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Combinatorial Optimization

refers to the optimization problem where
solution vector is discrete in finite set of
feasible solutions.

Continuous Optimization

As opposed to discrete optimization, the
variables used in the objective function
can assume real values, e.g., values from
intervals of the real line.

Combinatorial Optimization Problems

Optimization Problems

Single Objective Multi-objective
Optimization Problems

Optimization Problems

Single Objective Optimization
(Problem Definition)

Maximize / Minimize

f(x)
Subject to
gj(x)ZO, i=1,2,...,]
h(x) =0, k=1,2,...,k
x M) < x, < %) i=1,2,...,n

Single Objective Optimization
(What to do?)

+ Solution is clearly defined as the search
space is often totally ordered.

*+ We simply seek solution that
optimizes the sole objective function
(except multimodal optimization
problems).
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Single Objective Space

Minimization
problem

Iterative refinement with generations —

Performance monitoring and termination criteria both are trivial.

9

Multimodal Function

f(x)
f =
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A Sample Maze . .. /
N e i Ty
« What is the goal ? | | Hﬁﬁ leﬂH ]

— Exit with a degree ? Y/N
» Have a Decent degree ?
» Degree with minimal Cost ?
— Attending to teaching etc.
— Self efforts (study/practices)
— Collaborations,
— Expenditures.

* Multiple objectives
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Exit with a degree
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Optimized Maze

* No solution
+ Single solution

* Multiple solutions
— DM picks one.

Combinatorial (discrete)
Optimization/decision
Problem

— variables are discrete.

Enter
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Exit with a degrel
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Sudoku Puzzle ::
Solving with EA

Sudoku Puzzle

Individual E:

* How to solve ?

Individual 2:

Individual 1i:

|3 Dxﬂsxﬁx&xﬁxxxﬁnm(xxxxx#x&xxxxxYnI(xxxxxx gwazxxueamm
The help arfay: i H H i
T8036 [

* How to generate Sudoku with

IR |

Different complexity levels. ] ] ] . :
° H H H Mutati Subgrid: The help array:
Constraint Satisfaction Problem T S BEEE| EEEEEEE.
— Each row, col. and 3x3 grid has each digit B} - ,
from 110 9 Swap mutation: [llegal attempt of swap
— Given digits must remain in positions i |9|6i3i6i4i8i2|7| |1|9i2i3i6i4|8|6|7|
13 14
Multiobjective Combinatorial Optimization MOCO problems.. ..
(MOCO) problems
Definition
Decision/Search space Objective space
minimize/maximize fa(x) m=1,2,... M
o(X) = ¢, k=1,2,...,K
xMsx<xV i=1,2, ..,

F(x)

where x = (x4, X, ..., X,,) is discrete solution vector in X, which is a
finite set of feasible solutions.

Objective vector F(x) = (f,(x), f5(x), ..., (X)) maps solution vector 6
(x) in decision space to objective space for m 2 2. X = (Xq,

There is no single solution to the problem instead, we get a set of
solutions known as Pareto-optimal set.
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MOCO problems . ..

Characteristics

= We desire to get a set of solutions known as Pareto-optimal set.

= A aggregation of objectives through weighted sum finds only
the supported optimum solutions and not all the solutions as
MOCO deals with discrete, non-continuous problems.

= Any efficient method to find all the Pareto-optimal solutions
may not be possible as the size of the Pareto-optimal set
usually grow exponentially with the problem size.

= Search space further adds to the complexity as it is only partial
ordered.

= Most MOCO problems are NP-hard problems.

MOCO problems . ..

Solution methodologies

= Exact methods
* May solve only small problems
* Not expendable

= Heuristics
» Usually problem specific
» Finds local optimal set instead of global

= Metaheuristics
* General problem solver
« Explore and exploit the search space in a better way

MOCO problems . ..
Solution methodologies (Metaheuristics)
Non evolutionary Evolutionary

|
l l

Non population based Population based

Population based methods look for global convergence as
* Whole population contributes in the evolutionary process.

» Population and genetic operators combine principles of
cooperation and self adaptation.

» Generation mechanism is parallel along the frontier.

Multiobjective Evolutionary Algorithms

General purpose search and optimization tool that mimics
natural evolution process and aims to search whole solution
space and provide a set of feasible results corresponding to
extreme values of objectives.

Working of MOEA at abstract level

generate a set of feasible solutions (initial population)
while stopping criteria is not satisfied do

select

crossover

mutate

butput a set of optimal results

20

3370



GECCO 2007 Tutorial / Evolutionary Multiobjective Combinatorial Optimization

Additional Issues in Multiobjective Optimization

+ A set of optimal solutions, known as Pareto-
optimal set/ Pareto-front, instead of a single
solution,

» Search space is not often totally ordered but
only partially ordered.

* Achieving and monitoring convergence
towards true Pareto-front,

» Achieving Diversity along Pareto-front, and
» Avoiding local convergence.

21

Pareto-dominance (Definition)

f, dominates f; if and only if
foni < foy for all m and
foni < T for some (at least one) m

£

|
L BN}

Multi - Objective Space . ..

