

[^0]- provide an overview of
- goals and topics
- methods and their applications
- enhance your ability to
- read, understand, and appreciate such papers
- make use of the results obtained this way
- enable you to
- apply the methods to your problems
- produce such results yourself
- explain
- what is doable with the currently known methods - where there is need for more advanced methods
- entertain

Theory. . Why should you care?

- foundations - firm ground
- Proofs provide insights and understanding
- generality — wide applicability
- knowledge vs. beliefs
- fundamental limitations - saves time
- much improved teaching
- "There is nothing more practical than a good theory."

Topics and Structure

- Introduction and Motivation
- (an extremely short) introduction to evolutionary algorithms
- overview of topics in theory (as presented here today)
- analytical tools and methods - and how to apply them
- fitness-based partitions
- expectations and deviations
- simple general lower bounds
- expected multiplicative decrease in distance
- drift analysis
- random walks and cover times
- typical runs
- instructive example functions
- general limitations
- NFL
- black box complexity

History

Evolution Strategies (Bienert, Rechenberg, Schwefel)

- developed in the '60s / '70s of the last century.
- continuous optimization problems, rely on mutation.

Genetic Algorithms (Holland)

- developed in the '60s / '70s.
- binary problems, rely on crossover.

Genetic Programming (Koza)

- developed in the '90s.
- try to build good "computer programs".

Nowadays

- more general view \Rightarrow evolutionary algorithms.

Points of Views

Bionics/Engineering

- evolution is a "natural"enhancing process.
- bionics: algorithmic simulation \Longrightarrow "enhancing" algorithm.
- used for optimization.

Biology

- evolutionary algorithms.
- understanding model of natural evolution.

Computer Science

- evolutionary algorithms.
- successful applications.
- theoretical understanding.

```
    Evolutionary Algorithms
```


Principle

- follow Darwin's principle (survival of the fittest).
- work with a set of solutions called population.
- parent population produces offspring population by variation operators (mutation, crossover).
- select individuals from the parents and children to create new parent population.

Scheme of an evolutionary algorithm

```
Basic EA
    (1) compute an initial population P}={\mp@subsup{X}{1}{},\ldots,\mp@subsup{X}{\mu}{}
    (2) while (not termination condition)
        - produce an offspring population }\mp@subsup{P}{}{\prime}={\mp@subsup{Y}{1}{},\ldots,\mp@subsup{Y}{\lambda}{}}\mathrm{ by
        crossover and/or mutation.
        - create new parent population P by selecting }\mu\mathrm{ individuals from
        P and P'.
```


Important issues

- representation
- crossover operator
- mutation operator
- selection method

| Introduction About EAs Topics in Theory | Optimization Time Analysis | General Limitations | Conclusions |
| :--- | :--- | :--- | :--- | :--- |
| Crossover operator | | | |

Aim

- two individuals x and y should produce a new solutuion z.

1-point Crossover

- choose a position $p \in\{1, \ldots, n\}$ uniformly at random
- set $z_{i}=x_{i}$ for $1 \leq i \leq p$
- set $z_{i}=y_{i}$ for $p<i \leq n$

Uniform Crossover

- set z_{i} equally likely to x_{i} or y_{i}
- if $x_{i}=y_{i}$ then $z_{i}=x_{i}=y_{i}$
- if $x_{i} \neq y_{i}$ then $\operatorname{Prob}\left(z_{i}=x_{i}\right)=\operatorname{Prob}\left(z_{i}=y_{i}\right)=1 / 2$

Mutation

Aim

- produce from a current solution x a new solution z.

Some Possibilities

- flip one randomly chosen bit of x to obtain z.
- flip each bit of x with probability p to obtain z (often $p=1 / n)$.

```
Selection methods
```

Fitness-proportional selection
- choose new population from a set of r individuals
$\left\{x_{1}, \ldots, x_{r}\right\}$.
- probability to choose x_{i} in the next selection step is
$f\left(x_{i}\right) /\left(\sum_{j=1}^{r} f\left(x_{j}\right)\right)$
- μ individuals are selected in this way.
(μ, λ)-selection
- μ parents produce λ children.
- select μ best individuals from the children.
($\mu+\lambda$)-selection
- μ parents produce λ children.
- select μ best individuals from the parents and children.

$(\mu+\lambda)$-EA

(1) Choose μ individuals uniformly at random from $\{0,1\}^{n}$
(2) Produce λ children by mutation.
(3) Apply $(\mu+\lambda)$-selection to parents and children.
(4) Go to 2.)
Introduction About EAs Topics in Theory Optimization Time Analysis General Limitations Conclusions
Simple algorithms

$(1+1) \mathrm{EA}$

(1) Choose $s \in\{0,1\}^{n}$ randomly.
(2) Produce s^{\prime} by flipping each bit of s with probability $1 / n$.
(3) Replace s by s^{\prime} if $f\left(s^{\prime}\right) \geq f(s)$.
(4) Repeat Steps 2 and 3 forever.

RLS
(1) choose $s \in\{0,1\}^{n}$ randomly.
(2) Produce s^{\prime} from s by flipping one randomly chosen bit.
(3) Replace s by s^{\prime} if $f\left(s^{\prime}\right) \geq f(s)$.
(4) Repeat Steps 2 and 3 forever.

Topics in Theory

The most pressing open question
depends very much on what you are interested in.
What you are interested in depends very much on who you are.
You may be

- biologist What is evolution and how does it work?
- engineer How do I solve my problem with an EA?
- computer scientist What can evolutionary algorithms do?

Evolutionary algorithms are

- a model of natural evolution
- a robust general purpose problem solver
- randomized algorithms
here and today computer scientist's point of view

```
Algorithms in Computer Science
```


Two branches

(1) design and analysis of algorithms
"How long does it take to solve this problem?"
(2) complexity theory
"How much time is needed to solve this problem?"

For evolutionary algorithms
(1) analysis (and design) or evolutionary algorithms "What's the expected optimization time of this EA for this problem?
(2) general limitations - NFL and black box complexity "How much time is needed to solve this problem?"

Fitness-Based Partitions

very simple, yet often powerful method for upper bounds
first for ($1+1$)-EA only
Observation due to plus-selection fitness is monotone increasing
Idea for each fitness value v, find probability p_{v} to increase
fitness
Observation $\quad \mathrm{E}($ time to increase fitness from $v)=\frac{1}{p_{v}}$
Observation $\mathrm{E}(T)=\sum_{v} \frac{1}{p_{v}}$
a bit more general group fitness values

Method of Fitness-Based Partitions

```
Definition
For \(f:\{0,1\}^{n} \rightarrow \mathbb{R}, L_{0}, L_{1}, \ldots, L_{k} \subseteq\{0,1\}^{n}\) with
    (1) \(\forall i \neq j \in\{0,1, \ldots, k\}: L_{i} \cap L_{j}=\emptyset\)
        \(\bigcup_{i=0}^{k} L_{i}=\{0,1\}^{n}\)
    (3) \(\forall i<j \in\{0,1, \ldots, k\}: \forall x \in L_{i}: \forall y \in L_{j}: f(x)<f(y)\)
    (4) \(L_{k}=\left\{x \in\{0,1\}^{n} \mid f(x)=\max \left\{f(y) \mid y \in\{0,1\}^{n}\right\}\right\}\)
```

is called an f-based parition.

Remember An f-based partition partitions the search space in accordance to fitness values grouping fitness values arbitrarily.

