, when the 
initial copy of the best individual was equally likely to appear in 
any given node. They also showed that the takeover time in AB 
scale-free topologies can be dramatically reduced by strategically 
placing the initial copy of the best individual in a highly 
connected node. 

While the AB algorithm produces topologies exhibiting the 
power-law distribution of vertex connectivity observed in many 
real-world scale-free topologies (e.g. [1][3]), it fails to capture 
some other important characteristics present in particular 
instances of real-world scale-free topologies, such as modularity 
and clustering. Accordingly, several algorithms were subsequently 
introduced [4][13][16][26] that better portrayed these particular 
characteristics.  

The current work investigates takeover times induced by scale-
free population structures generated using alternative scale-free 
graph generators.  We show that the selective pressure induced by 
scale-free spatial topologies can be tuned from a selective pressure 
close to that of a random or panmictic topology to a selective 
pressure that is weaker than that of a two-dimensional toroidal 
lattice with 3x3 rectangular neighborhoods of interactions (i.e. 
Moore neighborhoods). We also provide a detailed structural 
analysis of these spatial topologies and discuss the influence of 
these structural characteristics on the observed dynamics in 
takeover times.  This work represents a first step towards a unified 
empirical approach for quickly approximating network dynamics 
from readily computed characteristics of diverse topologies. 

2. METHODS 

2.1 Population structure as a graph 

A graph, G = (V, E), is defined as a nonempty finite set of vertices 
(V) and a finite set of edges (E) connecting these vertices. 
Representing the population structure of an evolutionary 
algorithm as a graph is relatively straightforward. Each individual 
in the population is represented by a vertex i ∈V, so that |V| = µ, 
where µ is the population size. An undirected edge (i, j) is added 
to E for each individual j in the mating neighborhood of 
individual i, for all i ∈ V. One-dimensional (1D) and two-
dimensional (2D) toroidal lattices thus correspond to low-order 
regular graphs, wherein each vertex has the same degree (i.e. 
every individual has the same number of individuals in its mating 
neighborhood) and panmictic population structures correspond to 
complete graphs (i.e. fully connected regular graphs). 

 

2.2 Generating Scale-Free Graphs 

In this study, we employ three previously published scale-free 
graph-generating algorithms [3][13][26], which are described 
briefly in this section. Other scale-free graph generators have been 
proposed (e.g. [5][22][30]), but typically result in topologies 
consisting of one giant connected component and several small 
clusters of vertices that are isolated from the rest of the graph. 
Since individuals situated in the small fragmented clusters cannot 
communicate their genetic information to/from the rest of the 
population, such fragmentation unnecessarily reduces the overall 
population size. For this reason, we restrict our attention herein to 
graph generating algorithms that ensure connectivity. 

 

2.2.1 The Albert-Bararbàsi Algorithm 
The first algorithm presented to generate scale-free graphs was 
proposed by Albert and Barabàsi [3]. The algorithm is 
conceptually straightforward and hinges upon two key features: (i) 
growth of the number of nodes in the network, and (ii) 
preferential attachment of new nodes to more highly connected 
nodes. The AB algorithm begins with an initial set of m0 vertices 
that are not connected by any edges. The graph grows at each time 
step t through the addition of a single new vertex, which attaches 
to m (≤ m0) vertices already present in the graph. These 
connections are made by assuming that the probability Π  that a 
newly introduced vertex attaches to an existing vertex i is 
proportional to the connectivity ki of that vertex. Specifically, 

 ( ) i
i

j
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∀ ∈
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 (1) 

This is referred to as Preferential Attachment (PA). After t time 
steps, the graph consists of t + m0 vertices and mt edges and 
possesses a power law distribution of vertex connectivity P(k) = k-

γ, with γ ≈ 3 (Figure 1). Note that so long as m = m0, connectivity 
is guaranteed as the node added at t = 1 is forced to connect to all 
of the m0 original nodes. 