Minimization problem
f, and f,

Actual
Pareto-front

Challenge I : Extent
Challenge II : Diversity

Challenge III : Convergence Obtained
Pareto-front at ‘t’

23

Drawbacks of Classical Methods

» Some techniques are sensitive to the shape of pareto-optimal front.

* Problem specific knowledge may be required which may not be
available.

Convergence to an optimal solution depends upon chosen initial
solution.

* An algorithm efficient in solving one problem may not be efficient in
solving other problem.

* These are not efficient for problems having discrete search space
* Most algorithms tend to get stuck at solution.

» Cannot be used efficiently on parallel machines.

24
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Evolutionary Algorithms

 Suitable for Search, Optimization, and Ml

* Inspired from Biological phenomenon
— Set of Population (rather a single point search),

— Population evolves through (superior) generations,
* Productive Operators for children
— Crossover (inherit from parents)
— Mutation (Own properties)
* Survival of the fittest

— A multipoint search leads to (near-) optimal sol.
« Randomized, Stochastic, Meta-heuristics. . .
» Do not need much problem specific knowledge. . .

They are not Bio-Informatics or Bio-computers.

25

Primary Reasons for their Success
« Broad Applicability

— works with the coding of the decision variables, instead of
variables themselves.

— uses only objective function values, not derivatives or other
auxiliary knowledge.

» Global Prospective

— work on a set of populations and uses synergy between the
solutions.

— uses probabilistic transition rules, not the deterministic rules,
to guide the search.

* It can be conveniently used on parallel
systems.

26

EA : A Brief Detour

Randomized Search Algorithm mimicking evolutionary
process

Works on Iterative Refinement scheme like many other
techniques, e.g., Hill - climbing etc.

Initialize (Population)

While ( ! Termination) {
Produce (New Individuals) // EvoOpr
Insert (Into Population)

27

EA :: Can do?

» Generic problem solving strategy,
* Most problems can be attempted through EAs

+ Excellent at getting some solution w/o much
problem specific knowledge,

» Expect to get near-optimal solution without
any approximation bounds,

» Expect to get superior solution than any other
known techniques, and

» Improve iteratively the solution quality

28
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EA :: Can Not or Difficult to do?

* Do not aim for optimal solutions through EAs,

* Very difficult to find time-bounds and
approximate solution quality bounds,

+ At times, difficult to recast the problem into
genetic/evolutionary domain,

+ At times, difficult to design productive operators

» More efforts to translate quick/early gains into
better solutions.

29

Learning from Experiences (isss)

While working on a partitioning problem taken from a RWA
I thought of entering into the world of fantasy, because

Try Evolutionary Algorithms (EA) when nothing else works,
With a little problem-specific knowledge, one gets good performance

Stage I : Recast the problem into genetic domain.
Stage 1T : Selection & Tuning of a couple of genetic operators.
/I A bit of clever work

Within a few days of work, I was thrilled to realize

that 1t does work.
30

Black Box Optimization

Performance
monitoring

The very next day — it was a catastrophe. . .
Challenge I :

How to know that [ was advancing ?

Challenge 1I :
How to know that [ had achievéd ?

- Did not aim to have EA as a Testing tool.
- Selected EA as the Solution tool ?

What difference does this make ?
31

EA :: A Reality Check . ..

+ Difficult to assess quality of solutions,

Adopt Hybridization with others, e.g., local
search

Incorporate as much problem specific
knowledge as you can into representation
and operators,

Use hybridization to learn and improve each
other, and

32
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3 Classes of problems . . .

U One, mostly Analytical functions : known
- Simple, Multi-modal . . .
U Second, hard-class of known problems
- Solutions are verifiable
- E.g., MST, Knapsack . . .
U Third, hard-class of unknown problems
- solutions are NOT verifiable, directly.
- E.g., TSP, Network, Partitioning & many other problems

33

Hard Problems

Computational problems fall into two categories:

— Decision problem
» Output: Yes/No

— Optimization problem
» Output: Solution with max./min.
Polynomial-time algorithms do not exist:
— If the problem is not hard, someone can find it.
— If the problem is really hard, other smart people cannot
find it either.
It is hard to find a needle in a haystack,

It is harder to say that there is no needle in a
haystack.

34

Biobjective 0-1 Knapsack Problem
Problem Definition

We use a biobjective 0-1 Knapsack problem consisting of a
single knapsack.

For a knapsack of n items with positive
weights w,;, W,, ..., W,
profits of p,, p,, ..., p, and
decision variables x,, X,, ..., X,
where for each 1 =i < n, x; is either 0 or 1

We aim to maximize P = Z"j=1 p; X and minimize W = Z"j=1 w; X
and find full solution front.

It has been shown NP-hard problem for arbitrary value of p; and
x; as Pareto-optimal set grows exponential to n.

35

Biobjective 0-1 Knapsack Problem . ..

Motivation

A good heuristic is available that arranges the items in
descending order of their profit to weight ratio and
generate a subset of n solutions.