Definition

ptimization Time $T=$ \#fitness function evaluations until an optimal search point is sampled for the first time

Upper Bounds with f-Based Partitions

$$
\begin{aligned}
& \text { Theorem } \\
& \text { Consider }(1+1) \text {-EA on } f:\{0,1\}^{n} \rightarrow \mathbb{R} \text { and an } f \text {-based partition } \\
& L_{0}, L_{1}, \ldots, L_{k} . \\
& \text { Let } s_{i}:=\min _{x \in L_{i}} \sum_{j=i+1}^{k} \sum_{y \in L_{j}}\left(\frac{1}{n}\right)^{\mathrm{H}(x, y)}\left(1-\frac{1}{n}\right)^{n-\mathrm{H}(x, y)} \\
& \text { for all } i \in\{0,1, \ldots, k-1\} \\
& \qquad \mathrm{E}\left(T_{(1+1)-\mathrm{EA}, f}\right) \leq \sum_{i=0}^{k-1} \frac{1}{s_{i}}
\end{aligned}
$$

Hint most often, very simple lower bounds for s_{i} suffice

Example: Result for a Class of Functions

Definition

$f:\{0,1\}^{n} \rightarrow \mathbb{R}$ is called linear
$\Leftrightarrow \exists w_{0}, w_{1}, \ldots, w_{n} \in \mathbb{R}: \forall x \in\{0,1\}^{n}: f(x)=w_{0}+\sum_{i=1}^{n} w_{i} \cdot x[i]$
Consider (1+1)-EA on linear function $f:\{0,1\}^{n} \rightarrow \mathbb{R}$.
For (1+1)-EA, w. I. o.g. $\quad w_{0}=0, w_{1} \geq w_{2} \geq \cdots \geq w_{n} \geq 0$
First Step define f-based partition

Second Step find lower bounds for s_{i}
Observation There is always at least 1-bit-mutation for leaving L_{i}. $s_{i} \geq \frac{1}{n}\left(1-\frac{1}{n}\right)^{n-1} \geq \frac{1}{e n}$
Third Step $\quad \mathrm{E}\left(T_{(1+1)-\mathrm{EA}, f}\right) \leq \sum_{i=0}^{n-1} e n=e n^{2}$

nntroduction About EAs Topics in Theory Optimization Time Analysis

Generalizing the Method

Idea not restricted to $(1+1)-E A$, only.
Consider $(1+\lambda)$-EA on LeadingOnes.

$$
\left(\operatorname{LEADINGONES}(x)=\sum_{i=1}^{n} \prod_{j=1}^{i} x[j]\right)
$$

First Step define f-based partition
trivial for each fitness value one L_{i}

$$
L_{i}:=\left\{x \in\{0,1\}^{n} \mid \operatorname{LEADINGONES}(x)=i\right\}, 0 \leq i \leq n
$$

For the $(1+\lambda)$-EA, we re-define the s_{i}.
$s_{i}:=\operatorname{Prob}$ (leave L_{i} in one generation)
Observation $\quad \mathrm{E}\left(T_{(1+\lambda)-\mathrm{EA}, f}\right) \leq \lambda \cdot \sum_{i=0}^{k-1} \frac{1}{s_{i}}$


```
(1+\lambda)-ES on LEADINGONES
Second Step find lower bounds for si
Observation It suffices to flip exactly the leftmost 0-bit.
    si}\geq1-(1-\frac{1}{en}\mp@subsup{)}{}{\lambda}\geq1-\mp@subsup{e}{}{-\lambda/(en)
Case Inspection Case 1 }\lambda\geq\mathrm{ en
    si}\geq1-\frac{1}{e
Case Inspection Case 2 }\lambda<e
    si}\geq\frac{\lambda}{2en
Third Step compute upper bound
E (T}\mp@subsup{T}{(1+\lambda)-EA,LEADINGONES}{})\leq\lambda\cdot((\mp@subsup{\sum}{i=0}{n-1}\frac{1}{1-\mp@subsup{e}{}{-1}})+(\mp@subsup{\sum}{i=0}{n-1}\frac{2en}{\lambda})
=O(\lambda.(n+\frac{\mp@subsup{n}{}{2}}{\lambda}))=O(\lambda\cdotn+\mp@subsup{n}{}{2})
```


Some Useful Background Knowledge

a short detour into very basic probability theory
We already know, we care for $\mathrm{E}(T)$ - an expected value.
Often, we care for the probability to deviate from an expected value.

A lot is known about this, we should make use of this.

Markov Inequality and Chernoff Bounds

```
Theorem (Markov Inequality)
X\geq0 random variable, s>0
Prob}(X\geqs\cdot\textrm{E}(X))\leq\frac{1}{s
```

Theorem (Chernoff Bounds)
Let $X_{1}, X_{2}, \ldots, X_{n}: \Omega \rightarrow\{0,1\}$ independent random variables
with
$\forall i \in\{1,2, \ldots, n\}: 0<\operatorname{Prob}\left(X_{i}=1\right)<1$.
Let $X:=\sum_{i=1}^{n} X_{i}$.
$\forall \delta>0: \operatorname{Prob}(X>(1+\delta) \cdot \mathrm{E}(X))<\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mathrm{E}(X}$
$\forall 0<\delta<1$: $\operatorname{Prob}(X<(1-\delta) \cdot \mathrm{E}(X))<e^{-\mathrm{E}(X) \delta^{2} / 2}$

A Very Simple Application

Consider $\quad x \in\{0,1\}^{100}$ selected uniformly at random
more formal for $i \in\{1,2, \ldots, 100\}: B_{i}:= \begin{cases}1 & i \text {-th bit is } 1 \\ 0 & \text { otherwise }\end{cases}$ with $\operatorname{Prob}\left(B_{i}=0\right)=\operatorname{Prob}\left(B_{i}=1\right)=\frac{1}{2}$ $B:=\sum_{i=1}^{100} B_{i} \quad$ clearly $\quad \mathrm{E}(B)=50$
What is the probability to have at least 75 1-bits?
Markov $\quad \operatorname{Prob}(B \geq 75)=\operatorname{Prob}\left(M \geq \frac{3}{2} \cdot 50\right) \leq \frac{2}{3}$
Chernoff $\operatorname{Prob}(B \geq 75)=\operatorname{Prob}\left(B \geq\left(1+\frac{1}{2}\right) \cdot 50\right)$ $\leq\left(\frac{\sqrt{e}}{(3 / 2)^{3 / 2}}\right)^{50}<0.0045$
Truth $\quad \operatorname{Prob}(B \geq 75)=\sum_{i=75}^{100}\binom{100}{i} 2^{-100}$
$=\frac{89,310,453,796,750,805,935,325}{316,912,650,057,057,350,374,175,801,344}<0.000000282$

The Law of Total Probability

```
Theorem (Law of Total Probability)
Let }\mp@subsup{B}{i}{}\mathrm{ with }i\inI\mathrm{ be a partition of some probability space }\Omega\mathrm{ .
\forallA\subseteq\Omega: Prob (A)= \mp@subsup{\sum}{i\inI}{}\operatorname{Prob}(A|\mp@subsup{B}{i}{})\cdot\operatorname{Prob}(\mp@subsup{B}{i}{})
```

immediate consequence $\quad \operatorname{Prob}(A) \geq \operatorname{Prob}(A \mid B) \cdot \operatorname{Prob}(B)$
Useful for lower bounds
when some event "determines" expected optimization time

```
Lower bound for OneMax
```

Chernoff bounds

- Expected number of 1-bits in initial solution is $n / 2$.
- At least $n / 30$-bits with probability $1-e^{-\Omega(n)}$ (Chernoff).

Lower Bound

- Probability that at least one 0 -bit has not been flipped during
$t=(n-1) \ln n$ steps is

$$
1-\left(1-(1-1 / n)^{(n-1) \ln n}\right)^{n / 3} \geq 1-e^{-1 / 3}=\Omega(1)
$$

- Expected optimization time for OneMax is $\Omega(n \log n)$

Generalization

- $\Omega(n \log n)$ for each function with poly. number of optima.

Coupon Collector's Theorem

Proposition

Given n different coupons. Choose at each trial a coupon uniformly at random. Let X be a random variable describing the number of trials required to choose each coupon at least once. Then

$$
E(X)=n H_{n}
$$

holds, where H_{n} denotes the nth Harmonic number, and

$$
\lim _{n \rightarrow \infty} \operatorname{Prob}(X \leq n(\ln n-c))=e^{-e^{c}}
$$

holds for each constant $c \in \mathbb{R}$.
Law of Total Probability
$\mathrm{E}\left(T_{(1+1)-\mathrm{EA}}, f\right) \geq n^{n} \cdot 2^{-n}=\left(\frac{n}{2}\right)^{n}$

Expected multiplicative distance decrease

Basic idea

- Assumption: Function values are integers.
- Define a set O of l operations to obtain an optimal solution.
- Average gain of these l operations is $\frac{f\left(x_{o p t}\right)-f(x)}{l}$.

