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ABSTRACT

The problem of how to acquire a model of a physical robot,
which is fit for evolution of controllers that can subsequently
be used to control that robot, is considered in the context
of racing a radio-controlled toy car around a randomised
track. Several modelling techniques are compared, and the
specific properties of the acquired models that influence the
quality of the evolved controller are discussed. As we aim to
minimise the amount of domain knowledge used, we further
investigate the relation between the assumptions about the
modelled system made by particular modelling techniques
and the suitability of the acquired models as bases for con-
troller evolution. We find that none of the models acquired
is good enough on its own, and that a key to evolving ro-
bust behaviour is to evaluate controllers simultaneously on
multiple models during evolution. Examples of successfully
evolved racing control for the physical car are analysed.

Categories and Subject Descriptors

1.2 [ARTIFICIAL INTELLIGENCE]: Automatic Pro-
gramming

General Terms
Algorithms

Keywords
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1. INTRODUCTION

When evolving or otherwise learning a controller for a
physical robot, having a model of the dynamics of that robot
can be immensely useful for several reasons. Firstly, both
evolution and other forms of controller learning (suchastd
-learning) rely on trying out a great number of partially
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random actions. Performing such learning on a real robot
usually takes a very long time and, depending on the type
of robot, might very well destroy it. Therefore it is desirable
to have a dynamics model of such quality that a controller
learnt solely on actions taken in that model, produces be-
haviour which is essentially the same when that controller
is transferred to the real robot.

Secondly, when such a model is made available to the con-
troller itself, thus giving the controller the ability to predict
the results of its own actions, more deliberative control is
possible. It has been observed, by us and others, that learn-
ing state-based controllers is easier and ultimately gives bet-
ter results than learning direct controllers [6]. Such results
go hand in hand with current thinking in embodied cogni-
tive science, which emphasises the role of internal models of
action and perception for imagination and other aspects of
cognition [4].

In this paper we are investigating how best to acquire
a dynamics model suitable for evolving controllers, in the
absence of much prior knowledge about the system being
modelled. We are explicitly looking to get away with as little
domain knowledge as possible, in order to create as general
and self-contained an approach as possible. For example,
we want to avoid measuring anything on the robot, and we
want to avoid manually inferring even qualitative models of
the dynamics, to the extent that this is possible. Also note
that the problem of model acquisition in general is quite
different from the problem of acquiring models suitable for
controller evolution. Evolutionary computation is famous
for exploiting any weaknesses in a model or fitness function,
and it is far from clear that those models which are “best”
according to some quantitative measure are also those that
are most likely to allow evolution of controllers that transfer
well to the real world. Understanding evolutionary com-
putation is at least as important as understanding physics
when it comes to creating non-exploitable models.

1.1 Fast, cheap and out of control

In this paper, the system being modelled is an inexpen-
sive toy racing car (see figure 1). The main reason for
choosing this system is that we have previously investigated
the evolution of controllers for simulated car racing in some
depth, including incremental evolution [10], competitive co-
evolution [9], and evolving forward models of the car dy-
namics [7]. The car simulation used in those experiments
was directly inspired by the toy car being modelled in this
paper, but is qualitatively rather than quantitatively simi-



lar. While we have had good results in simulation, we have
so far not known whether these results would hold up when
confronted with the unruly dynamics of the real world.

But car racing is not the only domain that would greatly
benefit from an autonomous methodology to produce dy-
namic models and controllers; our intention is to explore
techniques general enough to model any robot. Such tech-
niques would be most useful in cases of vehicles with compli-
cated, partially unknown dynamics, and where the brittle-
ness of the platform precludes evolving directly on the real
robot.

A prime example of the above can be seen in a parallel
project of ours, which aims to create swarms of miniature
robotic helicopters [3]. Evolving controllers on the real he-
licopters is obviously out of the question, as the random
actions taken by evolution would very quickly render the ve-
hicle permanently incapable of taking off. Furthermore, the
helicopter in question is characterised by a peculiar counter-
rotating rotors design enhanced by a 45° stabilising bar,
a combination that makes it quite different from the heli-
copters normally considered in the aeronautics literature.
For this reason a model based on little domain knowledge is
clearly an attractive prospect.

