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Overview

�Motivation

�Search space characterisation

�How many programs?

�Limiting fitness distributions

�Halting probability

�GP search characterisation

�Schema theory and search bias

�Lessons and implications

�Conclusions

Motivation
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Understanding GP Search Behaviour 

with Empirical Studies

�We can perform many GP runs with a small

set of problems and a small set of parameters

�We record the variations of certain numerical 

descriptors.

�Then, we suggest explanations about the 

behaviour of the system that are compatible 

with (and could explain) the empirical 

observations. 
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�GP is a complex adaptive system with zillions 
of degrees of freedom. 

�So, any small number of descriptors can 
capture only a fraction of the complexities of 
such a system.

�Choosing which problems, parameter settings 
and descriptors to use is an art form. 

�Plotting the wrong data increases the confusion
about GP’s behaviour, rather than clarify it.

Problem with Empirical Studies
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Example: Bloat

� Bloat = growth without (significant) return in 
terms of fitness. E.g.

� Bloat exists and continues forever, right?

sizefitness
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Why do we need mathematical theory?

� Empirical studies are rarely conclusive

� Qualitative theories can be incomplete

Search Space 

Characterisation
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How many programs in the search 

space?

= Number of trees of depth at 
most d
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Example
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Logarithmic scale Superexponential

July 2007 R. Poli and W. B. Langdon - University of Essex 12

Doubly logarithmic scale

Exponentials
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GP cannot possibly work!

� The GP search space is immense, and so any 

search algorithm can only explore a tiny 

fraction of it (e.g. 10-1000 %).

� Does this mean GP cannot possibly work?

Not necessarily.

� We need to know the ratio between the size 

of solution space and the size of search space
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{d0,d1,NAND} search space

Proportion of 2-input logic functions 
implemented using NAND primitives
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Limiting distribution

� Empirically is has been shown that as program 
length grows the distribution of functionality 
reaches a limit

� So, beyond a certain length, the proportion of 
programs which solve a problem is constant

� Since there are exponentially many more long 
programs than short ones, in GP 

size of the solution space

= constant

size of the search space

� Proofs?
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Linear model of computer
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States, inputs and outputs

� Assume n bits of memory

� There are 2n states. 

� At each time step the machine is in a state, s
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Instructions

� Each instruction changes the state of the machine 

from a state s to a new s′, so instructions are maps 

from binary strings to binary strings of length n

E.g. if n = 2, AND m0 m1 � m0 is represented as

1111

0001

1010

0000

m′1m′0m1m0

11001000=
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Behaviour of programs

� A program is a sequence of instructions

� So also the behaviour of a program can be 

described as a mapping from initial states s to 

corresponding final states s′
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� For example, 

AND m0 m1 � m0

NOP

OR    m0 m1 � m0

AND m0 m1 � m0 1111

0001

1110

0000

m′1m′0m1m0

11001100
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Does the behaviour tend to a limiting 

distribution?

11011000
Identity function
(no instruction 
executed yet)

AND m0 m1 � m0 OR m0 m1 � m0

11001000 11011100

1/2 1/2

A B

� Two primitives: AND m0 m1 � m0      OR m0 m1 � m0
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11001000

AND m0 m1 � m0 OR m0 m1 � m0

11001000 11001100

1/2 1/2

A

A C
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11011100

AND m0 m1 � m0 OR m0 m1 � m0

11001100 11011100

1/2 1/2

B

C B
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11001100

AND m0 m1 � m0 OR m0 m1 � m0

11001100 11001100

1/2 1/2

C

C C
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Probability tree

AND OR

Identity

A B

AND OR

C B

AND OR

C C

AND OR

C B

AND OR

A C

AND OR

A C

AND OR

C C
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Distribution of behaviours

07/81/161/164

0100∞

0¾1/81/83

0½¼¼2

00½½1

10000

IdentityBehaviour 

C

Behaviour 

B

Behaviour 

A

Program 

length

July 2007 R. Poli and W. B. Langdon - University of Essex 27

Yes….

� …for this primitive set the distribution tends 

to a limit where only behaviour C has non-

zero probability.

� Programs in this search space tend to copy 

the initial value of m1 into m0.
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Markov chain proofs of limiting distribution

� Using Markov chain theory we have proved 

that a limiting distributions of functionality 

exists for a large variety of CPUs

� There are extensions of the proofs from linear 

to tree-based GP.

� See Foundations of Genetic Programming

book for an introduction to the proof 

techniques.

GECCO 2007 Tutorial / Genetic Programming Theory

3569



8

July 2007 R. Poli and W. B. Langdon - University of Essex 29

So what?

� Generally instructions lose information. 

Unless inputs are protected, almost all long 

programs are constants. 

� Write protecting inputs makes linear GP 

more like tree GP.

� No point searching above threshold?

