
1

Genetic Programming

Theory
Riccardo Poli and Bill Langdon

Departments of Computer and Mathematical Sciences

University of Essex

Copyright is held by the author/owner(s).

GECCO’07, July 7–11, 2007, London, England, United Kingdom.

ACM 978-1-59593-698-1/07/0007.

July 2007 R. Poli and W. B. Langdon - University of Essex 2

Overview

�Motivation

�Search space characterisation

�How many programs?

�Limiting fitness distributions

�Halting probability

�GP search characterisation

�Schema theory and search bias

�Lessons and implications

�Conclusions

Motivation

July 2007 R. Poli and W. B. Langdon - University of Essex 4

Understanding GP Search Behaviour

with Empirical Studies

�We can perform many GP runs with a small

set of problems and a small set of parameters

�We record the variations of certain numerical

descriptors.

�Then, we suggest explanations about the

behaviour of the system that are compatible

with (and could explain) the empirical

observations.

GECCO 2007 Tutorial / Genetic Programming Theory

3563

2

July 2007 R. Poli and W. B. Langdon - University of Essex 5

�GP is a complex adaptive system with zillions
of degrees of freedom.

�So, any small number of descriptors can
capture only a fraction of the complexities of
such a system.

�Choosing which problems, parameter settings
and descriptors to use is an art form.

�Plotting the wrong data increases the confusion
about GP’s behaviour, rather than clarify it.

Problem with Empirical Studies

July 2007 R. Poli and W. B. Langdon - University of Essex 6

Example: Bloat

� Bloat = growth without (significant) return in
terms of fitness. E.g.

� Bloat exists and continues forever, right?

sizefitness

July 2007 R. Poli and W. B. Langdon - University of Essex 7

Why do we need mathematical theory?

� Empirical studies are rarely conclusive

� Qualitative theories can be incomplete

Search Space

Characterisation

GECCO 2007 Tutorial / Genetic Programming Theory

3564

3

July 2007 R. Poli and W. B. Langdon - University of Essex 9

How many programs in the search

space?

= Number of trees of depth at
most d

July 2007 R. Poli and W. B. Langdon - University of Essex 10

Example

July 2007 R. Poli and W. B. Langdon - University of Essex 11

Logarithmic scale Superexponential

July 2007 R. Poli and W. B. Langdon - University of Essex 12

Doubly logarithmic scale

Exponentials

GECCO 2007 Tutorial / Genetic Programming Theory

3565

4

July 2007 R. Poli and W. B. Langdon - University of Essex 13

GP cannot possibly work!

� The GP search space is immense, and so any

search algorithm can only explore a tiny

fraction of it (e.g. 10-1000 %).

� Does this mean GP cannot possibly work?

Not necessarily.

� We need to know the ratio between the size

of solution space and the size of search space

July 2007 R. Poli and W. B. Langdon - University of Essex 14

{d0,d1,NAND} search space

Proportion of 2-input logic functions
implemented using NAND primitives

July 2007 R. Poli and W. B. Langdon - University of Essex 15

Limiting distribution

� Empirically is has been shown that as program
length grows the distribution of functionality
reaches a limit

� So, beyond a certain length, the proportion of
programs which solve a problem is constant

� Since there are exponentially many more long
programs than short ones, in GP

size of the solution space

= constant

size of the search space

� Proofs?

July 2007 R. Poli and W. B. Langdon - University of Essex 16

Linear model of computer

GECCO 2007 Tutorial / Genetic Programming Theory

3566

5

July 2007 R. Poli and W. B. Langdon - University of Essex 17

States, inputs and outputs

� Assume n bits of memory

� There are 2n states.

� At each time step the machine is in a state, s

July 2007 R. Poli and W. B. Langdon - University of Essex 18

Instructions

� Each instruction changes the state of the machine

from a state s to a new s′, so instructions are maps

from binary strings to binary strings of length n

E.g. if n = 2, AND m0 m1 � m0 is represented as

1111

0001

1010

0000

m′1m′0m1m0

11001000=

July 2007 R. Poli and W. B. Langdon - University of Essex 19

Behaviour of programs

� A program is a sequence of instructions

� So also the behaviour of a program can be

described as a mapping from initial states s to

corresponding final states s′

July 2007 R. Poli and W. B. Langdon - University of Essex 20

� For example,

AND m0 m1 � m0

NOP

OR m0 m1 � m0

AND m0 m1 � m0 1111

0001

1110

0000

m′1m′0m1m0

11001100

GECCO 2007 Tutorial / Genetic Programming Theory

3567

6

July 2007 R. Poli and W. B. Langdon - University of Essex 21

Does the behaviour tend to a limiting

distribution?