Another algorithm of dynamic programming paradigm is
available that generate good solutions in whole range of
solutions.

We aim to solve the problem using MOEA to judge the
efficacy and quality of solutions.

36
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Biobjective 0-1 Knapsack Problem . ..

MOEA Solution

= Pareto-ranking based MOEA

= Complete Elitism 100101101101

. . chromosome
= Parameter less diversity

preservation

= Encoding of chromosome :
bit encoding

= Crossover operator : 2-point
crossover

= Mutation operator : Bit
mutation

37

Biobjective 0-1 Knapsack Problem . ..
Improving MOEA Results

We observed that solution in the Pareto-front are heavily
skewed towards 0Os in left hand side and 1s towards right hand
side.

Further, we observed that MOEA did not generate these skewed
solutions. It was due to the fact the 0s and 1s have been
generated randomly in the chromosome.

The solutions are concentrated in the middle portion only and
not spread in the whole range of solutions.

We inject two special chromosomes one with all 0s and other

with all 1s and other chromosomes have randomly generated
fix number of 1s and 0s.

39

Biobjective 0-1 Knapsack Problem . ..

MOEA Results e ‘ ‘ Knapsack‘ltems 500

25000 -

20000 -

15000 - NSGAl  +
SPEA2 @©
PCGA =

InitPop %

Profit

10000 -

5000

0

0 5000 10000 15000 20000 25000 30000

All the results apvpvaegmrently seems to be very
promising. Initial population is also shown here.

38

Biobjective 0-1 Knapsack Problem . ..
Improving MOEA Results

Knapsack Items: 500
30000

25000 -

20000

Profit

15000

10000

5000 [

0

0 5000 10000 15000 20000 25000 30000

All the results are vewmpromising and comparable
to results of heuristics. Initial population is also
shown here.

40
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Biobjective 0-1 Knapsack Problem . ..
Important findings

= Had it not been known to us about the solution front by other
algorithms we would have taken MOEA results as very
promising.

= With the knowledge of solution front we incorporated the
problem-specific knowledge in the evolution process of MOEA
and got comparable results.

= It is a paradox that we must know the solution set in advance to
effectively solve the problem.

41

TSP

Hamilton circuit : a circle uses every
vertex of the graph exactly once
except for the last vertex, which
duplicates the first vertex. (NP-

complete)

Traveling Salesman problem (TSP):
Input: V={v,, v,, ..., v} be a set of
nodes (cities) in a graph and d(v,,
v)) the distance between v, and v,
find a shortest circuit that visits
each city exactly once. (NP-
complete)

— (Weighted Hamilton circuit)

42

Traveling Salesman Problem

Problem Definition

Make a tour starting from a random city, visit every city exactly
once and return back to starting city such that the distance
traveled is minimum.

(4
D
o (]
® Y -« (01, c2)
[ _J
D
D

It is a NP-hard problem even for single objective optimization.

We intend to find a tour that minimize two costs defined
between each pair of cities.

43

Traveling Salesman Problem . ..

Previous work in single objective TSP

Heuristics

= Tour construction heuristics: Builds a tour afresh from
scratch and terminates when a feasible tour is constructed,
e.g., nearest neighbor, greedy.

= Tour improvement heuristics: Improve upon a feasible tour,
e.g., 2-opt, 3-opt, lk.

Few polynomial time approximation algorithms (PTAS) are also
available

Evolutionary methods

Various solutions by genetic algorithm, ant colony
optimization, particle swarm optimization, simulated annealing,
tabu search have been proposed.

Since the problem is hard, most researchers have hybridized
the evolutionary methods with local search heuristics to obtain
good results.

44
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Traveling Salesman Problem . ..

Previous work in biobjective TSP

= Jaszkiewicz has presented a hybrid genetic algorithm known as
MOGLS.

= Paquete and others have presented a two phase (non
evolutionary) method hybridized with local search.

= Zhenyu and others have presented a genetic algorithm without
any local search and emphasize o effective genetic operators.

= Li have presented a non evolutionary solution attractor method
without any local search.

= Some other studies using branch-and-bound, e-constrained
method, aggregation of two objectives are also available in
literature.

45

Traveling Salesman Problem . ..

Motivation

= Single objective TSPs with moderate number of cities have
been solved to optimality, so, the results can be verified but it
is no validated results are available for biobjective TSP.

= Jaszkiewicz argued that Pareto-ranking based MOEAs are
neither well suited for MOCO problems nor suited to local
search.

= In the literature, we did not come across any solution of
biobjective TSP using Pareto-ranking based Multi-Objective
Evolutionary Algorithm (MOEA) hybridized with local search.

46

Traveling Salesman Problem.. ..

MOEA Solution

)
= Pareto-ranking based MOEA
= Complete Elitism ® @ ®
= Parameter less diversity P
preservation ® @
= Encoding of chromosome: Chromosome:

path representation
{1,3,4,6,7,5,2}

= Crossover operator:
distance preserving

Path tati
crossover (DPX) ath representation

= Mutation operator: double-
bridge
47

Exchange Operators

d d c d

48
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Traveling Salesman Problem . ..