Upper bound

- Let $d_{\text {max }}=\max _{x \in\{0,1\}^{n}} f\left(x_{o p t}\right)-f(x)$.
- 1 operation: expected distance at most $(1-1 / l) \cdot d_{\max }$.
- t operations: expected distance at most $(1-1 / l)^{t} \cdot d_{\text {max }}$.
- Expected number of $O\left(l \cdot d_{\max }\right)$ operations to reach optimum.
- Assume: expected time for each operation is at most r.
- Upper bound $O\left(r \cdot l \cdot d_{\max }\right)$ to obtain an optimal solution.

Example

> Linear Functions
> - $f(x)=w_{1} x_{1}+w_{2} x_{2}+\cdots+w_{n} x_{n}$
> - $w_{i} \in \mathbb{Z}$

- $w_{\text {max }}=\max _{i} w_{i}$.

Upper bound

- Consider all operations that flip a single bit.
- Each necessary operation is accepted.
- $d_{\max }=n \cdot w_{\max }$.
- Expected number of operations $O\left(n \log d_{\max }\right)$.
- Waiting time for a single bit flip $O(1)$.
- Upper bound $O\left(n\left(\log n+\log w_{\max }\right)\right.$.
- If $w_{\max }=\operatorname{poly}(n)$, upper bound $O(n \log n)$.

A More Flexibel Proof Method

Sad Facts

- f-based partitions restricted to "well behaving" functions
- direct lower bound often too difficult

How can we find a more flexibel method?
Observation $\quad f$-based partition measure progress by $f\left(x_{t+1}\right)-f\left(x_{t}\right)$

Idea consider a more general measure of progress
Define distance $d: Z \rightarrow \mathbb{R}_{0}^{+}$, (Z set of all populations) with $d(P)=0 \Leftrightarrow P$ contains optimal solution

Caution "Distance" need not be a metric!
Intoduction About EAS Topics in Theory Optimization Time Analysis General Limitations Conclusions
Drift

Define distance $d: Z \rightarrow \mathbb{R}_{0}^{+}$, (Z set of all populations) with $d(P)=0 \Leftrightarrow P$ contains optimal solution

Observation $\quad T=\min \left\{t \mid d\left(P_{t}\right)=0\right\}$
Consider maximum distance $M:=\max \{d(P) \mid P \in Z\}$, decrease in distance $D_{t}:=d\left(P_{t-1}\right)-d\left(P_{t}\right)$

Definition $\quad \mathrm{E}\left(D_{t} \mid T \geq t\right)$ is called drift.
Pessimistic point of view $\quad \Delta:=\min \left\{\mathrm{E}\left(D_{t} \mid T \geq t\right) \mid t \in \mathbb{N}_{0}\right\}$
Drift Theorem (Upper Bound) $\quad \Delta>0 \Rightarrow \mathrm{E}(T) \leq M / \Delta$

Upper Bound Drift Theorem

Drift Theorem (Upper Bound)

Let A be some evolutionary algorithm, P_{t} its t-th population, f some function, Z the set of all possible populations, $d: Z \rightarrow \mathbb{R}_{0}^{+}$ some distance measure with
$d(P)=0 \Leftrightarrow P$ contains an optimum of f,
$M=\max \{d(P) \mid P \in Z\}, D_{t}:=d\left(P_{t-1}\right)-d\left(P_{t}\right)$,
$\Delta:=\min \left\{\mathrm{E}\left(D_{t} \mid T \geq t\right) \mid t \in \mathbb{N}_{0}\right\}$.
$\Delta>0 \Rightarrow \mathrm{E}\left(T_{A, f}\right) \leq M / \Delta$
Proof
Observe $\quad M \geq \mathrm{E}\left(\sum_{t=1}^{T} D_{t}\right)$

Proof of the Drift Theorem (Upper Bound)

$$
\begin{aligned}
M & \geq \mathrm{E}\left(\sum_{t=1}^{T} D_{t}\right)=\sum_{t=1}^{\infty} \operatorname{Prob}(T=t) \cdot \mathrm{E}\left(\sum_{i=1}^{T} D_{i} \mid T=t\right) \\
& =\sum_{t=1}^{\infty} \operatorname{Prob}(T=t) \cdot \sum_{i=1}^{t} \mathrm{E}\left(D_{i} \mid T=t\right) \\
& =\sum_{t=1}^{\infty} \sum_{i=1}^{t} \operatorname{Prob}(T=t) \cdot \mathrm{E}\left(D_{i} \mid T=t\right) \\
& =\sum_{i=1}^{\infty} \sum_{t=i}^{\infty} \operatorname{Prob}(T=t) \cdot \mathrm{E}\left(D_{i} \mid T=t\right)
\end{aligned}
$$

Proof of the Drift Theorem (Upper Bound) (cont.)

$\geq \sum_{i=1}^{\infty} \sum_{t=i}^{\infty} \operatorname{Prob}(T=t) \cdot \mathrm{E}\left(D_{i} \mid T=t\right)$
$=\sum_{i=1}^{\infty} \sum_{t=i}^{\infty} \operatorname{Prob}(T \geq i) \cdot \operatorname{Prob}(T=t \mid T \geq i) \cdot \mathrm{E}\left(D_{i} \mid T=t\right)$
$=\sum_{i=1}^{\infty} \operatorname{Prob}(T \geq i) \sum_{t=i}^{\infty} \operatorname{Prob}(T=t \mid T \geq i) \cdot \mathrm{E}\left(D_{i} \mid T=t \wedge T \geq i\right)$
$=\sum_{i=1}^{\infty} \operatorname{Prob}(T \geq i) \sum_{t=1}^{\infty} \operatorname{Prob}(T=t \mid T \geq i) \cdot \mathbf{E}\left(D_{i} \mid T=t \wedge T \geq i\right)$
$=\sum_{i=1}^{\infty} \operatorname{Prob}(T \geq i) \mathrm{E}\left(D_{i} \mid T \geq i\right) \geq \Delta \cdot \sum_{i=1}^{\infty} \operatorname{Prob}(T \geq i)=\Delta \cdot \mathrm{E}(T)$ thus $\quad \mathrm{E}(T) \leq \frac{M}{\Delta}$
\square

A Simple Application

Consider ($1, n$)-EA on LeadingOnes
Theorem
$\mathrm{E}\left(T_{(1, n) \text {-EA,LEAdINGONES }}\right)=O\left(n^{2}\right)$

Proof.

$d(x):=n-\operatorname{LEADINGONES}(x) \quad \rightsquigarrow \quad M=n$
$\mathrm{E}\left(d\left(x_{t-1}\right)-d\left(x_{t}\right) \mid T>t\right)$
$\geq 1 \cdot\left(1-\left(1-\frac{1}{e n}\right)^{n}\right)-n \cdot\left(1-\left(1-\frac{1}{n}\right)^{n}\right)^{n}$
$=\Omega(1)$
thus $\quad \mathrm{E}(T)=O(n)$
thus $\quad \mathrm{E}\left(T_{(1, n)}\right.$ EA,LeadingOnes $)=n \cdot \mathrm{E}(T)=O\left(n^{2}\right)$

Another Example

Consider (1+1)-EA on linear function $f:\{0,1\}^{n} \rightarrow \mathbb{R}$
now with drift analysis
remember $\quad f(x)=\sum_{i=1}^{n} w_{i} \cdot x[i]$
with $w_{1} \geq w_{2} \geq \cdots \geq w_{n}>0$
Define $\quad d(x):=\ln \left(1+2 \sum_{i=1}^{n / 2}(1-x[i])+\sum_{i=(n / 2)+1}^{n}(1-x[i])\right)$
Observe
$M=\max \left\{d(x) \mid x \in\{0,1\}^{n}\right\}=\ln \left(1+\frac{3}{2} n\right)=\Theta(\ln n)$

Drift Analysis for $(1+1)$-EA on general linear functions

$$
d(x):=\ln \left(1+2 \sum_{i=1}^{n / 2}(1-x[i])+\sum_{i=(n / 2)+1}^{n}(1-x[i])\right)
$$

Need lower bound for $\mathrm{E}\left(d\left(x_{t-1}\right)-d\left(x_{t}\right) \mid T \geq t\right)$
Observe minimal for $x_{t-1}=011 \cdots 1$ or $\underbrace{11 \cdots 1}_{\text {left }} \underbrace{01 \cdots 1}_{\text {right }}$
Consider separately and do tedious calculations...