 

 

 

309



 
 

i 

j 

k 

i 

j 

a) b) 

 
Figure 2. Formation of a Triad graph with m0 = 4 vertices 

(gray) at time step t = 4. (a) PA: Node i has just attached to 

node j (dashed line) where j was selected from all existing 

nodes with probability proportional to its degree, and (b)  

TF: node i forms a triad by connecting to node k, randomly 

chosen from all of the neighbors of node j (dashed circles). 

 

 

a) b) 

 
Figure 3. Schematic diagram of the generation of the 

Hierarchical-Modular (HM) scale-free topology starting from 

(a) an initial module of 4 fully connected nodes at t = 1 and 

proceeding to a topology consisting of (b) 16 nodes at t = 2. At 

each time step t > 1, the central nodes of the generated replicas 

(grey) connect to one another, peripheral nodes (white) 

connect to the central node of the original module, and 

internal nodes, including all of the nodes in the previously 

existing module (black), do not gain any new connections. 

 

2.2.2 The Triad Algorithm 

While the AB algorithm produces graphs with distributions of 
vertex connectivity that are in good agreement with various real-
world data sets [1][3], it has the feature that the clustering 
coefficient, a quantification of the degree of cliquishness (see 
section 2.3), decreases with |V|-0.75 and asymptotically approaches 
0 [26]. Therefore the AB algorithm does not capture the high 
clustering found in many instances of real-world scale-free 
topologies (e.g. email networks [7]). To compensate for this, 
Holme and Kim [13] proposed a “Triad” algorithm that produces 
scale-free graphs with power-law distributions of vertex 
connectivity and high clustering coefficients, such that the 
clustering coefficient of the generated graph can be tuned using a 
single parameter. 

The Triad algorithm follows the AB algorithm very closely, but 
adds an additional step, referred to as Triad Formation (TF), in 
order to incorporate the high clustering. The Triad algorithm 
begins with an initial set of m0 vertices that are not connected by 
any edges. At each time step t a new vertex is added to the graph, 
such that it attaches to m (≤ m0) vertices already present in the 
graph. The first of the m connections always occurs according to a 
PA step (Figure 2a). The rest of the m connections for this newly 
added vertex use a TF step with probability p and a PA step with 
probability (1-p). The TF step is defined as follows. If an edge 
between vertex i and vertex j was added in the previous PA step, 
then an additional edge from i to a randomly chosen neighbor of j 

is added (Figure 2b). If all neighbors of j are already neighbors of 
i or if j has no neighbors, then a PA step is performed instead.  

Like the AB algorithm, the Triad algorithm produces a graph 
consisting of t + m0 vertices and mt edges at the end of t time steps 
and possesses a power law distribution of vertex connectivity P(k) 
= k-γ, with γ ≈ 3 (Figure 1). This distribution of vertex 
connectivity is approximately the same for any combination of 
parameter settings in the AB or Triad algorithms. However, the 
absolute distribution of vertex connectivities generated using 
larger m are shifted to the right relative to those generated using 
smaller m (Figure 1, inset), since higher m means greater 
connectivity. In the Triad algorithm, the clustering coefficient can 
be increased by simply increasing the tunable parameter p; note 
that the Triad algorithm reduces to the AB algorithm when p = 0. 

 

2.2.3 The Hierarchical-Modular Algorithm 
Ravasz et al. [26] demonstrated that the metabolic networks of 43 
organisms were not only scale-free, but also displayed 
exceptionally high clustering. They proposed that this was due to 
the high modularity of metabolic networks, where densely 
connected functional modules of various sizes are sparsely 
attached to other functional subunits in a hierarchical manner. 
While the Triad algorithm produces scale-free graphs with high 
clustering, the resulting graphs are not modular or hierarchical. In 
order to generate scale-free graphs that possess high clustering, 
modularity, and hierarchical organization, Ravasz et al. [26] 
proposed a new algorithm, which we refer to as the Hierarchical-
Modular (HM) algorithm. 