2. NONLINEAR DYNAMICS
MODELLING

The modelling techniques presented in this paper belong
to the wide and diverse field of nonlinear system identifica-
tion; interested readers are referred to [8] for a more com-
plete overview, including techniques more orthodox than
those discussed here. It should be noted that there are
many examples of both neural networks and evolutionary
computation being used in nonlinear systems identification;
the examples discussed below are to our knowledge more
directly related to our current endeavour.

2.1 Jakobi and the Radical Envelope of Noise
Hypothesis

One of the earlist approaches to acquiring robot mod-
els specifically for evolution is Jakobi’s Radical Envelope of
Noise Hypothesis [5]. Jakobi advocates dividing aspects of
the robot and environment simulation into a base set and
an implementation set. The base set contains all the aspects
that are deemed (by the experimenter) to be required for a
good evolved controller; these are subject to the same vari-
ability present in their real world characteristics. The im-
plementation set contains all other aspects, and is subject
to variable amounts of noise, from none to massive, in order
to discourage the evolution of controllers relying on features
from that set.Jakobi does not prescribe any particular way
of delineating base set aspects from implementation aspects,
nor any particular way of modelling the base set.

2.2 Bongard and co-evolution of models and
controllers

Among the less traditional (and more recent) approaches
to modelling is Bongard’s concept of self-modelling [2]. He
used a legged robot that was capable of continually produc-
ing models of its own body, by using these models to retrain
the controller it was able to adapt to changes in it’s body
structure.

The process of continuous self-modelling is best described
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in a cycle. The robot starts by triggering an arbitrary motor
action and records its sensory consequences. This informa-
tion is passed to a set of internal models that compete for
the best explanation of the behaviour. In order to improve
the quality of the self-model the robot tries to gather further
information by triggering different actions. The action selec-
tion mechanism is model-driven, which means that it selects
the next action based on the maximization of information
that can flow into the model (i.e. the action that causes the
greatest disagreement among the competing internal mod-
els). The action selected is then overtly executed and the
cycle starts again with the new sensory input information
added to the system.

2.3 Abbeel and modelling for reinforcement
learning

The work of Abbeel et al. [1] is probably the most similar
to the one we are describing, as in our case the final goal
is to produce controllers able to handle the challenging task
of controlling a toy car. In this case reinforcement learning
is the preferred technique used to produce proficient con-
trollers.

A grey-box model heavily inspired by the dynamics of
the car is the model of choice and all the available domain
knowledge is embedded in the form of ad-hoc equations and
parameters. Various measurements including proper mea-
surements of the turning radii and techniques such as step-
input responses are also used to estimate the initial param-
eters to seed the model. The car is also retrofitted with a
power stabilizer in order to make its performance somewhat
independent from the battery level.

The use of a car with proportional steering and drive,
makes the problem of control substantially different from
ours, direct comparisons are therefore very hard to make.

A second difference between the approach in question and
ours regards the type of controller to be achieved. While
Abbeel’s aim is to produce a very precise controller, in our
case optimality is less important; we are more interested in
using evolutionary computation to produce somewhat novel
solutions to the problem (see 5.2.2 for a more detailed ac-
count of the outcomes).

2.4 How our approach differs

While interesting, Bongard’s approach seems to place cer-
tain requirements on the type of robot used, requirements
which our system does not meet. Importantly, our model
car is dynamical and all states are transient, whereasBon-
gard’s robot can be kinematically modelled; it would also be
possible to crash or otherwise lose control of our car during
the experimentation phase performed by the algorithm.

Abbeel et al. succeed in modelling a car and a conven-
tional single rotor helicopter, but not without putting in
considerable domain knowledge, and even adapting their
systems so as to be easier to model (such as voltage stabili-
sation on the car). This is all good if modelling a particular
car or helicopter is the primary goal. We aim instead to ad-
dress the more general problem of nonlinear modelling for
controller evolution when the assumptions about the under-
lying system being modelled are relaxed.

As for Jakobi’s approach, the reliance on a human to sep-
arate base set from implementation set clearly violates our
goal of minimizing domain knowledge.