Calculation for $011 \cdots 1$

$\mathrm{E}\left(d\left(x_{t-1}\right)-d\left(x_{t}\right) \mid T \geq t\right)$
$=\frac{1}{n}\left(1-\frac{1}{n}\right)^{n-1}(\ln (3)-\ln (1))$

$$
+\binom{n / 2}{1}\left(\frac{1}{n}\right)^{2}\left(1-\frac{1}{n}\right)^{n-2}(\ln (3)-\ln (1+1))
$$

$$
-\sum_{b_{r}=3}^{n / 2}\binom{n / 2}{b_{r}}\left(\frac{1}{n}\right)^{1+b_{r}}\left(1-\frac{1}{n}\right)^{n-b_{r}-1}\left(\ln \left(1+b_{r}\right)-\ln (3)\right)
$$

$$
-\sum_{b_{l}=1}^{(n / 2)-1} \sum_{b_{r}=0}^{n / 2}\binom{(n / 2)-1}{b_{l}}\binom{n / 2}{b_{r}}\left(\frac{1}{n}\right)^{1+b_{l}+b_{r}}\left(1-\frac{1}{n}\right)^{n-b_{l}-b_{r}-1}
$$

$$
\left(\ln \left(1+2 b_{l}+b_{r}\right)-\ln (3)\right)
$$

$=\Omega\left(\frac{1}{n}\right)$

Calculation for $1^{n / 2} 01^{(n / 2)-1}$
$\mathrm{E}\left(d\left(x_{t-1}\right)-d\left(x_{t}\right) \mid T \geq t\right)$
$=\frac{1}{n}\left(1-\frac{1}{n}\right)^{n-1}(\ln (2)-\ln (1))$
$-\binom{n / 2}{1}\left(\frac{1}{n}\right)^{2}\left(1-\frac{1}{n}\right)^{n-2}(\ln (1+2)-\ln (2))$
$-\sum_{b_{r}=2}^{(n / 2)-1}\binom{(n / 2)-1}{b_{r}}\left(\frac{1}{n}\right)^{1+b_{r}}\left(1-\frac{1}{n}\right)^{n-b_{r}-1}\left(\ln \left(1+b_{r}\right)-\ln (2)\right)$
$=\Omega\left(\frac{1}{n}\right)$

Result for ($1+1$)-EA on General Linear Functions

We have

- $d(x):=\ln \left(1+2 \sum_{i=1}^{n / 2}(1-x[i])+\sum_{i=(n / 2)+1}^{n}(1-x[i])\right)$
- $d(x) \leq \ln (1+(3 / 2) n)=O(\log n)$
- $\mathrm{E}\left(d\left(x_{t-1}\right)-d\left(x_{t}\right) \mid T \geq t\right)=\Omega(1 / n)$
together $\mathrm{E}\left(T_{(1+1) \mathrm{EA}, f}\right)=O(n \log n)$ for any linear f

Drift Analysis of Lower Bounds

We have drift analysis for upper bounds
How can we obtain lower bounds when analyzing drift?

Idea Check proof of drift theorem (upper bound).
Can inequalities be reversed?

Remember $\quad M \geq \mathrm{E}\left(\sum_{t=1}^{T} D_{t}\right)=\cdots=\sum_{i=1}^{\infty} \operatorname{Prob}(T \geq i) \mathrm{E}\left(D_{i} \mid T \geq i\right)$ $\geq \Delta \cdot \sum_{i=1}^{\infty} \operatorname{Prob}(T \geq i)=\Delta \cdot \mathrm{E}(T)$
with

- $M=\max \{d(P) \mid P \in Z\}$
- $\Delta=\min \left\{\mathrm{E}\left(d\left(P_{t-1}\right)-d\left(P_{t}\right) \mid T \geq t\right)\right\}$

Modification for a Lower Bound Technique

observation only two inequalities need to be reversed
(1) $M \geq \sum \cdots$ with $M=\max \{d(P) \mid P \in Z\}$
(2) $\sum \cdots \geq \Delta_{l} \cdot \sum \cdots$ with
$\Delta_{l}=\min \left\{\mathrm{E}\left(d\left(P_{t-1}\right)-d\left(P_{t}\right) \mid T \geq t\right)\right\}$
clearly for lower bound $\Delta_{u}=\max \left\{\mathrm{E}\left(d\left(P_{t-1}\right)-d\left(P_{t}\right) \mid T \geq t\right)\right\}$ sensible and sufficient for " \leq "
clearly for lower bound instead of $M \min \{d(P) \mid P \in Z\}$ possible and sufficient for " \leq ", but pointless, since $\min \{d(\bar{P}) \mid P \in Z\}=0$
\qquad

Closing the Distance

clearly $\mathrm{E}\left(\sum_{t=1}^{T} D_{t}\right)$ fixed, if initial population is known
thus lower bound on $d\left(P_{0}\right)$ yields lower bound on $\mathrm{E}(T)$
making this concrete

- $\mathrm{E}\left(T \mid d\left(P_{0}\right) \geq M_{u}\right) \geq M_{u} / \Delta_{u}$
- $\mathrm{E}(T) \geq \operatorname{Prob}\left(d\left(P_{0}\right) \geq M_{u}\right) \cdot \mathrm{E}\left(T \mid d\left(P_{0}\right) \geq M_{u}\right) \geq$ $\operatorname{Prob}\left(d\left(P_{0}\right) \geq M_{u}\right) \cdot M_{u} / \Delta_{u}$
- $\mathrm{E}(T) \geq \sum \operatorname{Prob}\left(d\left(P_{0}\right) \geq d\right) \cdot d / \Delta_{u} \geq \mathrm{E}\left(d\left(P_{0}\right)\right) / \Delta_{u}$
thus drift analysis suitable as method for upper and lower bounds
Lower Bound for ($1+1$) EA on LEAdingOnes
Define trivial distance
$d(x):=n-\operatorname{LEADINGONES}(x)$
Observation necessary for decreasement of distance
left-most 0-bit flips
thus $\operatorname{Prob}($ decrease distance $) \leq \frac{1}{n}$
How can we bound the decrease in distance?
Observation trivially, by n - not useful
better question How can we bound the expected
decrease in distance?

Expeced Decrease in Distance on LEADINGOnes

Note decrease in distance $\widehat{=}$ increase in fitness
Observation two sources for increase in fitness
(1) the left-most 0-bit
(2) bits to the right of this bits that happen to be 1-bits

Observation bits to the right of the left-most 0-bit have no influence on selection and never had influence on selection

Claim These bits are uniformly distributed
obvious holds after random initialization
Claim standard bit mutations do not change this

Standard Bit Mutations on Uniformly Distributed Bits

Claim $\quad \forall t \in \mathbb{N}_{0}: \forall x \in\{0,1\}^{n}: \operatorname{Prob}\left(x_{t}=x\right)=2^{-n}$
clearly holds for $t=0$
$\operatorname{Prob}\left(x_{t}=x\right)=\sum_{x^{\prime} \in\{0,1\}^{n}} \operatorname{Prob}\left(\left(x_{t-1}=x^{\prime}\right) \wedge\left(\operatorname{mut}\left(x^{\prime}\right)=x\right)\right)$
$=\sum_{x^{\prime} \in\{0,1\}^{n}} \operatorname{Prob}\left(x_{t-1}=x^{\prime}\right) \cdot \operatorname{Prob}\left(\operatorname{mut}\left(x^{\prime}\right)=x\right)$
$=\sum_{x^{\prime} \in\{0,1\}^{n}} 2^{-n} \cdot \operatorname{Prob}\left(\operatorname{mut}\left(x^{\prime}\right)=x\right)$
$=2^{-n} \sum_{x^{\prime} \in\{0,1\}^{n}} \operatorname{Prob}\left(\operatorname{mut}(x)=x^{\prime}\right)$
$=2^{-n} \square$