The algorithm works as follows. In the first iteration (Figure 3a), 
the algorithm begins with a single, fully connected four-node 
module. In the second iteration (Figure 3b), three replicas of the 
module generated in the previous iteration (black) are made. The 
central nodes of the replicas (gray) are then connected to one 
another, and each of the peripheral nodes of the replicas (white) 
are attached to the central node of the original module. This 
process can be repeated indefinitely, with the size of the graph 
quadrupling at every iteration. 

The graph generated by the HM algorithm possesses a distribution 
of vertex connectivity P(k) = k-γ, with γ ≈ ln(4)/ln(3) (Figure 1) 
and a clustering coefficient that converges to an asymptotic limit 
of C ≈ 0.606 for reasonably sized networks (i.e. |V| ≈ 1500) [26]. 
After t time steps, the graph consists of 4t vertices and the number 

 
Figure 1. Distributions of vertex connectivity P(k) for the 

scale-free graphs considered in this study.  
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Table 1. Summary of the parameter settings used for each 

spatial topology considered in this study.  

 

Topology 

 

m 

 

p 

 

Instances 

Simulations  

per vertex 

AB 4 0.0 10 10 

Triad 4 0.5 10 10 

Triad 4 1.0 10 10 

AB 2 0.0 10 10 

Triad 2 0.5 10 10 

Triad 2 1.0 10 10 

sc
a

le
-f

re
e 

HM - - 1 100 

Panmictic - - 1 100 

2D Lattice - - 1 100 

 

of edges at time step t (|E|t) is given by the recursion: 

                                 
1| | 4 | | 3 3t

t tE E
−

= + +                             (2) 

where |E|1=6, since the initial four-node module is fully 
connected. 

 

2.3 Structural metrics of graphs 

When quantifying the structural properties of a graph, there are 
several metrics of potential interest. In this section, we briefly 
define the metrics employed in the current study. The distribution 
of vertex connectivity, P(k), is a probability distribution function 
that depicts the frequency with which a given vertex has k 
connections. The distance dist(i, j) between two vertices i and j is 
defined as the length of the shortest path between i and j. The 
diameter D of a graph is defined as the maximum of the distances 
between all pairs of vertices: 

                             max{ ( , ) | , }D dist i j i j V= ∈                      (3)  

The characteristic path length Li of a vertex i is defined as the 
mean of the shortest paths between vertex i and all other vertices 
in the graph: 

                               1
( , )

(| | 1)i
j i V

L dist i j
V ∀ ≠ ∈

=
−

∑                          (4) 

The characteristic path length L of a graph G is defined as the 
mean of the characteristic path lengths of the individual vertices, 

                                        1

| | i
i V

L L
V ∀ ∈

= ∑                                   (5)  

with standard deviation σL. We define the characteristic maximum 
path length Lmax of a graph G as the maximum of the characteristic 
path lengths, 

                              
max max{ | }iL L i V= ∈                               (6)  

Finally, the clustering coefficient Ci of a vertex i connected to ki 
nodes is defined as the ratio between the number of edges, Ei, that 
actually exist between the ki nodes and the number of edges that 
could potentially exist between the ki nodes: 

                                       2

( 1)
i

i
i i

E
C

k k
=

−
                                    (7)                       

and the clustering coefficient of a graph G is given by: 

                                         
| |

i
i V

C
C

V
∀ ∈=

∑
                                      (8)

with standard deviation σC. 