2.5 Model requirements for controller
evolution

As stated above, we are interested in system identifica-
tion as a means of making it possible to evolve controllers,
and the requirements we have on the models we infer are
thus likely to differ from those placed on models used in
e.g. traditional control theory. These differences stem from
evolutionary computation’s well known tendency to exploit
the model or fitness function at hand. As trying randomly
generated strategies is essential to evolution, the candidate
controllers are likely to take actions which are very different
from any actions in the training data for the model, or which
otherwise “break” the model so that it produces responses
which are wildly different from the system it is intended
to model. Such weak spots in the model can often be ex-
ploited by the evolutionary algorithm to create controllers
that achieve good fitness, but are completely useless in re-
ality. An example of such an exploit for a car racing model
would be if the model moved sideways when a steering com-
mand was issued while the car was standing still. A model
with such a deficiency could well be learnt if the situation
(steering while not driving) was not in the training data,
and the right constraints were not applied to what sort of
dynamics could be learnt.

That the models behave in a way which adheres to
the constraints implied by the system being modelled is
paramount, however beyond learning these large scale con-
straints, acquisition of non exploitable models is more im-
portant than achieving high precision with a specific training
set.

However, there are ways in which the model could fail
to conform to the modelled system and still be usable for
controller evolution. In general, we believe that deficiencies
that make it harder for the controller to perform its task
(e.g. driving to a way point) is admissible, whereas defi-
ciencies that make it easier to succeed are not. For concrete
examples in our current domain, we believe that it is prefer-
able that the model overestimates the turning radius of the
car to that it underestimates it, that too long lag between
command and effect is preferable to too short lag, and that
it is probably acceptable if the model misjudges all acceler-
ations by some constant, but absolutely not that the model
makes it possible to turn the car on the spot.

That being said, we want to avoid encoding any of the
above ideas into our model representations, in the form of
explicit constraints on dynamics or otherwise, in line with
our principle of minimising our use of domain knowledge.

3. DATA COLLECTION

The car we used is a small and inexpensive radio con-
trolled toy car with a mass of approximately 0.3Kg¢g and a
length and width of respectively 18cm and 10cm (Figure 1).
The car is provided only with simple bang-bang control in-
puts: forward or backward at full throttle and steering right
or left. The combination of the asymmetry in turning and
the slack of the worn out differential drive gearbox makes
controlling the car a non-trivial task. The only modifica-
tion made to the car was the addition of five very light and
reflectivefiducial markers necessary for tracking. No elec-
trical modifications of any kind were made, which means
that the battery level had a direct impact on the car’s top
speed and responsiveness. The remote control of the car was
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Figure 1: The toy car and its remote, note the re-
flecting markers.

modified in order to be controlled by the parallel port of our
computer. A simple Java program outputs the steering com-
mands given by a human driver via keyboard to the parallel
port, and logs the commands together with the current car
state.

The current car state was obtained from a Vicon infrared
tracking system that can record the position of the markers
placed on the car with a very high accuracy (in the order of
millimeters) and a frame-rate of 200 fps. The real time data
reconstruction delay offered by the system is also very low
(in the order of milliseconds) and being considerably shorter
than our control speed (20Hz) can be safely neglected. All
the 50 square meters that constitute the test area were cov-
ered with white paper to reduce (but not eliminate) skidding
of the car and infrared reflectivity of the floor.

The tracking system produces the absolute car position
with reference to a coordinate frame fixed to the test area
(a third person perspective), which is translated into the car
centered frame of reference and numerically differentiated to
produce the car state. As it can be expected the process of
numerical differentiation introduces noise in the computed
velocities. In order to limit the noise, we record the data
with a time resolution of 200Hz and compute the veloci-
ties, which are then low-pass filtered and down-sampled to
20Hz. To avoid distortion in the data a FIR (finite impulse
response) filter was used and the delay introduced by the fil-
tering process was compensated for. The control commands
were logged together with the car state.

As it is common practice in vehicular dynamics we define
the state of the car as the set constituted by its forward,
lateral and angular velocities [u, v,1]. The derivative of the
state ! [@, O, 1/)] will be used for the corresponding accelera-
tions; u; and wug indicate the driving and steering input.