11011000
Identity function
(no instruction
executed yet)

AND m0 m1 � m0 OR m0 m1 � m0

11001000 11011100

1/2 1/2

A B

� Two primitives: AND m0 m1 � m0 OR m0 m1 � m0

July 2007 R. Poli and W. B. Langdon - University of Essex 22

11001000

AND m0 m1 � m0 OR m0 m1 � m0

11001000 11001100

1/2 1/2

A

A C

July 2007 R. Poli and W. B. Langdon - University of Essex 23

11011100

AND m0 m1 � m0 OR m0 m1 � m0

11001100 11011100

1/2 1/2

B

C B

July 2007 R. Poli and W. B. Langdon - University of Essex 24

11001100

AND m0 m1 � m0 OR m0 m1 � m0

11001100 11001100

1/2 1/2

C

C C

GECCO 2007 Tutorial / Genetic Programming Theory

3568

7

July 2007 R. Poli and W. B. Langdon - University of Essex 25

Probability tree

AND OR

Identity

A B

AND OR

C B

AND OR

C C

AND OR

C B

AND OR

A C

AND OR

A C

AND OR

C C

July 2007 R. Poli and W. B. Langdon - University of Essex 26

Distribution of behaviours

07/81/161/164

0100∞

0¾1/81/83

0½¼¼2

00½½1

10000

IdentityBehaviour

C

Behaviour

B

Behaviour

A

Program

length

July 2007 R. Poli and W. B. Langdon - University of Essex 27

Yes….

� …for this primitive set the distribution tends

to a limit where only behaviour C has non-

zero probability.

� Programs in this search space tend to copy

the initial value of m1 into m0.

July 2007 R. Poli and W. B. Langdon - University of Essex 28

Markov chain proofs of limiting distribution

� Using Markov chain theory we have proved

that a limiting distributions of functionality

exists for a large variety of CPUs

� There are extensions of the proofs from linear

to tree-based GP.

� See Foundations of Genetic Programming

book for an introduction to the proof

techniques.

GECCO 2007 Tutorial / Genetic Programming Theory

3569

8

July 2007 R. Poli and W. B. Langdon - University of Essex 29

So what?

� Generally instructions lose information.

Unless inputs are protected, almost all long

programs are constants.

� Write protecting inputs makes linear GP

more like tree GP.

� No point searching above threshold?

� Predict where threshold is? Ad-hoc or

theoretical.

July 2007 R. Poli and W. B. Langdon - University of Essex 30

Implication of

|solution space|/|search space|=constant

� GP can succeed if

� the constant is not too small or

� there is structure in the search space to

guide the search or

� the search operators are biased towards

searching solution-rich areas of the search

space

or any combination of the above.

July 2007 R. Poli and W. B. Langdon - University of Essex 31

What about Turing complete GP?

�Memory and loops make linear GP Turing

complete, but what is the effect search space

and fitness?

�Does the distribution of functionality of

Turing complete programs tend to a limit as

programs get bigger?

July 2007 R. Poli and W. B. Langdon - University of Essex 32

T7 Architecture

GECCO 2007 Tutorial / Genetic Programming Theory

3570

9

July 2007 R. Poli and W. B. Langdon - University of Essex 33

Experiments

� There are too many programs to test them all.

Instead we gather statistics on random samples.

� Chose set of program lengths 30 to 16777215

� Generate 1000 programs of each length

� Run them from random start point with random

input

� Program terminates if it obeys the last instruction

and this is not a jump

� How many stop?

July 2007 R. Poli and W. B. Langdon - University of Essex 34

Almost all T7 Programs Loop

July 2007 R. Poli and W. B. Langdon - University of Essex 35

Markov model: States

� State 0 = no instructions executed, yet

� State i = i instructions but no loops have been

executed

� Sink state = at least one loop was executed

� Halt state = the last instruction has been

successfully executed and PC has gone

beyond it.