Results Bi-objective kroAB100
200000 T T T T T T T
"
180000 |- 5 * R
prreras
PsEy T
160000 |- R R
N
s
140000 -* 4
a
S 120000 | & Init Pop  + 4
& 2
g MOEA 4
& 100000 % 4
80000 |- \R g
60000 |- N R
S,
B,
40000 |- Sy i
M‘AA 4 a
A pomssan  samsans
20000 - . .

. . .
20000 40000 60000 80000 100000 120000 140000 160000 180000 200000
Obijective 1

Pure MOEA result for 100 cities biobjective TSP. Initial population is
also shown in figure.

Traveling Salesman Problem . ..

Hybridization of Pareto-ranked based MOEA

We did 3-opt steepest local
search with single objective
while generating initial
population. It gave us very
good solutions distributed at
both ends.

The local search applied
after recombination was
different in a way that it
considered both the
objectives  simultaneously
using Pareto-ranking.

Bi-Objective Instance kioAB100

IntPop  ®

Initial population it has clustered
to extremes after local search.

49
Traveling Salesman Problem.. ..
Hybridization of Pareto-ranked based MOEA
oo o0
oo woom
oo jro
oo oo
oo wwon
o000 Pareto-GLS~  + 0000 moeLs  +
e T L I T R i T N
e
- All the results are
i comparable after application
4 of local search
(hybridization) in MOEA.
on o 51

000 4000 G000 B0 100D 120000 140000 160000 180000
Obiectve 1

50
Traveling Salesman Problem . ..
KroAB100 KroAC100 KroBD100 KroBE100
R Measure
Pareto-GLS Avg. 0.9350 0.9323 0.9345 0.9334
Std. 0.0000 0.0000 0.0001 0.0001
MOGLS 0.9344 0.9314 0.9338 0.9327
PDTPLS 0.9344 0.9316 0.9340 0.9329
C Measure
MOGLS covers 36% 25% 32% 32%
covered by 4% 55% 37% 34%
PDTPLS covers 40% 38% 45% 48%
covered by 35% 40% 30% 24%
Spread
Pareto-GLS 0.6030 0.5229 0.5374 05122
MOGLS 0.7587 0.7125 0.7080 0.7124
PDTPLS 0.7750 0.7731 0.6918 0.7224
Convergence
Pareto-GLS 0.0004 0.0004 0.0007 0.0006
MOGLS 0.0005 0.0008 0.0007 0.0006
PDTPLS 0.0003 0.0003 0.0003 0.0003
52
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Traveling Salesman Problem . ..

Important findings

= We effectively hybridized Pareto-ranking based MOEA with local
search and solved a MOCO problem.

= Our results are comparable to the best results available in
literature (to the best of our knowledge).

53

Network Design

Minimize {Cost, Diameter, Degree, Intersection Points}
Yields a Spanning/Steiner Tree

— Minimize multiple costs with different cost
measures
— Example: Multicast Routing — 2 Cost functions

— Tree construction cost : Channel bw, buffer space and
others

— Delay cost : txn. and queue delays

Subject to a set of constraints

And many other applications :: In almost every sphere of life

54

Spanning Tree

A spanning treeof a graph G is a
subgraph of G that is a tree
containing all the vertices of G.

In a weighted graph, a minimum
spanning treeis a spanning tree
whose sum of edge weights is as
small as possible. It is the most
economical tree of a graph with
weighted edges.

Biobjective MST Problems

Diameter-Cost Minimum Spanning Tree Problem

Problem Definition

Construct a minimum spanning tree (MST) for a given complete
graph minimizing simultaneously edge cost and diameter of the
tree.

Cost: C’
Diameter : 3

It is a NP-hard problem for 4 < D < (n-1) where D is diameter of the
tree and n is the number of nodes.

We intend to find the solutions in full front ranging from 2 to (n-1).

56
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Biobjective MST Problems . . .
Diameter-Cost Minimum Spanning Tree Problem

Motivation

= It is essentially a multiobjective problem as it is better to provide all
the solutions to the decision maker (DM) to enable him to opt for best
alternate solution.

= No such study is available in the literature. Earlier studies treated
diameter as a constraint and solved MST to provide single solution for
a particular value of diameter.

= Researchers could not assess the performance of their algorithms
over the entire range of solutions. Their claims were localized and
cannot be generalized for complete solution front.

= They could not assess the quality of solutions in absence of any
reference.

57

Biobjective MST Problems . ..
Diameter-Cost Minimum Spanning Tree Problem

Motivation
The problem has following characteristics:

= No a priori knowledge of the solution space is available.
= There does not exist any information regarding a reference set.

* No experimental results for polynomial time good
approximation algorithm is available.

58

Biobjective MST Problems . . .
Diameter-Cost Minimum Spanning Tree Problem

Previous work

Exact methods
* Achuthan & others have presented an exact solution for the
diameter constrained MST (DCMST) problem.
» Kortsarz & others have presented an algorithm for DCMST that
combines greedy heuristic and exhaustive search.