In order to minimise the use of domain knowledge, we de-
cided not to collect data while a human driver was perform-
ing the point-to-point car racing task (see section 5.2), but

' Computed as [i, 0] = R(e) ™" * [u,0]er1 — [u, 0], P =
Pir1 — . Where R(1);)™" denotes the rotation matrix be-
tween the body frame at time ¢ + 1 and t. Throughout the

paper [u,v, 1] and [, 0, 1)] refers to the state and accelera-
tion at time ¢.



instead while performing a set of various driving manoeu-
vres that we regarded to span the driving envelope of the
car. In total, about 6 minutes of driving data was collected
with different manoeuvres ranging from loops and figure-8s
to simple starting and stopping.

4. MODELLING TECHNIQUES

Four different function representations, with different as-
sociated learning methods, were used to learn models of the
car: a functionapproximator based on twenty-seven MLPs
(multi-layer perceptrons) trained with back-propagation
(backprop27), another based on three MLPs aided by an
integration routine and trained with artificial evolution
(evolved3), a simple nearest neighbour classifier, also us-
ing an integration routine, and a parametrized model of the
car based on physical insight, with its parameters set by
evolution.

In the nonlinear system identification literature, colour-
coding is traditionally used to distinguish the level of prior
knowledge that is available:

e White Box models: the model is perfectly known,

e Grey Box models: the model structure is known based
on some physical insight, but its parameters remain to
be estimated,

e Black Box models: prior knowledge is not used.

The backprop27 is the darkest model we produced as it
produces the next state of the system based on its current
state and on the control inputs. The only handcrafted in-
formation pushed through the system was the choice of the
neural network used depending on the active control sig-
nal (see below). The evolved3, the nearest neighbour and
the parametrised models are grey-box models as they all as-
sume a physical system. Given a state and a control action,
they only produce the derivative of the state vector, a sound
assumption for any physical system actuated by forces and
torques. The evolved3 and the nearest neighbour models
are very dark grey boxes; they simply predict accelerations,
leaving the computation of the new state to an external
routine that takes care of the integration. In contrast, the
parametrized model incorporates substantially more domain
knowledge, as it explicitly tries to model coupling effects and
friction that are known to be present in the real car.

4.1 Back-propagation MLPs

Our first model architecture does not assume anything
about the system to be modelled, but rather about the space
of inputs. Since the car has a relatively small set of action
commands, and since those actions are discrete, it is possi-
ble to to take advantage of this by using a separate neural
network for each possible command. This would possibly
give each network a simpler function to learn, not only by
reducing the output space, but also by eliminating the motor
commands from the input space (as the appropriate network
outputs can be selected solely on the base of the action in-
put). In total we used 27 networks (9 possible actions x
3DoF) receiving as inputs the full state ([u,v,%)]) and the
usual bias. The networks were then trained to predict the
state of the system at the next time-step. We used the stan-
dard back-propagation algorithm based on the square error
between the model output and the logged car data for the
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training. All the almost 7000 data point logged were repeat-
edly used in the 1000 training epochs.

4.2 Evolved MLPs

In this second attempt we raise the level of domain knowl-
edge in the model by assuming that the state of the system
is constituted by physical quantities that can be computed
by integrating acceleration, direct results of states and input
commands.

Three separated MLPs are in this case evolved to produce
the difference between the current and the future state of the
system. Each network uses as input the current state of the
system and the control command and produces the change
in one of the states. The weights of the neural network were
then evolved using a standard 50+50 evolution strategy, en-
coding the weights of the networks as real numbers, and
mutating themwith Gaussian mutation with variance 0.01.

The fitness function was the mean square error between
the predicted state and the ground truth state logged for the
car, calculated as follows. A starting point in the data was
picked at random, and the state of the simulated car was
initialised to be the same as the state of the real car. The
same commands were then fed to the simulated car as to the
real, and the state of the simulated car updated using the
model under evaluation, for 10 time steps, after which the
square difference between the real and the simulated state
was calculated. The fitness of a model was defined as the
negative mean of these errors over 100 repetitions of this
process.

The evolved3 models were generally evolved for 1000 gen-
erations, though they consistently achieved peak fitness after
a few hundred generations.