Expected Increase in Fitness and Expected Intial Distance

$$
\begin{gathered}
\mathrm{E} \text { (increase in fitness) } \\
\left.=\sum_{i=1}^{n} i \cdot \operatorname{Prob} \text { (fitness increase }=i\right) \\
\leq \sum_{i=1}^{n} i \cdot \frac{1}{n} \cdot 2^{-i} \leq \frac{1}{n} \sum_{i=1}^{\infty} \frac{i}{2^{i}}=\frac{2}{n} \\
\mathrm{E}\left(d\left(x_{0}\right)\right)=n-\sum_{i=1}^{n} i \cdot \operatorname{Prob}\left(\operatorname{LEADINGONES}\left(x_{0}\right)=i\right) \\
=n-\sum_{i=1}^{n} \frac{i}{2^{i+1}} \geq n-\frac{1}{2} \sum_{i=1}^{\infty} \frac{i}{2^{i}}=n-1 \\
\text { thus } \quad \mathrm{E}\left(T_{(1+1)} \text { EA,LEADINGOnES }\right) \geq \frac{(n-1) n}{2}=\Omega\left(n^{2}\right) \\
\text { thus } \mathrm{E}\left(T_{(1+1)} \mathrm{EA}, \text { LeAdingOnes }\right) \\
\Theta\left(n^{2}\right)
\end{gathered}
$$

Random Walks

Random Walks on Graphs

Given: An undirected connected graph.

- A random walk starts at a vertex v.
- Whenever it reaches a vertex w, it chooses in the next step a random neighbor of w.

Theorem (Upper bound for Cover Time)

Given an undirected connected graph with n vertices and m edges, the expected number of steps until a random walk has visited all vertices is at most $2 m(n-1)$

Example: Plateaus

Definition

$\operatorname{Plateau}(x):= \begin{cases}n-\operatorname{OneMax}(x) & : x \notin\left\{1^{i} 0^{n-i}, 0 \leq i \leq n\right\} \\ n+1 & : x \in\left\{1^{i} 0^{n-i}, 0 \leq i<n\right\} \\ n+2 & : x=1^{n} .\end{cases}$

Upper bound (RLS)

- Solution with fitness $\geq n+1$ in expected time $O(n \log n)$.
- Random walk on the plateau of fitness $n+1$.
- Probability $1 / 2$ to increase (reduce) the number of ones.
- Expected waiting time for an accepted step $\Theta(n)$.
- Optimum reached within $O\left(n^{2}\right)$ expected accepted steps.
- Upper bound $O\left(n^{3}\right)$ (same holds for $(1+1)$-EA).

Method of Typical Runs

Phase 1: Given EA starts with random initialization, with probability at least $1-p_{1}$, it reaches a population satisfying condition C_{1} in at most T_{1} steps.
Phase 2: Given EA starts with a population satisfying condition C_{1}, with probability at least $1-p_{2}$, it reaches a population satisfying condition C_{2} in at most T_{2} steps.

Phase k : Given EA starts with a population satisfying condition C_{k-1}, with probability at least $1-p_{k}$, it reaches a population containing a global optimum in at most T_{k} steps

This yields: $\operatorname{Prob}\left(T_{\mathrm{EA}, f} \leq \sum_{i=1}^{k} T_{i}\right) \geq 1-\sum_{i=1}^{k} p_{i}$

Intoduction ${ }_{\text {About EAs }}$ Topics in Theory Oprimimation Time Analysis $_{\text {Ceneral Limitations }}$ Conclusions From Success Probability to Expected Optimization Time

Sometimes

"Phase 1: Given EA starts with random initialization" can be replaced by
"Phase 1: EA may start with an arbitrary population"
In this case, a failure in any phase can be described as a restart.
This yields: $\mathbf{E}\left(T_{\mathrm{EA}, f}\right) \leq \frac{\sum_{i=1}^{k} \boldsymbol{T}_{i}}{1-\sum_{i=1}^{k} \boldsymbol{p}_{i}}$

| Introduction About EAs Topics in Theory | Optimization Time Analysis | General Limitations | Conclusions |
| :--- | :--- | :--- | :--- | :--- |
| A Concrete Example | | | |

A Steady State GA

$(\mu+1)$-EA with prob. p_{c} for uniform crossover

1. Initialization

Choose $x_{1}, \ldots, x_{\mu} \in\{0,1\}^{n}$ uniformly at random.
2. Selection and Variation

With probability p_{c} :
Select z_{1} and z_{2} independently from x_{1}, \ldots, x_{μ}.
$z:=$ uniform crossover $\left(z_{1}, z_{2}\right)$
$y:=\operatorname{standard} 1 / n$ bit mutation (z)
Otherwise:
Select z from x_{1}, \ldots, x_{μ}.
$y:=\operatorname{standard} 1 / n$ bit mutation (z)
3. Selection for Replacement

If $f(y) \geq \min \left\{f\left(x_{1}\right), \ldots, f\left(x_{\mu}\right)\right\}$
Then Replace some x_{i} with min. f-value by y.
4. "Stopping Criterion"

Continue at 2.

```
GA on \(\mathrm{JuMP}_{k}\)
```


Theorem
 Let $k=O(\log n), c \in \mathbb{R}^{+}$a sufficiently large constant, $\mu=n^{O(1)}$, $\mu \geq k \log ^{2} n, 0<p_{c} \leq 1 /(c k n)$.
 $E\left(T_{G A\left(\mu, p_{c}\right)}\right)=O\left(\mu n^{2} k+2^{2 k} / p_{c}\right)$

Method of Proof: Typical Run
\qquad
Introduction About EAs Topics in Theory Optimization Time Analysis General Limitations Conclusions
Definition of the Phases

Notation:
$x_{i}[j]$ is the j-th bit of x_{i}
OPT: $n+k \in\left\{\operatorname{JuMP}_{k}\left(x_{1}\right), \ldots, \operatorname{JuMP}_{k}\left(x_{\mu}\right)\right.$

i	C_{i-1}	C_{i}	T_{i}
1	\emptyset	$\min \left\{\operatorname{JumP}_{k}\left(x_{1}\right), \ldots, \operatorname{JumP}_{k}\left(x_{\mu}\right)\right\} \geq n$	$O(\mu n \log n)$
2	C_{1}	$\left(\forall j \in\{1, \ldots, n\}: \sum_{h=1}^{\mu}\left(1-x_{h}[j]\right) \leq \frac{\mu}{4 k}\right) \vee$ OPT	$O\left(\mu n^{2} k\right)$
3	C_{2}	OPT	$O\left(2^{2 k} / p_{c}\right)$

Phase 1: Towards the Gap

Reaching some point x with $\operatorname{JumP}_{k}(x) \geq n$
is not more difficult than optimizing ONEMAX.
For $\mu=1, O(n \log n)$ follows.
For larger μ, observe:
With probability at least $\left(1-p_{c}\right) \cdot(1-1 / n)^{n}=\Omega(1)$
a copy of a parent is produced.
Making a copy of some x_{j} with $\operatorname{Jump}_{k}\left(x_{j}\right) \geq \operatorname{JuMP}_{k}\left(x_{i}\right)$
is not worse than choosing x_{i}.
This implies $O(\mu n \log n)$ as expected length.

Markov's inequality: failure probability $p_{1} \leq \varepsilon$ for any constant $\varepsilon>0$

Zero-Bits at the First Position

Consider one generation.

Let z be the current number of zero-bits in first position.
The value of z can change by at most 1 .
event $A_{z}^{+}: z$ changes to $z+1$
event $A_{z}^{-}: z$ changes to $z-1$
Goal: Estimate $\operatorname{Prob}\left(A_{z}^{+}\right)$and $\operatorname{Prob}\left(A_{z}^{-}\right)$.

We are going to prove:
After $c^{\prime} \mu n^{2} k$ generations (c^{\prime} const. suff. large)
with probability at most p_{2}^{\prime}
there are at most $\mu /(4 k)$ zero-bits at the first position.
This implies:
After $c^{\prime} \mu n^{2} k$ generations (c^{\prime} const. suff. large)
there are at most $\mu /(4 k)$ zero-bits at any position
with probability at most $p_{2}:=n \cdot p_{2}^{\prime}$.