July 2007 R. Poli and W. B. Langdon - University of Essex 36

Event diagram for program execution 1/2

GECCO 2007 Tutorial / Genetic Programming Theory

3571

10

July 2007 R. Poli and W. B. Langdon - University of Essex 37

Markov Model: state transition probabilities

� These are obtained by adding up “paths” in

the program execution event diagram

E.g. looping probability

July 2007 R. Poli and W. B. Langdon - University of Essex 38

Transition matrix

� For example, for T7 and L = 7 we obtain

0 instructions
1 instructions
2 instructions
3 instructions
4 instructions
5 instructions
6 instructions
loop
halt

0
 i

n
st

ru
c
ti

o
n

s

1
 i

n
st

ru
c
ti

o
n

s

2
 i

n
st

ru
c
ti

o
n

s

3
 i

n
st

ru
c
ti

o
n

s

4
 i

n
st

ru
c
ti

o
n

s

5
 i

n
st

ru
c
ti

o
n

s

6
 i

n
st

ru
c
ti

o
n

s

lo
o

p

h
a

lt

July 2007 R. Poli and W. B. Langdon - University of Essex 39

Computing future state probabilities

� The distribution of future states can be

computed by taking appropriate powers of

the Markov matrix M

July 2007 R. Poli and W. B. Langdon - University of Essex 40

Examples

For T7, L=7 and i=3

For T7, L=7 and i=L

prob. halting in
3 instructions

prob. looping in
3 instructions

total halting
probability

GECCO 2007 Tutorial / Genetic Programming Theory

3572

11

July 2007 R. Poli and W. B. Langdon - University of Essex 41

A good model?

Halting probability

Program Length

July 2007 R. Poli and W. B. Langdon - University of Essex 42

Instructions executed by halting programs

Program Length

July 2007 R. Poli and W. B. Langdon - University of Essex 43

Number of halting programs

rises exponentially with length

10100 000 000

Doubly logarithmic scale

T7 CPU

July 2007 R. Poli and W. B. Langdon - University of Essex 44

Turing complete GP cannot possibly work?

� If only halting programs can be solutions to

problems, so

|solution space|/|search space| < p(halt)

� In T7, p(halt) � 0, so,

|solution space|/|search space| � 0

� Since the search space is immense, GP with

T7 seems to have no hope of finding

solutions.

GECCO 2007 Tutorial / Genetic Programming Theory

3573

12

July 2007 R. Poli and W. B. Langdon - University of Essex 45

What can we do?

� Control p(halt)

� Size population appropriately

� Design fitness functions which promote

termination

� Repair

� Use result of program even if it is still running

�

� Any mix of the above

July 2007 R. Poli and W. B. Langdon - University of Essex 46

Controlling p(halt)

� Modify the probability of using jumps

T7 CPU

Markov chain predictions

July 2007 R. Poli and W. B. Langdon - University of Essex 47

Limiting distribution of functionality

for halting programs?

� Non-looping programs halt

� The distribution of instructions in non-

looping programs is the same as with a

primitive set without jumps

July 2007 R. Poli and W. B. Langdon - University of Essex 48

Limiting distribution of functionality

for halting programs?

� So, as the number of instructions executed

grows, the distribution of functionality of

non-looping programs approaches a limit.

� Number of instructions executed, not

program length, tells us how close the

distribution is to the limit

� E.g. for T7, very long programs have a tiny

subset of their instructions executed (e.g.,

1,000 instructions in programs of L = 106).

GECCO 2007 Tutorial / Genetic Programming Theory

3574

13

GP Search

Characterisation

July 2007 R. Poli and W. B. Langdon - University of Essex 50

GA and GP search

� GAs and GP search like this:

� How can we understand (characterise, study

and predict) this search?

July 2007 R. Poli and W. B. Langdon - University of Essex 51

Schema Theories

� Divide the search space into subspaces

(schemata)

� Characterise the schemata using macroscopic

quantities

� Model how and why the individuals in the

population move from one subspace to

another (schema theorems).

July 2007 R. Poli and W. B. Langdon - University of Essex 52

Example

� The number of individuals in a given schema H
at generation t, m(H,t), is a good descriptor

� A schema theorem models mathematically how
and why m(H,t) varies from one generation to
the next.

GECCO 2007 Tutorial / Genetic Programming Theory

3575

14

July 2007 R. Poli and W. B. Langdon - University of Essex 53

Exact Schema Theorems

� The selection/crossover/mutation process is a

random coin flip (Bernoulli trial). New

individuals are either in schema H or not.

� So, m(H,t+1) is a binomial stochastic variable.

� Given the success probability of each trial

α(H,t), an exact schema theorem is

E[m(H,t+1)] = M α(H,t)

July 2007 R. Poli and W. B. Langdon - University of Essex 54

Exact Schema Theory

for GP with

Subtree Crossover

July 2007 R. Poli and W. B. Langdon - University of Essex 55

GP Schemata

� Syntactically, a GP schema is a tree with some
“don’t care” nodes (“=”) that represent exactly
one primitive.