4.3 Nearest neighbour

Like the evolved3 models, but unlike the backprop27 mod-
els, the nearest neighbour-based model maps current state
and command to accelerations. The model is very simple
and consists in having the real car data organized in nine
tables, one for each control command, each entry mapping
a recorded state [u,v,1)] to a current acceleration [u, 0, ).
When predicting, given the current control command and
state, the algorithm finds the state entry in the associated
table with the smallest Euclidean distance and adds the cor-
responding acceleration entry to the current state.

4.4 Parametrised model

The parametrised model we adopted is inspired by the
model presented in [1], and is mainly fruit of the insight
on the underlying physics we gained by driving the car and
studying the logged data. It consists in a set of algebraic
equations, the parameters of which will be fitted to best ap-
proximate the car data. Since the lateral translations are
generally very small, we deliberately neglected the lateral
motion. There were three principal effects we wanted the
model to be able to reproduce: 1) there can be asymme-
try between forward and backward motion and right and
left turning; 2) it is not possible to turn the car on the
spot; 3) the motion of the car is characterised by static and
dynamic friction. To achieve the first requirement we sim-
ply allowed for four different proportional constants between
the control input and the respective accelerations (forward
acceleration i, backward acceleration 1y, right angular ac-
celeration ., left angular acceleration ¥, ). As suggested in



the model by Abbeel, to stop the model from spinning on the
spot we simply defined the rotational speed as a proportion
of the forward speed (see equation 1). And finally to ac-
count for static and dynamic friction we defined minimum
velocity factors (minimum forward velocity um, minimum
angular velocity ¥,,,) and linear and viscous drag (linear
drag Dy, linear viscous drag Dy, angular drag Dy, angu-
lar viscous drag D). Additional safety factors were also
defined to avoid unrealistic velocities (maximum linear ve-
locity um, maximim angular velocity ‘iJM).

Pa = YDy + sgn(¥)y’ Dy
¥ = 1P > U)X (uz = Duly — 1(uz = —1)h¥) — g
¢ = 1P| < Vm)u+1(|¢)] > Uim)sgn (i) Un (1)
g = uDu+ sgn(u)uQDw
@ = 1(ja| > am)(1(ur = )ig — L(ug = —1)ip) — tg

1(ju] < wa)u+ 1(u] > wn)sgn(u)un

The 12 parameters that fully define the model were then
evolved using the same evolution strategy and fitness func-
tion as described in section 4.2. In this case the parameters
were encoded as arrays of real numbers and evolved with the
same 50 + 50 elitist scheme adopted for the 3MLPs model.
As with the MLPs, the parametrised models were evolved
for 1000 generations but peaked after a few hundred.

4.5 Single- and multi-model controller
evolution

In order to compensate for this we introduced multi-model
evolution: we evolved two extra controllers using more than
one model, at each controller evaluation the controller was
tested using two or three of the best evolved models, ac-
quired using different techniques and representations; the
fitness used was the lowest fitness of those achieved. In this
way, we reasoned, any evolved strategy that relied on ex-
ploiting a weakness of a particular model would score badly,
as this particular weakness would not be present in the other
models (but rather other weaknesses). According to this hy-
pothesis, the extent to which we can avoid any systematic
weaknesses that plague all our models depends both on the
quality of the training data and the diversity of function
representations and learning algorithms used to acquire the
different models. A certain kinship with Jakobi’s radical
envelope of noise hypothesis can be seen in that the use of
multiple models can be said to implicitly separate a base set
(properties that can be modelled without exploitable weak-
nesses) from an implementation set (those that can not).

The performance of each controller was then tested with
each one of the models and finally with the best model of
all: the physical car.