A Still Closer Look at A^{+}

> Using
> $A_{z}^{+} \subseteq B_{z} \cup\left(\overline{B_{z}} \cap C_{z} \cap\left[\left(D_{z} \cap E_{z} \cap \bigcup_{i=0}^{k-1} F_{z, i}^{+}\right) \cup\left(\overline{D_{z}} \cap \overline{E_{z}} \cap \bigcup_{i=1}^{k} G_{z, i}^{+}\right)\right]\right)$
> together with
> $\quad \operatorname{Prob}\left(B_{z}\right)=p_{c}$
> $\quad \operatorname{Prob}\left(C_{z}\right)=\frac{\mu-z}{\mu}$
> $\operatorname{Prob}\left(D_{z}\right)=\frac{z}{m u}$
> $\operatorname{Prob}\left(E_{z}\right)=1-\frac{1}{n}$
> $\operatorname{Prob}\left(F_{z, i}^{+}\right)=\binom{k-1}{i}\binom{n-k}{i}\left(\frac{1}{n}\right)^{2 i}\left(1-\frac{1}{n}\right)^{n-2 i}$
> $\operatorname{Prob}\left(G_{z, i}^{+}\right)=\binom{k}{i}\binom{n-k-1}{i-1}\left(\frac{1}{n}\right)^{2 i-1}\left(1-\frac{1}{n}\right)^{n-2 i}$
> yields some bound on $\operatorname{Prob}\left(A_{z}^{+}\right)$.

A Still Closer Look at A

Using
$A_{z}^{-} \supseteq \overline{B_{z}} \cap C_{z} \cap\left[\left(D_{z} \cap \overline{E_{z}} \cap \bigcup_{i=1}^{k} F_{z, i}^{-}\right) \cup\left(\overline{D_{z}} \cap E_{z} \cap \bigcup_{i=0}^{k} G_{z, i}^{-}\right)\right]$
together with the known probabilities
yields again some bound.
Instead of considering the two bounds directly,
we consider their difference:
If z is large, say $z \geq \frac{\mu}{8 k}$:
$\operatorname{Prob}\left(A_{z}^{-}\right)-\operatorname{Prob}\left(A_{z}^{+}\right)=\Omega\left(\frac{1}{n k}\right)$

Bias Towards 1-Bits

We know: $z \geq \frac{\mu}{8 k} \Rightarrow \operatorname{Prob}\left(A_{z}^{-}\right)-\operatorname{Prob}\left(A_{z}^{+}\right)=\Omega\left(\frac{1}{n k}\right)$
Consider $c^{*} \mu n^{2} k$ generations; c^{*} sufficiently large constant
E (difference in 0 -bits) $=\Omega\left(\frac{n^{2} k}{n k}\right)=\Omega(n k)$
Having c^{*} sufficiently large implies $<\mu /(4 k) 0$-bits at the end of the phase.
Really?
Only if $z \geq \mu /(8 k)$ holds all the time!

Coping with Our Assumption

As long as $z \geq \mu /(8 k)$ holds, things work out nicely.
Consider last point of time, when $z<\mu /(8 k)$ holds in the $c^{*} n^{2} k$ generations.

Case 1: at most $\mu /(8 k)$ generations left
number of 0 -bits $<\mu /(8 k)+\mu /(8 k)=\mu /(4 k)$
no problem
Case 2: more than $\mu /(8 k)$ generations left
Observation: $\mu /(8 k)=\Omega\left(\log ^{2} n\right)$
For $\Omega\left(\log ^{2} n\right)$ generations, our assumption holds.
Apply Chernoff's bound for these generations.
Yields $p_{2}^{\prime}=e^{-\Omega\left(\log ^{2} n\right)}$.
Together: $p_{2}=n \cdot p_{2}^{\prime}=e^{-\Omega\left(\log ^{2} n\right)+\ln n}=e^{-\Omega\left(\log ^{2} n\right)}$

Phase 3: Finding the Optimum

In the beginning, we have at most $\mu /(4 k) 0$-bits at each position
In the same way as for Phase 2, we make sure that we always have at most $\mu /(2 k) 0$-bits at each position.

Prob (find optimum in current generation)
\geq Prob(crossover and select two parents without common 0-bit and create 1^{n} with uniform crossover and no mutation)
$\operatorname{Prob}($ crossover $)=p_{c}$
$\operatorname{Prob}\left(\right.$ create 1^{n} with uniform crossover $)=(1 / 2)^{2 k}$
$\operatorname{Prob}($ no mutation $)=(1-1 / n)^{n}$
Prob (select two parent without common 0 -bit) $\leq k \cdot \frac{\mu /(2 k)}{\mu}=\frac{1}{2}$
Together:
$\operatorname{Prob}($ find optimum in current generation $)=\Omega\left(p_{c} \cdot 2^{-2 k}\right)$

Concluding Phase 3

We have
$\operatorname{Prob}($ find optimum in current generation $)=\Omega\left(p_{c} \cdot 2^{-2 k}\right)$
$\operatorname{Prob}\left(\right.$ find optimum in $c_{3} 2^{2 k} / p_{c}$ generations) $\geq 1-\varepsilon\left(c_{3}\right)$
failure probability $p_{3} \leq \varepsilon^{\prime}$ for any constant $\varepsilon^{\prime}>0$

> Length of the three phases:
> $O(\mu n \log n)+O\left(\mu n^{2} k\right)+O\left(2^{2 k} / p_{c}\right)=O\left(\mu n^{2} k+2^{2 k} / p_{c}\right)$
> Sum of Failure Probabilities: $\varepsilon+e^{-\Omega\left(\log ^{2} n\right)}+\varepsilon^{\prime} \leq \varepsilon^{*}<1$
> $\mathrm{E}\left(T_{\mathrm{GA}\left(\mu, p_{c}\right)}\right)=O\left(\mu n^{2} k+2^{2 k} / p_{c}\right)$

```
Black Box Optimization
```


Setting

- Given two finite spaces S and R
- Find for a given function $f: S \rightarrow R$ an optimal solution.
- Count number of fitness evalutions
- No search point is evaluated more than once.

Definition (Black Box Algorithm)

An algorithm A is called black box algorithm if its finds for each
$f: S \rightarrow R$ an optimal solution after a finite number of fitness evaluations.

What Follows from NFL?

Implications

- Considering all functions, each black box algorithm has the same performance.
- Considering all functions, each algorithm is as good as random search.
- Hill climbing is as good as Hill descending.

Questions

- Is the result surprising ? Perhaps
- Is it interesting? No!!!

What Does Not Follow from NFL?

Drawbacks

- No one wants to consider all functions!!!
- More realistic is to consider a class of functions or problems.
- NFL Theorem does not hold in this case.
- NFL Theorem useless for understanding realistic szenarios.

Implication

- Restrict considerations to class of functions/problems.
- Are there general results for such cases where NFL does not hold?
- \Rightarrow black box complexity.

Motivation for Complexity Theory

If our evolutionary algorithm performs poorly
is it our fault or is the problem intrinsically hard?
Example $\operatorname{Needle}(x):=\prod_{i=1}^{n} x[i]$
Such questions are answered by complexity theory.
Typically one concentrates on computational complexity with respect to run time.

Is this really fair when looking at evolutionary algorithms?

Black Box Optimization

When talking about NFL we have realized
classical algorithms and black box algorithms work in different scenarios

classical algorithms	black box algorithms
problem class known	problem class known
problem instance known	problem instance unknown

This different optimization scenario requires
a different complexity theory.
We consider Black Box Complexity
We hope for general lower bounds for all black box algorithms.