 

2.4 Takeover time 

Consider a population with only two levels of fitness; i.e. let Λi(t) 
be the fitness value of vertex i ∈V at time t, where Λi(t) ∈ {0, 1} 
and 1 is more fit than 0. In the initial population, Λi(0) = 1 for 
exactly one i ∈V and Λj(0) = 0 ∀  j ≠ i ∈ V. Let Nt denote the 
number of nodes with value 1 at time t:

                                            ( )t i
i V

N t
∀ ∈

= Λ∑                                  (9) 

Following [27], we define the takeover time T = min{t | Nt = |V|} 
to be the minimum number of generations such that the most fit 
individual fully saturates the entire population. The simulations 
performed herein are nonextinctive [27], such that Nt can never 
decrease. Êi[T] is defined as the empirical estimate of the 
expected takeover time given that the initial best individual is 
located in vertex i. Thus, the overall empirically estimated 
expected takeover time is simply 

                                   � �1
[ ] [ ]

| |
i

i V

E T E T
V ∀ ∈

= ∑                              (10) 

assuming that the initial best individual is equally likely to appear 
in any given node. 

 

2.5 Selection 

In order to most directly infer the influence of population 
structure on takeover time dynamics, selection was implemented 
using a simple “replace if better” strategy, where nodes were 
updated synchronously, as follows. For each node i ∈V, a node j 
was selected at random with uniform probability from the mating 
neighborhood of node i, with neighborhood size of size ki. Thus, 
if there are x nodes containing the fittest value in the mating 
neighborhood of node i, then the probability of selecting one of 
them is simply x/ki. The value of the selected node j then replaced 
the value of node i if Λj(t) > Λi(t).  

 

2.6 Experimental Design 

For all simulations, the population size was held constant at 1024 
individuals (i.e. |V| = 1024). We investigated the takeover times of 
populations structured on several instances of scale-free spatial 
topologies generated using the AB algorithm, the Triad algorithm, 
and the HM algorithm. While analytical solutions or mathematical 
approximations of expected takeover times are possible for vertex-
transitive graphs such as 1D and 2D toroidal lattices [10][27], the 
extreme heterogeneity of scale-free topologies makes such 
mathematical analysis impractical [21]. We therefore performed 
an empirical analysis, deriving expected takeover times through 
rigorous simulation. As a baseline for comparison, we also 
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Table 2. Structural characteristics of the topologies considered in this study. For stochastically generated graphs 

(i.e. AB and Triad), the data represents the average over all instances. 

Topology m p D L σσσσL Lmax C σσσσC 

AB 4 0.0 5 3.19 0.26 3.80 0.03 0.07 

Triad 4 0.5 5.2 3.26 0.28 4.07 0.24 0.15 

Triad 4 1.0 7 3.58 0.43 5.11 0.54 0.21 

AB 2 0.0 7.3 4.15 0.43 5.42 0.02 0.11 

Triad 2 0.5 8.5 4.32 0.50 6.08 0.39 0.40 

Triad 2 1.0 10.7 4.88 0.80 7.61 0.74 0.29 

S
ca

le
-f

re
e 

HM - - 9 3.97 0.87 5.89 0.63 0.25 

Panmictic - - 1 1 0 1 1 0 

2D Lattice - - 16 10.68 0 10.68 0.40 0 

 

a)

b)

c)

a)

b)

c)

 

investigated takeover times in panmictic population structures and 
square 32×32 2D toroidal lattice population structures with 3×3 
Moore neighborhoods of interactions. The parameter settings used 
in each graph-generating algorithm are provided in Table 1, with 
resulting topological metrics as shown in Table 2.  For all graphs 
generated using the AB and Triad algorithms, m0 = m. 

Since the expected takeover time (Ê[T]) in scale-free population 
structures is highly dependent upon the placement of the initial 
copy of the best individual, we systematically placed the best 
individual of the initial population in each node of the topology 
one at a time, and subsequently performed ten independent 
takeover time simulations for each individual placement, in order 
to mitigate the stochasticity in the selection policy. Further, since 
the AB and Triad graph-generating algorithms are themselves 
stochastic in nature, we also created 10 instances of each of these 
types of graphs for each combination of parameter settings (Table 
1). In order to have the same number of trials per graph type, we 
ran one hundred takeover time simulations for each initial vertex 
containing the best individual in the deterministically created 
graphs (panmictic population structures, two-dimensional toroidal 
lattices, and the scale-free topologies generated using the HM 
algorithm) (Table 1), resulting in a total of 102,400 independent 
takeover time simulations for each type of graph considered.  