They are restricted to small problems only because of complexity
of the problem.

Heuristics

« Deo & others, Ravi & others, and Raidl & others have
presented several approximation algorithms for diameter
constraint MST problem.

Example: OTTC, RGH, and RGH

= Metaheuristics

» Solutions with Genetic algorithms, variable neighborhood
s%artgn, ant colony optimization are available in literature for
DCMST.

59

Biobjective MST Problems . . .
Diameter-Cost Minimum Spanning Tree Problem

Analysis of search space

Let the cost of unconstrained MST is "C’ and diameter is 'D’.
So, the solution tuple is (C,D)

Now, let us consider a spanning tree with diameter "D+1°.
Its cost will be either (i) C - or (ii) C + ¢

Case (i):
= ltis not possible. Otherwise MST algorithms are wrong.

Case (ii):
= ltis a possibility.
* For trees having diameter ‘D+x’, we will get cost C + € where 1 <
x < (n-1)-D. Hence, the solution tuple is (C + €, D+x).
= All such solutions are dominated by MST.
Unconstrained MST is a one extreme solution to the problem.

Best tree with diameter 2 is another extreme solution.
60
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Biobjective MST Problems . ..
Diameter-Cost Minimum Spanning Tree Problem

One Time Tree Construction (OTTC)

» |t is a modification of prim’s algorithms. It builds a tree as prim
keeping in view that any time diameter constraint is not violated.

Iterative Refinement (IR)

= |nitially, it generates a MST and then reduce the diameter
iteratively to achieve the target diameter or it fails to produce
result.

Random Greedy Heuristic (RGH)

= It is a center based algorithm. Initially it fix a center and then
iteratively and randomly adds edges to complete the tree.

Pareto versions of the algorithms

= We run these algorithm for each diameter and initial node to
generate a solution front. Since, RGH is a stochastic algorithm we
run it multiple time to get best results.

61

Biobjective MST Problems . ..
Diameter-Cost Minimum Spanning Tree Problem

MOEA Solution

= Pareto-ranking based MOEA

= Complete Elitism Chromosome:{(5,7),(7,4),(7,
9),(4,6),(9,3),(3,2),(3,10),(2,1)

= Parameter less diversity preservation
= Encoding of chromosome: edge-set

= Crossover operator: selects common parental edges before
selecting any non-common edge to make an offspring to
preserve locality and heritability from parents

= Mutation operator:
= Edge delete mutation: deletes an edge randomly and join
the two subtrees with another random edge
= Greedy edge replace mutation: deletes a random edge
and then join the two subtrees with lowest cost edge.
62

Biobjective MST Problems . . .
Diameter-Cost Minimum Spanning Tree Problem
4

MOEA Solution ll\lgdes I(;evel
3456810 1
79 2

= Pareto-ranking based MOEA Chromosome: 0011112121--21125252
Levels Predecessors

= Complete Elitism

= Parameter less diversity preservation 0 9

/>
= Encoding of chromosome: level

encoding 9 9 6 6 9
= Crossover operator: uniform e é

= Mutation operator: Bit mutation

63

EA :: Crossover lllustrated
@

Parent 1

Common edges in
both parents

Uncommon
edges of parent 1

Uncommon
edges of parent 2

©—©@

Common edges

Edges from
parent 1

— Edges from
parent 2

— New edges
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EA :: Mutation lllustrated

0 9 G 9 Tree edges
\
\\ Randomly
e e 6 e e 6 ----- deleted edge
New edges
O—@ ® @
@ e a 9 Subtree edges
@ o 9 o 6 —@ Subtree root
Subtree new
@ @ e e edges
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Biobjective MST Problems . ..
Diameter-Cost Minimum Spanning Tree Problem

100 nodes, Instance 1 (Euclidean Steiner Problem from Beasley OR-Library)
Results 50 .

j j j TotTC
IR

RGH
MOEA (Edge-Set)
MOEA (Level)

Init Pop (Edge-Set)

Diameter
»
®
T
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RGH & MOEA (level) generated solutions only in lower diameter range only
whereas OTTC, IR & MOEA (edge-set) generated solutions in whole range.
Comparatively MOEA (edge-set) is better in whole range.
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Biobjective MST Problems . . .
Diameter-Cost Minimum Spanning Tree Problem

Improvements in MOEA results

100 nodes, Instance 1 (Euclidean Steiner Problem from Beasley OR-Lbrary)
50

"RGH
MOEA (Edge-Set+Local Search)
a5 MOEA (Level + Local Search)

xtreme Solutions

mqom

Local
search

a0 -
35 -

30 -
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Though MOEA (edge-set) has generated better than heuristics but MOEA
(level) generated the best results after incorporation of problem specific
knowledge in the evolution process of MOEA.
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Biobjective MST Problems . ..
Diameter-Cost Minimum Spanning Tree Problem
Important findings

We analyzed the search space and were able to access the
solution front.

We got problem specific knowledge in terms of extreme solutions
of the solution front.

We found that heuristics were not able to generate good results
over the entire range of solution front.