Notation

Let $\mathcal{F} \subseteq\{f: S \rightarrow W\}$ be a class of functions, A a black box algorithm for \mathcal{F}, x_{t} the t-th search point sampled by A.
optimization time of A on $f \in \mathcal{F}$:
$T_{A, f}=\min \left\{t \mid f\left(x_{t}\right)=\max \{f(x) \in S\}\right\}$
worst case expected optimization time of A on \mathcal{F} :
$T_{A, \mathcal{F}}=\max \left\{\mathrm{E}\left(T_{A, f}\right) \mid f \in \mathcal{F}\right\}$
black box complexity of F :
$B_{\mathcal{F}}=\min \left\{T_{A, \mathcal{F}} \mid A\right.$ is black box algorithm for $\left.\mathcal{F}\right\}$
\qquad

Comparison With Computational Complexity
$\mathcal{F}:=$
$\left\{f:\{0,1\}^{n} \rightarrow \mathbb{R} \mid f(x)=w_{0}+\sum_{i=1}^{n} w_{i} x_{i}+\sum_{1 \leq i<j \leq n} w_{i, j} x_{i} x_{j}\right\}$
with $w_{i}, w_{i, j} \in \mathbb{R}$
known: Optimization of \mathcal{F} is NP-hard since MAX-2-SAT is contained in \mathcal{F}.
Theorem: $B_{\mathcal{F}}=O\left(n^{2}\right)$
Proof
$w_{0}=f\left(0^{n}\right)(1$ search point)
$w_{i}=f\left(0^{i-1} 10^{n-i}\right)-w_{0}(n$ search points)
$w_{i, j}=f\left(0^{i-1} 10^{j-i-1} 10^{n-j}\right)-w_{i}-w_{j}-w_{0}\left(\binom{n}{2}\right.$ search points $)$
Compute optimal solution x^{*} without access to the oracle.
$f\left(x^{*}\right)$ (1 search point)
together: $\binom{n}{2}+n+2=O\left(n^{2}\right)$ search points

From Functions to Classes of Functions

Observation: $\forall \mathcal{F}: B_{\mathcal{F}} \leq|\mathcal{F}|$
Consequence: $B_{f}=1$ for any f - pointless
Can we still have meaningful results for our example functions?
Evolutionary algorithms are often symmetric
with respect to 0 s and 1 s .
Definition: For $f:\{0,1\}^{n} \rightarrow \mathbb{R}$, we define $f^{*}:=\left\{f_{a} \mid a \in\{0,1\}^{n}\right\}$
where $f_{a}(x):=f(a \oplus x)$.
Clearly, such EAs perform equal on all $f^{\prime} \in f^{*}$

A General Upper Bound

Theorem
 For any $\mathcal{F} \subseteq\left\{f:\{0,1\}^{n} \rightarrow \mathbb{R}\right\}, B_{\mathcal{F}} \leq 2^{n-1}+1 / 2$ holds.

Proof
Consider pure random search without re-sampling of search points.
For each step t, Prob (find global optimum) $\geq 2^{-n}$

$$
\begin{align*}
& B_{\mathcal{F}} \leq \sum_{i=1}^{2^{n}} i \cdot 2^{n} \\
& =\frac{2^{n}\left(2^{2}+1\right)}{2^{n+1}}=2^{n-1}+\frac{1}{2}
\end{align*}
$$

An Important Tool

very powerful general tool for lower bounds known

Theorem (Yao's Minimax Principle)
For all distributions p over \mathcal{I} and all distributions q over \mathcal{A} :
$\min _{A} \mathrm{E}\left(T_{A, I_{p}}\right) \leq \max _{I} \mathrm{E}\left(T_{A_{q}, I}\right)$
in words:
We get a lower bound for the
worst-case performance of a randomized algorithm by
proving a lower bound on the worst-case performance of an
optimal deterministic algorithm
for an arbitrary probability distribution over the inputs.

$B_{\text {Onemax }}$

Theorem
 $B_{\text {ONEMAX }^{*}}=\Omega(n / \log n)$

Proof by application of Yao's Minimax Principle:
We choose the uniform distribution.
A deterministic algorithm is a tree with at least 2^{n} nodes:
otherwise at least one $f \in$ OnEMAX* cannot be optimized.
The degree of the nodes is bounded by $n+1$:
this is the number of different function values.
Therefore, the average depth of the tree is bounded below by
$\left(\log _{n+1} 2^{n}\right)-1$
$=\frac{n}{\log _{2}(n+1)}=\Omega(n / \log n)$.
Remark: $B_{\text {Onemax }}=O(n)$ is easy to see.

Unimodal functions

class of unimodal functions:
$\mathcal{U}:=\left\{f:\{0,1\}^{n} \rightarrow \mathbb{R} \mid f\right.$ unimodal $\}$
What is $B_{\mathcal{U}}$?
We want to find a lower bound on $B_{\mathcal{U}}$.
Remember: For any point not optimal under a unimodal function, there exists a path to the global optimum

Definition: l points $p_{1}, p_{2}, \ldots, p_{l}$ with $\mathrm{H}\left(p_{i}, p_{i+1}\right)=1$ for all $1 \leq i<l$ form a path of length l.
\qquad

Path Functions

Consider the following functions:

$P:=\left(p_{1}, p_{2}, \ldots, p_{l(n)}\right)$ with $p_{1}=1^{n}$ is a path - not necessarily a simple path.
$f_{P}(x):= \begin{cases}n+i & \text { if } x=p_{i} \text { and } x \neq p_{j} \text { for all } j>i, \\ \operatorname{OnEMAX}(x) & \text { if } x \notin P\end{cases}$
Observation: f_{P} is unimodal.

$$
\mathcal{P}_{l(n)}:=\left\{f_{P} \mid P \text { has length } l(n)\right\}
$$

Random Paths

Construct P with length $l(n)$ randomly:

1. $p_{1}:=1^{n} ; i:=2$
2. While $i \leq l(n)$ do
3. Choose $p_{i} \in\left\{x \mid \mathrm{H}\left(x, p_{i-1}\right)=1\right\}$ uniformly at random.
4. $i:=i+1$

For each path P with length $l(n)$,
we can calculate the probability to construct P randomly this way.
Remark: Paths P constructed this way are likely to contain circles.

A lower bound on $B_{\mathcal{U}}$

Theorem: $\forall \delta$ with $0<\delta<1$ constant: $B \mathcal{U}>2^{n^{\delta}}$.
For a proof, we want to apply Yao's Minimax Principle.
We define a probability distribution in the following way:
$\delta<\varepsilon<1$ constant; $l(n):=2^{n^{\varepsilon}}$
For all $f \in \mathcal{U}$ we define
$\operatorname{Prob}(f):=\left\{\begin{array}{ll}p & \text { if } f \in \mathcal{P}_{l(n)} \\ 0 & \text { otherwise. }\end{array}\right.$ and P is constructed with prob. p,

Our Proof Strategy

We need to prove that
an optimal deterministic algorithm
needs on average more than $2^{n^{\delta}}$ steps
to find a global optimum.
We strengthen the position of the deterministic algorithm by
(1) letting it know which functions have probability 0 .
(2) giving away for free the knowledge about any p_{i} with $f\left(p_{i}\right) \leq f\left(p_{j}\right)$ once p_{j} is sampled,
(3) giving away for free the knowledge about $p_{j+1}, \ldots p_{j+n}$ if p_{j} is the current known best path point and some point not on the path is sampled,
(4) giving away for free the knowledge about $p_{l(n)}$ (the global optimum) once p_{j+n} is sampled while p_{j} is the current known best path point.

Deterministic Algorithm Too Strong?