5. EXPERIMENTAL RESULTS
5.1 Model acquisition

Using the various architectures discussed, several models
were obtained and selected for controller evolution. In the
case of the n. neighbour and backprop27 only one model
was produced for each technique; with both parametrised
and evolved3 the best models produced after the first evolu-
tionary run had complete were chosen. The accuracy of the
selected models were then verified using a validation dataset
held back during training. In testing the models are initially
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models ‘ u ‘ v ‘ P ‘

backprop27 0.6528 0.0832 1.3036
(0.6526) | (0.0832) | (1.3033)

[58.90] [106.58] [80.35]

parametrised | 0.3213 0.0669 0.5294
(0.3211) | (0.0668) | (0.5291)

[28.99] [85.63] [32.63]

evolved3 0.6668 0.1498 1.0061
(0.6666) | (0.1497) | (1.0055)

[60.17] [191.80] [62.01]

n. neighbour | 0.3164 0.0223 0.4122
(0.3157) | (0.0223) | (0.4114)

[28.55] [28.58] [25.41]

Table 1: The root mean squared error [m/s|, (stan-
dard deviation [m/s]) and [root relative error %] of
each model in the testing data.

given the state from the values of the real car. Each model
is given the control signals (u; and uz) recorded from the
real car and at each time step the predicted state is prop-
agated as the next state. In this way, we are able to see
the deviation of each model from the baseline given by the
testing data. In Table 1 are shown the root mean squared
error (RMSE) of the predictions of the velocities (u, v and
¢) when compared with the testing data.

— real

backprop27
— - parametrised
— evolved3

— - n. neighbour
I )

5700 5750

I
5650
timsteps [At=0.05s]

I I
5550 5600

Figure 2: Predicted forward speed u for each of the
models acquired

A plot of the predictions made by each model is shown in
Figs 2 and 3 using a subset of the testing data. Here we
show only the results of the variables u and 1, since these
are the ones that have greater impact on the quality of the
model.

The nearest neighbour model sometimes follows the base-
line accurately and other times misses it completely. With-
out any form of interpolation, the nearest neighbour algo-
rithm understandably fails to generalise in novel situations
which are outside the envelope of the training data. In addi-
tion, the parametrised model often produces overestimates
and sometimes is slow to react to the control commands.



The set of 27 networks trained with back-propagation can
follow the baseline relatively closely, however, as seen in the
example plots large errors in the predictions can occur over
short periods of time (spikes). A quite different behaviour
is seen in the predictions produced by the evolved3 model
which has high frequency oscillations of varying amplitude.

4-

v’ [rad/s]

— real
backprop27
— — parametrised
— evolved3
— - n. neighbour
)

I
5700

I
5650
timsteps [At=0.05s]

I
5550 5600 5750

Figure 3: Predicted angular speed i) for each of the
models acquired

5.2 Controller learning

Once a set of models had been derived we proceeded to in-
vestigate their usefulness as simulators with which to evolve
controllers. The task we chose to evolve controllers for was
point-to-point car racing, a task for which we have previ-
ously compared various approaches to learning controllers
in a non-physically-grounded simulation [6]. The reasons
for choosing this task over the more complex walled car rac-
ing task we have studied in some other papers is that it does
not require modelling of collisions with walls.

The fitness function of the task is defined as follows: the
controller is allowed to control the car for 500 time steps,
equivalent to 25 seconds of simulated time. During this time,
the car has to pass as many way points as possible, and the
fitness is equal to the number of passed way points at the
end of the 500 time steps. A way point is considered passed
when the center of the car is within 30 centimeters of the
centre of the way point; when a way point is passed, a new
way point immediately pops up at a random position within
a radius of 1.5 meters from the centre of the arena. Only
one next way point is available to pass at any one time.

The controllers we evolve are based on recurrent neural
networks with 5 inputs, 6 hidden neurons, and 2 outputs.
The inputs are as follows: a constant bias input of 1, the for-
ward speed of the car (u), the rotational velocity of the car
(1)), the angle to the next way point (relative angle between
the forward direction of the car and the line that connects
the center of the car and the waypoint), and the Euclidean
distance to the next way point. All inputs are in SI units.
The two outputs are interpreted as follows: the car is sent
the command to steer left if the first output is below —0.3, to
steer right if above 0.3 and straight forward otherwise. Sim-
ilarly, the value of the second output means drive backward
if below —0.3, forward if above 0.3 and neutral otherwise.
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| contr. [ bp27 [ param [ evo3 [ nn [ real ‘