� Predict where threshold is? Ad-hoc or 

theoretical.
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Implication of                                  

|solution space|/|search space|=constant

� GP can succeed if

� the constant is not too small or

� there is structure in the search space to 

guide the search or 

� the search operators are biased towards 

searching solution-rich areas of the search 

space

or any combination of the above.
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What about Turing complete GP?

�Memory and loops make linear GP Turing 

complete, but what is the effect search space 

and fitness? 

�Does the distribution of functionality of 

Turing complete programs tend to a limit as 

programs get bigger?

July 2007 R. Poli and W. B. Langdon - University of Essex 32

T7 Architecture
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Experiments

� There are too many programs to test them all. 

Instead we gather statistics on random samples.

� Chose set of program lengths 30 to 16777215

� Generate 1000 programs of each length

� Run them from random start point with random 

input

� Program terminates if it obeys the last instruction 

and this is not a jump

� How many stop?
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Almost all T7 Programs Loop
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Markov model: States

� State 0 = no instructions executed, yet

� State i = i instructions but no loops have been 

executed

� Sink state = at least one loop was executed

� Halt state = the last instruction has been 

successfully executed and PC has gone 

beyond it.
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Event diagram for program execution 1/2
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Markov Model: state transition probabilities

� These are obtained by adding up “paths” in 

the program execution event diagram

E.g. looping probability
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Transition matrix

� For example, for T7 and L = 7 we obtain

0 instructions
1 instructions
2 instructions
3 instructions
4 instructions
5 instructions
6 instructions
loop
halt
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Computing future state probabilities

� The distribution of future states can be 

computed by taking appropriate powers of 

the Markov matrix M
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Examples

For T7, L=7 and i=3

For T7, L=7 and i=L

prob. halting in 
3 instructions

prob. looping in 
3 instructions

total halting 
probability
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A good model?

Halting probability

Program Length
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Instructions executed by halting programs

Program Length
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Number of halting programs

rises exponentially with length

10100 000 000

Doubly logarithmic scale

T7 CPU
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Turing complete GP cannot possibly work?

� If only halting programs can be solutions to 

problems, so 

|solution space|/|search space| < p(halt)

� In T7, p(halt) � 0, so, 

|solution space|/|search space| � 0

� Since the search space is immense, GP with 

T7 seems to have no hope of finding 

solutions.
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What can we do?

� Control p(halt)

� Size population appropriately

� Design fitness functions which promote 

termination

� Repair

� Use result of program even if it is still running

� ....

� Any mix of the above
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Controlling p(halt)

� Modify the probability of using jumps

T7 CPU

Markov chain predictions
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Limiting distribution of functionality 

for halting programs?

� Non-looping programs halt

� The distribution of instructions in non-

looping programs is the same as with a 

primitive set without jumps
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Limiting distribution of functionality 

for halting programs?

� So, as the number of instructions executed 

grows, the distribution of functionality of 

non-looping programs approaches a limit. 

� Number of instructions executed, not 

program length, tells us how close the 

distribution is to the limit

� E.g. for T7, very long programs have a tiny 

subset of their instructions executed (e.g., 

1,000 instructions in programs of L = 106).
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GP Search 

Characterisation
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GA and GP search

� GAs and GP search like this:

� How can we understand (characterise, study

and predict) this search? 
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Schema Theories

� Divide the search space into subspaces

(schemata)

� Characterise the schemata using macroscopic

quantities

� Model how and why the individuals in the 

population move from one subspace to 

another (schema theorems).
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Example 

� The number of individuals in a given schema H
at generation t, m(H,t), is a good descriptor

� A schema theorem models mathematically how 
and why m(H,t) varies from one generation to 
the next.
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Exact Schema Theorems

� The selection/crossover/mutation process is a 

random coin flip (Bernoulli trial). New 

individuals are either in schema H or not.

� So, m(H,t+1) is a binomial stochastic variable. 

� Given the success probability of each trial 

α(H,t), an exact schema theorem is

E[m(H,t+1)] = M α(H,t) 
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Exact Schema Theory 

for GP with 

Subtree Crossover
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GP Schemata

� Syntactically, a GP schema is a tree with some 
“don’t care” nodes (“=”) that represent exactly 
one primitive.

� Semantically, a schema is the set of all programs 
that match size, shape and defining nodes of such 
a tree. 

� For example, (= x  (+  y  =)) represents the set 
of programs 

{(+ x (+ y x)), (+ x (+ y y)), (* x (+ y x)), ...}
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�Let us assume that only reproduction and 

(one-offspring) crossover are performed.

�Creation probability tree for a schema H:

How can we get an exact schema theorem?

reproduction crossover

offspring in H offspring not in H offspring in H offspring not in H

pr pc=1-pr

selection picks an 
individual in H

parent selection and XO 
point choice produce 

an individual in H
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[ ] ),(cloningforinindividualanSelectingPr tHpH =

�Adding “paths” to success produces

where 
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� The process of crossover point selection is 
independent from the actual primitives in the parent 
tree. 

� The probability of choosing a particular crossover 
point depends only on the actual size and shape of  
the parent.