� Semantically, a schema is the set of all programs
that match size, shape and defining nodes of such
a tree.

� For example, (= x (+ y =)) represents the set
of programs

{(+ x (+ y x)), (+ x (+ y y)), (* x (+ y x)), ...}

July 2007 R. Poli and W. B. Langdon - University of Essex 56

�Let us assume that only reproduction and

(one-offspring) crossover are performed.

�Creation probability tree for a schema H:

How can we get an exact schema theorem?

reproduction crossover

offspring in H offspring not in H offspring in H offspring not in H

pr pc=1-pr

selection picks an
individual in H

parent selection and XO
point choice produce

an individual in H

GECCO 2007 Tutorial / Genetic Programming Theory

3576

15

July 2007 R. Poli and W. B. Langdon - University of Essex 57

[]),(cloningforinindividualanSelectingPr tHpH =

�Adding “paths” to success produces

where

[]

×+

×=

H
p

HptH

c

r

 matchesoffspringthethatsuchare

pointscrossovertheand parentsThe
Pr

cloningforselectedisinindividual AnPr),(α

July 2007 R. Poli and W. B. Langdon - University of Essex 58

� The process of crossover point selection is
independent from the actual primitives in the parent
tree.

� The probability of choosing a particular crossover
point depends only on the actual size and shape of
the parent.

� For example, the probability of choosing any
crossover point in the program

(+ x (+ y x))

is identical to the probability of choosing any
crossover point in

(AND D1 (OR D1 D2))

July 2007 R. Poli and W. B. Langdon - University of Essex 59

reproduction crossover

offspring in H offspring not in H

pr pc=1-pr

1st parent has
shape 1 ….

selection picks an
individual in H

offspring in H offspring not in H

chosen XO point
1 in 1st parent

1st parent has
shape S

2nd parent has
shape 1

….
2nd parent has

shape S
2nd parent has

shape 1 ….
2nd parent has

shape S

…. ….
….

chosen XO point
N in 1st parent

chosen XO point
1 in 2nd parent ….

chosen XO point
N in 2nd parent

offspring in H offspring not in H

…. ….

July 2007 R. Poli and W. B. Langdon - University of Essex 60

×

=

∑ ∑

Hji

lk

lkji

H

lk
lk

ji

in offspringan produce and pointsat over crossed

 ifsuch that , and shapes with parents Selecting
Pr

andshapesinand

pointscrossover Choosing
Pr

matchesoffspringthethatsuch are

pointscrossover theand parentsThe
Pr

,shapesparent
ofpairsallFor

andshapes
in,points

crossoverallFor

GECCO 2007 Tutorial / Genetic Programming Theory

3577

16

July 2007 R. Poli and W. B. Langdon - University of Essex 61

�Let us assume that crossover points are

selected with uniform probability:

lklkji shapeinNodes

1

shapeinNodes

1

andshapesinand

pointscrossover Choosing
Pr ×=

July 2007 R. Poli and W. B. Langdon - University of Essex 62

�The offspring has the right shape and

primitives to match the schema of interest

if and only if

after the removal of the chosen subtree, the

first parent has shape and primitives

compatible with the schema

and

the subtree to be inserted has shape and

primitives compatible with the schema.

July 2007 R. Poli and W. B. Langdon - University of Essex 63

×

=

 iHj

 l

 iHi

 k

Hji

lk

 w.r.t. ofpart lower thematches point crossover .part w.r.t

lower its that such shape hparent wit donating-subtreea Selecting
Pr

 w.r.t. ofpart upper thematches point crossover .part w.r.t

upper its that such shape hparent wit donating-roota Selecting
Pr

 in offspring an produce and pointsat over crossed

 if that such , and shapes withparents Selecting
Pr

�Computing these two probabilities requires the
introduction of a new concept: the variable arity
hyperschema

July 2007 R. Poli and W. B. Langdon - University of Essex 64

Variable Arity Hyperschemata

� A GP variable arity hyperschema is a tree with

internal nodes from F ∪ {=, # } and leaves

from T ∪ { =, # }.

= is a “don't care” symbols which stands for exactly

one node

is a more general “don’t care” that represents either a

valid subtree or a tree fragment depending on its

arity

GECCO 2007 Tutorial / Genetic Programming Theory

3578

17

July 2007 R. Poli and W. B. Langdon - University of Essex 65

� For example, (# x (+ = #))

July 2007 R. Poli and W. B. Langdon - University of Essex 66

Upper and lower building blocks

Variable arity hyperschemata express which parents

produce instances of a schema

Crossing over at points i and j any individual in L(H,i,j)

with any individual in U(H,i) � offspring in H

July 2007 R. Poli and W. B. Langdon - University of Essex 67

Exact GP Schema Theorem for Subtree

Crossover (2001)

� Schema theorem for standard GP crossover

July 2007 R. Poli and W. B. Langdon - University of Essex 68

So what?