 

3. EXPERIMENTAL RESULTS 

Figure 4 depicts the observed takeover time dynamics of 
populations structured on scale-free spatial topologies generated 
using the AB (p=0) and Triad (p∈{0.5, 1.0}) algorithms with m = 
4 (Figure 4a) and m = 2 (Figure 4b), and using the HM algorithm 
(Figure 4c).  Specifically, at each generation t we plot number of 
nodes containing the maximum fitness (Nt), averaged over all 

___________________________________________________ 

Figure 4. Observed takeover time dynamics for populations 

structured on scale-free topologies generated using (a) the 

AB and Triad algorithms with m = 4, (b) the AB and Triad 

algorithms with m = 2, and (c) the HM algorithm. For 

comparison, each graph also shows the takeover time 

dynamics for panmictic populations (open circles) and 

populations structured on a 32x32 toroidal lattice (filled 

squares). 
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Table 3. Empirically estimated mean, standard deviation, 

minimum, and maximum takeover time for each spatial 

topology considered in this study.  

Takeover time  

Topology 

 

m 

 

p mean std min max 

AB 4 0.0 19.16 3.39 12 66 

Triad 4 0.5 20.16 3.48 12 60 

Triad 4 1.0 26.36 4.19 15 55 

AB 2 0.0 25.26 5.38 14 89 

Triad 2 0.5 29.79 6.55 17 146 

Triad 2 1.0 60.57 14.43 23 208 

 

S
ca

le
-f

re
e 

HM - - 37.34 15.51 13 351 

Panmictic - - 14.83 1.35 11 26 

2D Lattice - - 44.15 2.26 35 57 

 
102,400 trials on that graph type.  As a baseline for comparison, 
the observed takeover time dynamics of populations structured on 
panmictic topologies and 2D toroidal lattice topologies with 3x3 
Moore neighborhoods are also provided. Table 3 provides a 
summary of the observed takeover times.  All growth curves for 
takeover of the best individual are sigmoidal, exhibiting 
exponential growth followed by saturation (Figure 4). In all cases, 
the selective pressures induced by the spatially-structured 
topologies are less than that of the panmictic topology (Figure 4).  
However, the relationship between the selective pressures induced 
by the scale free topologies relative to that induced by a 2D lattice 
varies, as discussed below.   

 

3.1 Albert-Barabàsi and Triad scale-free 

topologies, m=4 

When m=4, the selective pressures induced by the scale-free 
topologies are consistently greater than that of the 2D lattice 
topology (Figure 4a). As p increases from 0 (AB) to 0.5 to 1 
(Triad), the selective pressure decreases, with a more noticeable 
decrease occurring between p = 0.5 and p = 1.0 than between p = 
0 and p = 0.5. While the maximum takeover times were similar to 
those on the 2D lattice (Table 3, column 7), the minimum 
takeover times were closer to those on the panmictic topology 
(Table 3, column 6), and thus the average takeover times on these 
scale free graphs were less than on the 2D lattice (Table 3, column 
4). 