bp27c 18.6 9 1.3 14 9.33
(0.76) | (1.19) | (0.61) | (1.04) -

paramc | 18.1 15.1 1.3 15.5 14
(0.79) | (0.66) | (0.43) | (0.62) -

evo3c 0.7 0.2 13.4 0.3 0.33
(0.52) | (0.19) | (0.87) | (0.29) -

nnc 15 5 0.7 17.0 | 5.33
(1.22) | (1.45) | (0.43) | (0.83) -

mmlc 11 4 15.0 12 8.33
(1.57) (1.3) (0.95) | (1.40) -

mm?2c¢ 13.6 10 10.2 11.7 | 9.33
(0.72) | (1.04) | (0.75) | (0.89) -

humFc - - - - 8.33
humBc - - - - 6.0

Table 2: Fitness and standard deviation (below) of
each controller on each model: the columns refer to
the models and the rows to the controllers.

As for the evolutionary algorithm, the very same evolu-
tion strategy is used as is used for the evolutionary model
acquisition above. All weights of the neural network are mu-
tated in parallel by adding numbers drawn from a Gaussian
distribution. Each fitness evaluation is the mean of ten trials
of 500 time steps each.

backprop MLPs
parametrised
evolved MLPs
14} n. neighbour
— - — multi-model 1

fitness

generations

Figure 4: Evolution of controllers.

5.2.1 Results

Controllers that successfully completed the point-to-point
racing task within a given model could reliably be evolved
with that model within a few hundred generations (see fig-
ure 4). However, this is more or less a tautology. Things
start to get interesting when controllers evolved for one
model are tested on another, and really interesting when
they are tested on the real car. In table 5.2 we can see
the results of a number of such tests. The table con-
tains four controllers derived using the modelling techniques
described: nearest neighbour, backpropagation, neuroevo-



lution, evolutionary parameter optimisation (nnc, bp27c,
evo3c, paramc), two controllers derived using versions of
the multi-model controller evolution (mmIc,mm2c), and the
best efforts of one of the authors driving either forward or
backward (humFc,humBc ). The controllers tested were the
best of two evolutionary runs on the same model; no attempt
at measuring the fitness variance between evolutionary runs
was made, but we believe it to be low.

As is clear from the table, a controller evolved using a
particular model works better on that model than on any
other. This effect is most pronounced for the controller pro-
duced on the evolved neural network model, but is present
for the other controllers as well. Qualitatively, the evolved
neural network model behaves quite differently to the other
models, with abrupt accelerations and huge turning radii.
The backprop27 model is generally the one that “feels most
natural”, while the nearest neighbour model behaves just
like the real car in many situations only to behave rather
inappropriately in situations for which it has no data.

The only controller that consistently performs well on all
models is one of the multi-model-evolved models, which was
tested simultaneously on the evolved3 model and the nearest
neighbour model. This controller also produced the most
robust behaviour on the real car, even if the highest mean
fitness on the real car was achieved by the controller evolved
on the backprop27 model. However, as we shall see below,
these controllers go about their task in rather different ways.
This is illustrated by figure 5, that traces a few seconds of
several controllers trying to reach the same sequence of way
points with the real car.

5.2.2  Analysis of evolved control strategies

When transferring the evolved controllers to the real car
it was observed that of them drive the car backwards; all ex-
cept the one which was evolved based on the 3-model multi-
model trick (mm2c). The advantage of driving backwards
seems to be that the car is more maneuverable; the car does
go faster when driving forward, but this is apparently not
very important given the limited size of the arena and the
time taken to accelerate and decelerate.

Apart from mostly driving backwards, the behaviour of
the controllers vary wildly. The controller evolved on the
parametrised model (paramc) is perhaps the most straight-
forward (or straight-backward) as it drives directly towards
the way point at full speed at all times. This works very
well when the angle between the car and the way point is
small or the distance to the way point is high, put if the next
way point pops up right next to the car, the controller gets
stuck “orbiting” around the way point, driving in endless
circles without being able to reach it as its turning radius
is too large. A variation on this behaviour is exhibited by
the on average best-performing controller (bp27c) evolved
on the backprop27 model. This controller almost always
turns right; approaching a way point it aims slightly left of
the point and then does an inexplicably sharp right turn
just before passing the way point. (We would have sus-
pected an evolutionary exploit of a weakness in the model
if the model was not actual physical reality.) The strategy
works fabulously for most way points, but even this con-
troller sometimes gets stuck in orbit, and some trials get
very bad fitness. The reason for its high average fitness is
that the trials are short, and switching between two trials
usually gets the car out of orbiting.
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Figure 5: Traces with each controller’s performance
using single models (a,b,c,d) or combinations of
those models (e,f).