We got comparatively good solutions in whole range of solution
front using MOEA.

= We further improved the MOEA results with problem specific
knowledge.

We generated, validated and further improved the results in whole
range using MOEA and problem-specific knowledge.
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Biobjective MST Problems . ..
Multiple Edge Cost Minimum Spanning Tree Problem

Problem Definition

Construct a minimum spanning tree (MST) for a given complete
graph when a vector of costs is associated with each edge.

(¢4, C,)

It is a NP-hard problem.

We intend to find a set of solutions in full front.
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Biobjective MST Problems . . .
Multiple Edge Cost Minimum Spanning Tree Problem

Previous work

Exact and approximation algorithms
= Zhou & others have presented an enumeration algorithm.

= Ramos and Steiner & others have presented two-phase exact
algorithm.

= Erghott & others and Hamacher & others have presented
approximation algorithms.

Evolutionary Algorithms

= Zhou & others and Knowles & others have solved the problem
using MOEA.

= Rocha & others have solved the problem using MOEA
hybridized with tabu search.

= Lin & others presented solutions in order to solve
communication network problems.
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Biobjective MST Problems . ..
Multiple Edge Cost Minimum Spanning Tree Problem

Motivation

= Most of the researchers have done their experiments on small
problems.

= Researchers have compared their results with some earlier published
results to show efficacy of their algorithms and superiority of their
results.

= Though Rocha and others have considered large problem but they
present their findings in such a way that it fails to assess the quality of
obtained results.

= It is simple to get a reference set for this problem using aggregated
sum method. It is preferred to compare the solutions using a true
reference set and judge the quality of solutions.

= Moreover, the claims regarding superiority must be made only after
experiments with varying complexity and fairly large problems.

71

Biobjective MST Problems . ..
Multiple Edge Cost Minimum Spanning Tree Problem

Heuristic to generate supported as well as unsupported solutions

Input : G = Graph 1 and # iterations
Output : PF = A set of MSTs over G
Algorithm :
PF«— @
For #iterations do
I Generate scalarizing vector A
I** Generate supported Pareto-optimal solutions **/

Use A on edge costs to aggregate and generate tree using
standard Prim algorithm

Update PF
I** Generate unsupported Pareto-optimal solutions **/

Use A on edge costs to aggregate and generate tree using
standard Kruskal algorithm

! Update PF
Output PF 72
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Biobjective MST Problems . ..
Multiple Edge Cost Minimum Spanning Tree Problem

MOEA Solution

= Pareto-ranking based MOEA

= Complete Elitism

Chromosome:{(5,7),(7,4),(7,

= Parameter less diversity preservation 9),(4,6),(9,3),(3,2),(3,10),(2,1)

= Encoding of chromosome: edge-set

= Crossover operator: selects common parental edges before
selecting any non-common edge to make an offspring to
preserve locality and heritability from parents

= Mutation operator:

= Edge delete mutation: deletes an edge randomly and join
the two subtrees with another random edge

= Greedy edge replace mutation: deletes a random edge
and then join the two subtrees with lowest cost edge.
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Objeciive 2

Objective 2

Biobjective MST Problems . ..
Multiple Edge Cost Minimum Spanning Tree Problem

Improving the MOEA results

‘Graph type: Random, Vertices: 200

‘Graph type: Concave, Vertices: 200

Heurstic
MOEAY  x

—————

Objective 2

st

e ve—

Houiste  +
MOEA*  x

x
X300 X o00mx000g

__

20 40 60 80 100
Objeciive 1

Heuristics and MOEA both results
are comparable.

3 35 45 5 55

MOEA generated comparable
solutions in whole range whereas
heuristic is limited to concave
region only.
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Biobjective MST Problems . ..
Multiple Edge Cost Minimum Spanning Tree Problem

Results

Graph type: Random, Vertices: 200

Heurtsic |+
MOEA  x

e,

o 20 w0 ) &0 100
Obiective 1

Heuristics has generated
solutions in whole range whereas
MOEA solutions are concentrated
to a part region only (they are
visually comparable) for random
graph.

Objecve 2.

Graph type: Concave, Vertices: 200

Obiective 1

Neither heuristic nor MOEA
generated solutions in concave
region. Again, MOEA solutions are
concentrated to a part region only
(they are visually comparable) for
concave graph. 74

Biobjective MST Problems . ..

MOEA Solution

= Pareto-ranking based distributed
MOEA where one population
optimize one objective and other
population optimize other
objective. They exchange few
good chromosomes after every
iteration.

= Complete Elitism

= Parameter less diversity
preservation

* Encoding of chromosome: level
encoding

= Crossover operator: uniform
= Mutation operator: Bit mutation

Multiple Edge Cost Minimum Spanning Tree Problem

Nodes Level
12 0
3456810 1
79 2

Chromosome:0011112121--21125252
Levels Predecessors

®—2

/>

®WE®® W

> ®
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Biobjective MST Problems . ..