3.2 Albert-Barabàsi and Triad scale-free 

topologies, m=2 

When m = 2, the period of saturation in the scale free topologies 
begins earlier and lasts longer than the period of saturation in 
either the lattice or panmictic topologies, such that the growth 
curves for scale-free topologies with p = 0 and p = 0.5 ultimately 
cross under the curve for the 2D lattice (Figure 4b), due to the fact 
that the maximum takeover times were much higher than on the 
2D lattice (Table 3, column 7).  Thus, for p = 0 and p = 0.5, the 
selective pressure induced by these topologies is stronger than 
that of the lattice topology in early generations, but weaker in 
latter generations. However, the average takeover times for these 

scale free graphs are still much lower than on the 2D lattice (Table 
3, column 4). In contrast, the selective pressure induced by scale-
free topologies generated using the Triad algorithm with p = 1 is 
consistently weaker than the selective pressure induced by the 2D 
lattice topology throughout the entire evolution of the population. 
Indeed, the empirically estimated takeover time (Ê[T]) of 
populations evolving on scale-free topologies generated using the 
Triad algorithm with p = 1 is nearly 1.5 times that of populations 
evolving on the 2D lattice (Table 2, column 4), due to the much 
greater maximum (Table 3, column 7), and consequently much 
higher standard deviation (Table 3, column 5), of the takeover 
times on the Triad graph with p = 1, relative to those of the 2D 
lattice.  

 

3.3 The Hierarchical-Modular topology 

While the shape of the growth curve of populations structured on 
the HM scale-free topology is still sigmoidal, the period of 
saturation begins even earlier than the period of saturation in the 
AB and Triad scale-free topologies (compare Figure 4c with 
Figures 4a and 4b). Similar to the growth curves observed on 
topologies generated using the AB (m = 2) and Triad (m = 2, p = 
0.5) algorithms, the selective pressure induced by HM scale-free 
topologies is stronger than that induced by the lattice topology in 
early generations, but weaker in latter generations. Surprisingly, 
although the maximum takeover time is highest in the HM graph 
(Table 3, column 7), its average takeover time remains below that 
of both the 2D lattice and the Triad with m = 2 and p = 1.0, 
presumably because the minimum takeover time is so low for HM 
(Table 3, column 6).  

 

3.4 Relationship between topology and mean 

takeover time  

The characteristic path length (L) of a spatial topology plays a 
large role in governing the rate at which advantageous genetic 
information can propagate throughout a population. Note that in 
Figures 5a and 5b, we include data for 2D lattices with the 3×3 
neighborhoods, but also for larger square neighborhoods with 
diameters d∈{5,7,9,11}. Figure 5a depicts a strong linear 
correlation (R2 = 0.88) between L and the minimum observed 
takeover time (min(Ê[T])) on each spatial topology considered in 
this study. However, the correlation between L and the mean 
observed takeover time (Ê[T]) is considerably weaker (R2 = 0.38), 
suggesting that other topological properties must also play an 
important role.  Consequently, we searched for statistical 
correlations between the various topological metrics shown in 
Table 2 (both individually and in various combinations) and the 
mean takeover times shown in Table 3, with the result that the 
strongest correlation incorporates both σ2

L, and Lmax, as discussed 
below. 

Non-regular topologies, such as the scale-free population 
structures considered here, have a large variance in their structural 
characteristics, while regular topologies, by definition, have zero 
variance (Table 2). Since the mean takeover time (Ê[T]) is the 
average of all of the takeover times starting with the initial copy of 
the best individual in every node (eq. 10), the variability in the 
structural properties of a non-regular spatial topology must also 
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Figure 5. a) Observed minimum takeover time as a linear 

function of the characteristic path length (L) of the spatial 

topology. b) Observed mean takeover time as a linear 

function of Lmax + σσσσ
2
LLmax. For the 2D lattices (open 

squares), the diameter d ∈{3,5,7,9,11} of the Moore 

neighborhood is indicated.  

 

be taken into account in order to more accurately infer the 
expected takeover time. We found that the relation, 

                                  � 2
max max[ ] LE T L Lσ∝ +                           (11) 

has a strong correlation (R2 = 0.91, Figure 5b). Note that for 
regular topologies this relationship (11) still holds, but the second 
term drops out since σ2

L = 0 and Ê[T] is simply a linear function 
of only Lmax. It is worth noting that a structural analysis of the AB 
scale-free topology generated using the parameters in [9] (|V| = 
1024, m0 = 14, m = 10) predicts an expected takeover time that is 
close to that of a panmictic population structure, consistent with 
the results presented in [9] (data not shown). 