The only controller that seems never to get stuck is the
one evolved on the 2-model multi-model controller (mmIc)
evolution. While this controller quite often misses a way
point, it usually immediately brakes to a full stop just af-
terwards. When accelerating again, the car has a narrower
turning radius than it would have at full speed, and is thus
able to turn back and reach the way point. This strategy
surprised us at first, as we had not thought of it ourselves,
but it obviously works.

Another strategy, as displayed by the 3-model multi-
model evolved controller, is to drive forward most of the
time, trying to aim for the way point. When missing a way



point the car backs off some distance and fully repositions
so as to be able to reach the way point on a second try.
The controller evolved on the 3-MLP model (evo3c¢) seems
to perform some sort of peculiar dance around the arena,
with little relation to the position of the way point or to the
behaviour exhibited by the same controller in the model it
was evolved for.

5.2.3 Analysis of strengths and (exploitable) weak-
nesses of the models

As the controller representation and evolutionary method
are kept constant for all attempts at controller evolution,
the characteristics of the models are bound to be the sole
determinants of the differingfitnesses and behaviours of the
evolved controllers. In this section, we attempt to analyse
the strengths and weaknesses of these models based on ob-
servations when driving them manually, and observations on
the evolved controllers driving in their native models.

The 3-MLP model is the most obviously exploitable
model, as its very high rates of acceleration from stand-
still makes a kind of zig-zagging strategy possible, which
certainly would not work on the real car. As the top speed
of the model is not very high, but the turning radius is, it is
all too tempting to use this exploit to quickly get to a way
point. However, we note that the 3-MLP model works well in
combination with another model for multi-model controller
evolution, as its high turning radius precludes a turning ra-
dius exploit and the zig-zagging won’t work in any other
model.

The parametrised model, which is the model incorporat-
ing the most domain knowledge, is generally admirably well-
behaved. But it is still vulnerable to turning radius exploita-
tion, as its turning becomes unrealistically sharp at very
low speeds. We have seen controllers evolved for this model
driving fast and straight, and suddenly slowing down and
creeping around the turns. A similar exploit seems to ex-
ist for the nearest-neighbour model. A more serious exploit
for that model, however, is the spinning on the spot phe-
nomenon, whereby the car can turn around without moving
forward after certain decelerations.

For the backprop27 model, things look different: when
driving fast, and suddenly braking and changing the steer-
ing at the same time, the car can suddenly accelerate in
unexpected directions. This little oddity seems not to be
exploitable by the controller, but we have seen its slight un-
derestimation of the car’s turning radius being exploited.

6. DISCUSSION

The approach to dynamics modelling and controller evo-
lution presented in this paper apparently works well enough
to produce proficient (and interesting) controllers for toy
car racing, using very little domain knowledge and an ill-
behaved toy car. While others have been able to learn com-
petent control of radio-controlled toy cars, we believe we
are by far assuming the least about the system we are mod-
elling. Minimising use of domain knowledge might be seen as
an academic concern in the current context, but becomes all
the more important in the domains we intend to investigate
next, where domain knowledge is often lacking. Addition-
ally, our concern ties in very well with the general spirit of
evolutionary robotics, which is to minimise human interfer-
ence in the process of controller design. We expect lessons
learned and techniques developed here, in particular the use
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of multi-model controller evolution (which to some extent
was the “trick” that finally made our experiments work) to
be transferable to our other projects.

6.1 Future work

This paper was a first step towards a stable framework
for the modelling of physical machines. In the near future
we want to refine the methodology used here in order to
produce a more flexible and general approach, which can be
used in our various other projects. We do not mind using
systems with greater domain knowledge, but we do mind
handcrafted modelling. In addition we are planning to use
a physics simulator as an aid to the modeling process, the
idea being to inject non-specific domain knowledge about
the laws of physics (gravity, momentum etc.).
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