Multiple Edge Cost Minimum Spanning Tree Problem

Results Improving the MOEA results

Graph type: Random, Vertices 200 ‘Graph type: Random, Vertices:200

Objecive 2

- x

euristic | + Heuristic | +
MOEA x MOEA+

MOEA generated results only MOEA still generated results only
towards both ends without towards both ends including
extremes. Few very poor results extremes. There are no solutions
are scattered in other part region. in other part region.
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Biobjective MST Problems . ..
Multiple Edge Cost Minimum Spanning Tree Problem

Improvement in MOEA (edge-set) results

Random graph Concave graph

C Measure
MOEA covers H-MOEA 14.33% 02.45%
MOEA covered by H- 75.87% 94.64%
MOEA
Spread

MOEA 0.60 0.59

H-MOEA 0.54 0.52
Convergence

MOEA 0.006 0.002

H-MOEA 0.004 0.001
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Biobjective MST Problems . . .
Multiple Edge Cost Minimum Spanning Tree Problem

Important findings

We generated very good results using little problem-specific
knowledge, for varying complexities of the problem, in whole
range whereas heuristics could not generate solutions in whole
range for all the problems.

Though hybridization of MOEA with a local search heuristic has
been proved very effective to generate good solutions for hard
problems but in few cases it is possible to generate good
solutions with little problem-specific knowledge only.

It is preferable to devise good representation (encoding of
chromosome) and genetic operator to solve the problem
effectively.
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Intersecting Spanning Trees from Multiple Geometric Graphs

Problem Definition

Given two geometric graphs (corresponds to two net
lists), find Minimum Spanning Tree (MST) with two
objectives

U Minimize total edge cost

O Minimize number of intersections among the tree
edges

Characteristic of the problem

«»Multiobjective combinatorial optimization
«NP-hard

80
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Intersecting Spanning Trees from Multiple Geometric Graphs

Contd ... Problem Definition

-
L g - =
- - -
- - - - -
- et -«
- ey
- -
Graph 1 Graph 2
) % %
Cost = C’ Intersections =5 Cost=C” Intersections =6
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Intersecting Spanning Trees from Multiple Geometric Graphs

Motivation: CAD for VLSI
Specification

Architecture Design

l Partitioning
Logic Design Placement

| | Global Routing
Circuit Design Routing l

l l Detailed Routing
Physical Desig Compaction
Fabrication Extraction & Verification

l

Testing / Debugging o

Physical Design Flow

‘ Circuit Partitioning ‘

g

‘ Floor-planning & Placement ‘
g

:
T e
Hq. pr:ﬂ:;:l

. 3 Lo g o i
‘ Layout Compaction ‘ S =" L
oL o |
KR il
] At

R R . W Phiyvaicsl i & i 2.ap
‘ Extraction and Verification ‘ deg:rl::;\uc:-?s'gn b b b

* The descriplion is used to manufacture a chip

B Inyout
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Steiner Tree

Let G be shown in Figure a. R={a,b,c}. The Steiner
minimum tree T={(a,d),(b,d),(c,d)} which is shown

in Figure b.
b
1
1 1
2@ , 0 c
Figure a Figure b

Minimum Steiner tree problem is NP-complete.
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Rectilinear Steiner Tree

» '
s #— Steiner Points
e —
. ) TN
» » L S _
Py (Graph Peicts
o

{2) Mimirmem Spapming Tree (1) Racitlimaar Stemer Tree
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Intersecting Spanning Trees from Multiple Geometric Graphs

Contd ...Motivation: CAD for VLSI

D “Metal layer 1
ia

+Metal layer 2

Metal layer 3

Implications of Vias

Two geometrically crossing
edges belonging to two distinct .
nets can not be routed on a
single metal layer preserving
their embeddings. Hence, we
require a multilayer design. To
make use of another routing
layer, each crossing among the
tree edges requires vias so that + Route not only with the minimum

the wires can change layers. wire-length but also minimum
intersections.

Increase in number of vias
decrease the yield as they involve
processing of multiple layers.

* They introduce parasitic
capacitance which in turn may
affect the speed of chip.

Desirable
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Intersecting Spanning Trees from Multiple Geometric Graphs

Previous Work

* Tokunaga & others derived theoretical results on the problem
of finding geometric spanning trees such that they intersect in
as few points as possible on two simple geometric graphs
consisting of bi-colored point sets.

+ Kano & others too theoretically attempted a problem similar to
Tokunaga with multiple geometric graphs instead of only two
and suggested an upper bound on the number of intersections
of tree edges.