� For example, the probability of choosing any 
crossover point in the program 

(+ x (+ y x))

is identical to the probability of choosing any 
crossover point in 

(AND D1 (OR D1 D2))
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reproduction crossover

offspring in H offspring not in H

pr pc=1-pr

1st parent has 
shape 1 ….

selection picks an 
individual in H

offspring in H offspring not in H

chosen XO point 
1 in 1st parent

1st parent has 
shape S

2nd parent has 
shape 1

….
2nd parent has 

shape S
2nd parent has 

shape 1 ….
2nd parent has 

shape S

…. ….
….

chosen XO point 
N in 1st parent

chosen XO point 
1 in 2nd parent ….

chosen XO point 
N in 2nd parent

offspring in H offspring not in H

…. ….
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�Let us assume that crossover points are 

selected with uniform probability:

lklkji shapeinNodes

1

shapeinNodes

1

andshapesinand

pointscrossover  Choosing
Pr ×=
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�The offspring has the right shape and 

primitives to match the schema of interest 

if and only if

after the removal of the chosen subtree, the 

first parent has shape and primitives 

compatible with the schema

and

the subtree to be inserted has shape and 

primitives compatible with the schema. 
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�Computing these two probabilities requires the 
introduction of a new concept: the variable arity
hyperschema
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Variable Arity Hyperschemata

� A GP variable arity hyperschema is a tree with 

internal nodes from F ∪ {=, # } and leaves 

from  T ∪ { =, # }.

= is a “don't care” symbols which stands for exactly 

one node

# is a more general “don’t care” that represents either a 

valid subtree or a tree fragment depending on its 

arity
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� For example, (# x (+ = #))
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Upper and lower building blocks

Variable arity hyperschemata express which parents 

produce instances of a schema

Crossing over at points i and j any individual in L(H,i,j)

with any individual in U(H,i) � offspring in H
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Exact GP Schema Theorem for Subtree 

Crossover (2001)

� Schema theorem for standard GP crossover
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So what?

� A model is as good as the predictions and the 

understanding it can produce

� So, what can we learn from schema 

theorems?

GECCO 2007 Tutorial / Genetic Programming Theory

3579



18

July 2007 R. Poli and W. B. Langdon - University of Essex 69

Lessons

� Operator biases

� Size evolution equation

� Bloat control

� Optimal parameter setting

� Optimal initialisation

� …
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Selection Bias
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Crossover Bias
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So where is evolution going?
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GP with subtree XO pushes the population 

towards a Lagrange distribution of the 2nd kind

Proportion of programs 

with n internal nodes

Mean program sizeMean function arity

Note: uniform selection of crossover points
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� Theory is right!
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Sampling probability under Lagrange

� Probability of sampling a particular program 

of size n under subtree crossover

� So, GP samples short programs much more 

often than long ones
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Allele Diffusion

� The fixed-point distribution for linear, 

variable-length programs under GP subtree 

crossover is

with
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� Crossover attempts to push the population towards 

distributions of primitives where each primitive of 

a given arity is equally likely to be found in any 

position in any individual.

� The primitives in a particular individual tend not 

just to be swapped with those of other individuals 

in the population, but also to diffuse within the 

representation of each individual.

� Experiments with unary GP confirm the theory.
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Size Evolution

�The mean size of the programs at 
generation t is 

µ(t) = ∑l N(Gl) Φ(Gl,t)

where

Gl = set of programs with shape l

N(Gl) = number of nodes in programs in Gl

Φ(Gl,t) = proportion of population of shape l

at generation t
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� E.g., for the population: 

x, (+ x y) (- y x) (+ (+ x y) 3)
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� In a GP system with symmetric subtree 
crossover

E[µ(t+1)] = ∑l N(Gl) p(Gl,t)

where

p(Gl,t) = probability of selecting a program of 
shape l from the population at

generation t

� The mean program size evolves as if
selection only was acting on the population

Size Evolution under Subtree XO
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Conditions for Growth

�Growth can happen only if 

E[µ(t+1)-µ(t)] > 0

�Or equivalently

∑l N(Gl) [p(Gl,t) - Φ(Gl,t)] > 0
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Tarpeian Bloat Prevention

� To prevent growth one needs

� To increase the selection probability for 

below-average-size programs

� To decrease the selection probability for 

above-average-size programs

Conclusions
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Theory

� In the last few years the theory of GP has seen 
a formidable development.

� Today we understand a lot more about the 
nature of the GP search space and the 
distribution of fitness in it.

� Also, schema theories explain and predict the 
syntactic behaviour of GAs and GP.

� We know much more as to where evolution is 
going, why and how. 
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� Theory primarily provides explanations, 

but many recipes for practice have also 

been derived (initialisation, sizing, 

parameters, primitives, …)

� So, theory can helping design competent 

algorithms

� Theory is hard and slow: empirical studies 

are important to direct theory and to 

corroborate it.
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