 

4. DISCUSSION AND CONCLUSIONS 

In [9], takeover time dynamics were investigated on one particular 
instance of a scale-free topology generated using the AB 
algorithm (|V| = 1024, m0 = 14, m = 10). They concluded that the 
takeover times of populations on scale-free topologies were at 
least as fast as the takeover times of populations using a random 
or panmictic topology. Here, we show that the selective pressure 
induced by a scale-free population structure is actually highly 
dependent upon its additional topological properties and can be 
tuned from a selective pressure nearly as strong as that induced by 
a panmictic topology to a selective pressure that is even weaker 
than that induced by a square, 2D lattice with 3×3 Moore 
neighborhoods.  

A structural analysis of the spatial topologies considered in this 
study revealed a strong linear correlation between the 
characteristic path length (L) of the population structure and the 
minimum observed takeover time (min(Ê[T])). Since L is the 
mean shortest path between all pairs of vertices, this relationship 
makes intuitive sense; the fastest propagation of the best 
individual most likely occurred along at least a subset of these 
shortest paths. However, the correlation between L and the mean 
observed takeover time (Ê[T]) was shown to be very weak, 
resulting from the extreme heterogeneity of the scale-free 
topologies considered in this study, which have high variance in 
their structural characteristics. Our empirical observations across 
all topologies considered suggest that the mean expected takeover 
time can be inferred with reasonable accuracy as a function of 
only Lmax and σ2

L (11). It is interesting to note that replacing Lmax 
with L in relation (11) results in a weaker correlation (R2 = 0.75). 
Since the vertex associated with Lmax must always be reached for 
complete takeover to occur, the mean takeover time is more 
directly correlated with this metric than with L, which captures the 
average of all shortest paths. To account for the heterogeneity in 
the topologies considered, we found that σ2

L plays a governing 
role, capturing the variability in the shortest paths present in the 
population structure. Using such a structural analysis to estimate 
mean takeover time may prove useful, as only a few simple 
calculations regarding the underlying topology are required, 
precluding the need to run computationally expensive simulations, 
as performed herein, or recursive probabilistic formulations (e.g., 
[31]).  

Gaining a better understanding of how the topological properties 
of population structure affect information flow through networks 
(selective pressure in evolving systems) can also provide useful 
insights into the behaviors of both natural and artificial systems.  
As the important influence of the spatial constraints on inter-
individual interactions has become increasingly appreciated, 
spatially-explicit models of evolutionary dynamics have tended to 
employ more biologically meaningful population structures. 
Several studies have shown that limiting the spatial scale of 
interaction events facilitates the emergence of evolutionary 
phenomena that would be otherwise impossible in a globally 
interacting population. For example, the spatial locality of inter-
individual interactions has been shown to have an important 
influence on the maintenance of genetic diversity [15][29], the 
evolution of altruism [33], and the suppression of evolutionary 
pathologies [2]. Topological analyses of interaction networks 
have proven useful in understanding the sensitivity of self-
organized speciation [24] and predator-prey dynamics [25] to 
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occasional long-distance interaction events. The empirical 
relationship derived here may offer an easy means of rapidly 
estimating the dynamics of information flow on disparate 
population structures, which may prove useful in a variety of 
diverse applications, such as estimating the impact of 
implementing evolutionary algorithms on various topologies or 
understanding the impact of social network topologies on the 
spread of ideas or disease. This approach can also provide useful 
insight into the topological properties that most directly affect 
network dynamics. 

Future work will expand upon the results presented in this study 
by investigating the relationship between the topological 
properties of population structure and takeover time dynamics on 
a wider class of heterogeneous interaction topologies and using 
alternative selection methods. 
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