� A model is as good as the predictions and the

understanding it can produce

� So, what can we learn from schema

theorems?

GECCO 2007 Tutorial / Genetic Programming Theory

3579

18

July 2007 R. Poli and W. B. Langdon - University of Essex 69

Lessons

� Operator biases

� Size evolution equation

� Bloat control

� Optimal parameter setting

� Optimal initialisation

� …

July 2007 R. Poli and W. B. Langdon - University of Essex 70

Selection Bias

July 2007 R. Poli and W. B. Langdon - University of Essex 71

Crossover Bias

July 2007 R. Poli and W. B. Langdon - University of Essex 72

So where is evolution going?

GECCO 2007 Tutorial / Genetic Programming Theory

3580

19

July 2007 R. Poli and W. B. Langdon - University of Essex 73

GP with subtree XO pushes the population

towards a Lagrange distribution of the 2nd kind

Proportion of programs

with n internal nodes

Mean program sizeMean function arity

Note: uniform selection of crossover points

July 2007 R. Poli and W. B. Langdon - University of Essex 74

� Theory is right!

July 2007 R. Poli and W. B. Langdon - University of Essex 75

Sampling probability under Lagrange

� Probability of sampling a particular program

of size n under subtree crossover

� So, GP samples short programs much more

often than long ones

July 2007 R. Poli and W. B. Langdon - University of Essex 76

Allele Diffusion

� The fixed-point distribution for linear,

variable-length programs under GP subtree

crossover is

with

GECCO 2007 Tutorial / Genetic Programming Theory

3581

20

July 2007 R. Poli and W. B. Langdon - University of Essex 77

� Crossover attempts to push the population towards

distributions of primitives where each primitive of

a given arity is equally likely to be found in any

position in any individual.

� The primitives in a particular individual tend not

just to be swapped with those of other individuals

in the population, but also to diffuse within the

representation of each individual.

� Experiments with unary GP confirm the theory.

July 2007 R. Poli and W. B. Langdon - University of Essex 78

Size Evolution

�The mean size of the programs at
generation t is

µ(t) = ∑l N(Gl) Φ(Gl,t)

where

Gl = set of programs with shape l

N(Gl) = number of nodes in programs in Gl

Φ(Gl,t) = proportion of population of shape l

at generation t

July 2007 R. Poli and W. B. Langdon - University of Essex 79

� E.g., for the population:

x, (+ x y) (- y x) (+ (+ x y) 3)

July 2007 R. Poli and W. B. Langdon - University of Essex 80

� In a GP system with symmetric subtree
crossover

E[µ(t+1)] = ∑l N(Gl) p(Gl,t)

where

p(Gl,t) = probability of selecting a program of
shape l from the population at

generation t

� The mean program size evolves as if
selection only was acting on the population

Size Evolution under Subtree XO

GECCO 2007 Tutorial / Genetic Programming Theory

3582

21

July 2007 R. Poli and W. B. Langdon - University of Essex 81

Conditions for Growth

�Growth can happen only if

E[µ(t+1)-µ(t)] > 0

�Or equivalently

∑l N(Gl) [p(Gl,t) - Φ(Gl,t)] > 0

July 2007 R. Poli and W. B. Langdon - University of Essex 82

Tarpeian Bloat Prevention

� To prevent growth one needs

� To increase the selection probability for

below-average-size programs

� To decrease the selection probability for

above-average-size programs

Conclusions

July 2007 R. Poli and W. B. Langdon - University of Essex 84

Theory

� In the last few years the theory of GP has seen
a formidable development.

� Today we understand a lot more about the
nature of the GP search space and the
distribution of fitness in it.

� Also, schema theories explain and predict the
syntactic behaviour of GAs and GP.

� We know much more as to where evolution is
going, why and how.

GECCO 2007 Tutorial / Genetic Programming Theory

3583

22

July 2007 R. Poli and W. B. Langdon - University of Essex 85

� Theory primarily provides explanations,

but many recipes for practice have also

been derived (initialisation, sizing,

parameters, primitives, …)

� So, theory can helping design competent

algorithms

� Theory is hard and slow: empirical studies

are important to direct theory and to

corroborate it.

GECCO 2007 Tutorial / Genetic Programming Theory

3584