* Majumder & others studied similar problem and suggested a
heuristic to construct a Rectilinear Steiner Tree (RST) of bi-
colored point sets on two geometric graphs. The heuristic first
generates a geometric MST and then convert it to rectilinear
and provide a single solution.
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Intersecting Spanning Trees from Multiple Geometric Graphs
Heuristics for extreme solutions

Search over Minimum Spanning Trees

Input: G, =Graph 1 and G, = Graph 2
Output : PF = A set of tuples (T, T,) where T,, T, are MSTs over G,
and G, respectively

Algorithm :

PF «— @

For all nodes u, of G, do
Make T, considering u, as start node of the tree
For all nodes u, of G,do
Make T, considering u, as start node of the tree
Compute objective vector of tuple (T,, T,)
Update PF
Output PF
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Intersecting Spanning Trees from Multiple Geometric Graphs

Heuristics for extreme solutions
Heuristic for Fewer Intersection Points

Input : G, =Graph 1 and G, = Graph 2
Output: PF = A set of tuples (T,, T,) where T,, T, are STs over G, and
G, respectively
Algorithm:
* PF— @
* u, u, *— random initial node from Graphs G, and G,
respectively to make T,and T,

= T,andT, grows iteratively considering smallest cost edge that
gives minimum number of intersections among the edges of
trees

= Qutput PF
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Intersecting Spanning Trees from Multiple Geometric Graphs

MOEA Solution

= Pareto-ranking based MOEA

= Complete Elitism Chromosome:{(5,7),(7,4),(7,
= Parameter less diversity preservation 3)5(;‘;;5),(9,3),(3,2),(3,10),(2,1)

= Encoding of chromosome: edge-set

= Crossover operator: selects common parental edges before
selecting any non-common edge to make an offspring to
preserve locality and heritability from parents
= Mutation operator:
= Edge delete mutation: deletes an edge randomly and join
the two subtrees with another random edge

= Greedy edge replace mutation: deletes a random edge
and then join the two subtrees with lowest cost edge.
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Intersecting Spanning Trees from Multiple Geometric Graphs

= For many combinatorial optimization problems good solutions usually lie in
neighborhood.

= Neighborhood can be searched in finite steps.

= (T,,T,)+«— MSTs of G, and G, is one extreme optimal solution for this
problem and hence a good start point.

= It usually produces good local optimal solutions.
ES+«— @
(T,,T,)— MSTs of G, and G,
(T, ,T,)«— unvisited
ES+—(T,.T)
While there are unvisited solution Sin ES do

Sort intersecting edges in descending order of #
intersections

For each edge (u, v) do

E S*«— neighborhood solutions \ (u, v)

. Mark S* as unvisited

i Update ES with S*

Mark solution S visited 91
Output ES

Intersecting Spanning Trees from Multiple Geometric Graphs

o
134 136 138 14 142 144 145 148 15 152 154 156
c

Extreme and MOEA solutions

Graph 1: 100 nodes, Graph 2 100 nodes Graph 1: 100 nodes, Graph 2: 100 nodes

so00
0000000

Intersections

0
134 136 138 14 142 144 146 148 15 152 154 156
[

Solutions generated by heuristics Solutions generated by MOEA
designed to generate extremes. along with extreme solutions.
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Informed MOEA and local search heuristic solutions

Graph 1: 100 nodes, Graph 2: 100 nodes Graph: 100 nodes, Graph 2: 100 nodes
35 T T T T T

Intersecting Spanning Trees from Multiple Geometric Graphs

T T T 35
Extreme Soltions' =
[

Local Search Heuristic @
OEA & MOEA

opparnEoTEE

e
>
Intersections

134 136 138 14 142 144 146 148 15

135 12 145
cost Cost

Extreme solutions generated by
extreme heuristics were injected
in initial population in MOEA.
Now, MOEA finds full Pareto-
front

Solutions generated by local
search heuristics are better than
even informed MOEA solutions.
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Tntersectons.

Intersecting Spanning Trees from Multiple Geometric Graphs

Local search and MOEA+local search solutions

(Graph 1: 100 vertices, Graph 2: 100 vertices Nodes: 50, Graphs: 1-4
35

Local Search Heuristic | @
M

Local Search Heurisic X
IOEA + Local Search & o

MOEA + Local Search 4

134 135 138 14 142 144 146 148 15

L L P L L L L L L
152 154 156 1956 198 20 202 204 208 208 21 21
Cost

In case of multigraphs, solutions
of MOEA injected with extreme
solutions generated by local
search heuristic are better than
the solutions generated by local
search heuristics itself.

cost

Extreme solutions generated by
local search heuristics were
injected in initial population in
MOEA. Now, MOEA results
almost matches local search
heuristic results. 04

Intersecting Spanning Trees from Multiple Geometric Graphs

Important Findings

The designed local search heuristic is
» Simple neighborhood search
+ Scaleable to any number of nodes
+ Expendable to any number of graphs
» Efficient compared to stochastic evolutionary algorithm.

MOEA solution is effective and generates good solutions. The more

problem-specific knowledge is introduced to evolution process, the
better are the generated solutions.

Solution space was effectively explored by incrementally designing and
sandwiching strategies for evolutionary and heuristic search to serve
each other, turn by turn, a reference set per se. In this scenario:

+ Can we effectively solve unknown problems using black-box
optimization techniques?

* How can one trust the solutions obtained for Real-World

Applications by such black-box optimization specially on
multiobjective optimization?

* how can we effectively approximate the quality of solutions in
real-world problems?
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Thanks

Questions !!!

rkumar @ cse.iitkgp.ernet.in
www.facweb.iitkgp.ernet.in/~rkumar
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