Omit all circles froms P.
The remaining length $l^{\prime}(n)$ is called the true length of P.
What lower bound can be proven this way?
at best: $\left(l^{\prime}(n)-n+1\right) / n$
Observation: We need a good lower bound on $l^{\prime}(n)$.
How likely is it to return to old path points?
alternatively: What is the probability distribution for the Hamming distance points on the path?
Distance Between Points on the Path

Lemma

$\forall \beta>0$ constant: $\exists \alpha(\beta)>0$ constant: $\forall i \leq l(n)-\beta n$:
$\forall j \geq \beta n: \operatorname{Prob}\left(H\left(p_{i}, p_{i+j}\right) \leq \alpha(\beta) n\right)=2^{-\Omega(n)}$
Proof: Due to symmetry:
Considering $i=1$ and some $j \geq \beta n$ suffices.
$H_{t}:=\mathrm{H}\left(p_{1}, p_{t}\right)$
We want to prove: $\operatorname{Prob}\left(H_{j} \leq \alpha(\beta) n\right)=2^{-\Omega(n)}$
We choose $\alpha(\beta):=\min \{1 / 50, \beta / 5\}$.
Due to the random path construction:

- $H_{t+1} \in\left\{H_{t}-1, H_{t}+1\right\}$
- $\operatorname{Prob}\left(H_{t+1}=H_{t}+1\right)=1-H_{t} / n$
- $\operatorname{Prob}\left(H_{t+1}=H_{t}-1\right)=H_{t} / n$

Proof of Lemma Continued

Case 2: $H_{t}<2 \gamma n$
Clearly, $H_{i}<3 \gamma n$ for all $i \in\{t, \ldots, j\}$.
Therefore, $\operatorname{Prob}\left(H_{i}=H_{i-1}+1\right) \geq 1-3 \gamma \geq 7 / 10$,
$\operatorname{Prob}\left(H_{i}=H_{i-1}-1\right) \leq 3 / 10$.
Define independent random variable $S_{t}, S_{t+1}, \ldots, S_{j} \in\{0,1\}$ with $\operatorname{Prob}\left(S_{k}=1\right)=7 / 10$.
Define $S:=\sum_{k=t}^{j} S_{k}$.
Observation: $\operatorname{Prob}(S \geq(3 / 5) \gamma n) \leq \operatorname{Prob}\left(H_{j} \geq(1 / 5) \gamma n\right)$
Since
(1) $H_{t} \geq 0$
(2) $\operatorname{Prob}\left(H_{i}=H_{i-1}+1\right) \geq \operatorname{Prob}\left(S_{i}=1\right)$

3 $\geq(3 / 5) \gamma n$ increasing steps $\Rightarrow \leq(2 / 5) \gamma n$ decreasing steps (4) $H_{j} \geq(3 / 5) \gamma n-(2 / 5) \gamma n$

Proof of Lemma Continued

We have γn independent random variable $S_{t}, S_{t+1}, \ldots, S_{j} \in\{0,1\}$
with $\operatorname{Prob}\left(S_{k}=1\right)=7 / 10$ and $S:=\sum_{k=t}^{j} S_{k}$.
Apply Chernoff Bounds:
$\mathrm{E}(S)=(7 / 10) \gamma n$
$\operatorname{Prob}\left(S<\frac{3}{5} \gamma n\right)$
$=\operatorname{Prob}\left(S<\left(1-\frac{1}{7}\right) \frac{7}{10} \gamma n\right)$
$<e^{-(7 / 10) \gamma n(1 / 7)^{2} / 2}=e^{-(1 / 140) \gamma n}=2^{-\Omega(n)}$

True Path Length

Lemma with $\beta=1$ yields:
$\operatorname{Prob}($ return to path after n steps $)=2^{-\Omega(n)}$
Prob (return to path after $\geq n$ steps happens anywhere)
$=2^{n^{\varepsilon}} \cdot 2^{-\Omega(n)}=2^{-\Omega(n)}$
$\operatorname{Prob}\left(l^{\prime}(n) \geq l(n) / n\right)=1-2^{-\Omega(n)}$
We can prove at best lower bound of
$\frac{l^{\prime}(n)-n+1}{n}>\frac{l(n)}{n^{2}}-1>2^{n^{\delta}}$.

An Optimal Deterministic Algorithm

Let N denote the points known not to belong to P.
Let p_{i} denote the best currently known point on the path.
Initially, $N=\emptyset, i \geq 1$.
Algorithm decides to sample x as next point.
Case 1: $\mathrm{H}\left(p_{i}, x\right) \leq \alpha(1) n$
$\operatorname{Prob}\left(x=p_{j}\right.$ with $\left.j \geq n\right)=2^{-\Omega(n)}$
Case 2: $\mathrm{H}\left(p_{i}, x\right)>\alpha(1) n$
Consider random path construction starting in p_{i}.
Similar to Lemma:
$\operatorname{Prob}($ hit $x)=2^{-\Omega(n)}$

```
Intoduction Aboure{
    N\not=\emptyset
    Partition N:
    Nfar := {y\inN| 
    N near := N\N Nar
    Case 1: }\mp@subsup{N}{\mathrm{ near }}{}=
    Consider random path construction starting in pi
    A: path hits x
    E: path hits no point in Nfar
    Clearly, optimal deterministic algorithm avoid Nfar
    Thus, we are interested in Prob (A|E)
    = 两的(A\capE)
    Clearly, }\operatorname{Prob}(E)=1-\mp@subsup{2}{}{-\Omega(n)}\mathrm{ .
    Thus, }\operatorname{Prob}(A|E)\leq(1+\mp@subsup{2}{}{-\Omega(n)})\operatorname{Prob}(A)=\mp@subsup{2}{}{-\Omega(n)}\mathrm{ .
```

Intoduction ${ }^{\text {About EAS }}$ Topics in Theory Oprimization Time Analysis
Later Steps With Close Known Points

Case 2: $N_{\text {near }} \neq \emptyset$

Knowing points near by can increase $\operatorname{Prob}(A)$.
Ignore the first $n / 2$ steps of path construction; consider $p_{i+n / 2}$.
$\operatorname{Prob}\left(N_{\text {near }}=\emptyset\right.$ now $)=1-2^{-\Omega(n)}$
Repeat Case 1.

Conclusions

.. and that was it for today.
There is more,
but you have a good idea of what can be done.
Reminder - What we have just seen:

- analysis of the expected optimization time of some
evolutionary algorithms by means of
- fitness-based partitions
- Markov's inequality and Chernoff bounds
- coupon collector's theorem
- expected multiplicative distance decrease
- drift analysis
- random walks and cover times
- typical runs
- example functions
- general limitations for evolutionary algorithms by means of - NFL
- black box complexity

```
References for Overview of Known Results
    - F. Neumann (2007): Expected runtimes of evolutionary algorithms for the Eulerian cycle problem. Computers and
    - B. Doerr, D. Johannsen (2007): Adjacency list matchings - an ideal genotype for cycle covers. GECCO. To appear.
    - S. Fischer,I.Wegener (2005): The Ising model on the ring: mutation versus recombination. Theoretical Computer
    - D. Sudholt (2005): Crossover is provably essential for the lsing Model on Trees. In GECCO, 1161-1167.
    - T. Jansen, D. Weyland (2007): Analysis of evolutionary algorithms for the longest common subsequence problem. In
    - T. Storch (2006): How randomized search heuristics find maximum cliques in planar graph. In GECCO, 567-574
    - 0. Giel, I. Wegener (2003): Evolutionary algoritms and the maximum matching problem. In
    - F. Neumann,., Wegener (2004): Randomized local search, evolutionary algorithms, and the minimum spanning tree
    - J.S Sharnow, K. Tinnefld, I. Wegener (2004): The an\\ysis of evolutionary
    - C. Witt (2005): Worst-case and verage-case approximation by simple randomized search heuristics. In 22nd Annua
    Symposium on Theoretical Aspects of Computer Science (STASS), 44-56.
    - T. Jansen, R.P. Wiegand (2004):The cooperative coevolutionary (1+1) EA. Evolutionary Computation 12(4):40-434
    - . Sudhot (2006): Local search in evolutionary lagoithms: the impact of the local search frequency. In 17th International
    - R. Watson, T. Jansen (2007): A building-llock royal road where crossover is provably essential. In GECCO. To appear.
    - B. Doerr, F. Neumann, D. Sucholt, C. Witt (2007): On the Runtime Analysis of the 1-ANT ACO Algorithm. GECCO. To
    - S. Droste (2005): Not all linear functions are equally difificult for the compact genetic algorithm. In GECCO, 679-686.
```


Overview of Known Results

Are there just these methods and results for toy examples?
Is there nothing really cool, interesting, and useful?
By these and other methods there are results for evolutionary algorithms for

- "real" cominatorial optimization problems
- Euler circuits, Ising model, longest common subsequences
- maximum cliques, maximum matchings, minimum spanning trees
- shortest paths, sorting, partition
- "advanced" evolutionary algorithms
- coevolutionary algorithms, memetic algorithms
- with crossover, different (offspring) population sizes, problem-specific variation operators
other randomized search heuristics
- ant colony optimization
- estimation of distribution algorithms

[^0]: Aims and Goals of this Tutorial

