Genetic Programming Theory

Riccardo Poli and Bill Langdon Departments of Computer and Mathematical Sciences University of Essex

Copyright is held by the author/owner(s). GECCO'07, July 7–11, 2007, London, England, United Kingdom ACM 978-1-59593-698-1/07/0007.

R. Poli and W. B. Langdon - University of Ess

Overview

□ Motivation

- □ Search space characterisation
 - How many programs?
 - Limiting fitness distributions
 - Halting probability
- □ GP search characterisation
 - Schema theory and search bias
 - Lessons and implications
- □ Conclusions

Motivation

R. Poli and W. B. Langdon - University of Essex

Understanding GP Search Behaviour with Empirical Studies

- □ We can perform many GP runs with a small set of problems and a small set of parameters
- □ We record the variations of certain numerical descriptors.
- Then, we suggest explanations about the behaviour of the system that are compatible with (and could explain) the empirical observations.

Search Space Characterisation

$$\mathcal{P} = \{x, y, \sqrt{2}, +, \times\}$$

$$a_{\max} = 2, \mathcal{P}_0 = \{x, y\}, \mathcal{P}_1 = \{\sqrt{2}\} \quad \mathcal{P}_2 = \{+, \times\}$$

$$n_0 = 2$$

$$n_1 = 2 + 1 \times (n_0) + 2 \times (n_0)^2 = 12$$

$$n_2 = 2 + 1 \times (n_1) + 2 \times (n_1)^2 = 302$$

July 2007 R. Poli and W. B. Langdon - University of Essex

GP cannot possibly work!

- □ The GP search space is immense, and so any search algorithm can only explore a tiny fraction of it (e.g. 10⁻¹⁰⁰⁰ %).
- Does this mean GP cannot possibly work? Not necessarily.
- □ We need to know the **ratio** between the size of solution space and the size of search space

R. Poli and W. B. Langdon - Uni

States, inputs and outputs

- \square Assume *n* bits of memory
- \Box There are 2^n states.

July 2007

July 20

 \Box At each time step the machine is in a state, *s*

Instructions

 Each instruction changes the state of the machine from a state *s* to a new *s'*, so instructions are maps from binary strings to binary strings of length *n*

R. Poli and W. B. Langdon - University of Es

E.g. if n = 2, AND $m_0 m_1 \rightarrow m_0$ is represented as

Behaviour of programs

- □ A program is a sequence of instructions
- So also the behaviour of a program can be described as a mapping from initial states s to corresponding final states s'

R. Poli and W. B. Langdon - University of Es

July 2007 R. Peliand W. B. Langdon - University of Essex						
Program	Behaviour	Behaviour	Behaviour	Identity		
length	Α	B	С			
0	0	0	0	1		
1	1/2	1/2	0	0		
2	1/4	1/4	1/2	0		
3	1/8	1/8	3⁄4	0		
4	1/16	1/16	7/8	0		
8	0	0	1	0		

July 2007 R. Poli and W. B. Langdon - University of Essex

Yes....

- ...for this primitive set the distribution tends to a limit where only behaviour C has nonzero probability.
- Programs in this search space tend to copy the initial value of m1 into m0.

R. Poli and W. B. Langdon - University of Ess

July 20

Markov chain proofs of limiting distribution

- Using Markov chain theory we have proved that a limiting distributions of functionality exists for a large variety of CPUs
- □ There are extensions of the proofs from linear to tree-based GP.
- See Foundations of Genetic Programming book for an introduction to the proof techniques.

1 0

Generally instructions lose information.
 Unless inputs are protected, almost all long programs are constants.

R. Poli and W. B. Langdon - Univ

- □ Write protecting inputs makes linear GP more like tree GP.
- □ No point searching above threshold?
- Predict where threshold is? Ad-hoc or theoretical.

R. Poli and W. B. Langdon - University of Es

Implication of

lsolution spacel/lsearch spacel=constant

- □ GP can succeed if
 - the constant is not too small or
 - there is structure in the search space to guide the search or
 - the search operators are biased towards searching solution-rich areas of the search space

or any combination of the above.

What about Turing complete GP?

R. Poli and W. B. Langdon - University of Es

- Memory and loops make linear GP Turing complete, but what is the effect search space and fitness?
- Does the distribution of functionality of Turing complete programs tend to a limit as programs get bigger?

R. Poli and W. B. Langdon - University of Esse

Experiments

July 200

- □ There are too many programs to test them all. Instead we gather statistics on random samples.
- □ Chose set of program lengths 30 to 16777215
- □ Generate 1000 programs of each length
- Run them from random start point with random input
- Program terminates if it obeys the last instruction and this is not a jump
- □ How many stop?

July 2007 R. Poli and W. B. Langdon - University of Essen

Markov model: States

- \Box State 0 = no instructions executed, yet
- State i = i instructions but no loops have been executed
- □ Sink state = at least one loop was executed
- Halt state = the last instruction has been successfully executed and PC has gone beyond it.

 Iddy 2007 R. Poli and W. B. Langdon - University of Essex Transition matrix For example, for T7 and L = 7 we obtain 										
M =	$\left(\begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$\begin{array}{c} 0 \\ 0 \\ 0.8312 \\ 0 \\ 0 \\ 0 \\ 0.05655 \\ 0.1122 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0.7647 \\ 0 \\ 0 \\ 0.1231 \\ 0.1122 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0.6812 \\ 0 \\ 0 \\ 0.2065 \\ 0.1122 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0.566 \\ 0 \\ 0.3217 \\ 0.1122 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0.3868 \\ 0.501 \\ 0.1122 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0.8878 \\ 0.1122 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{array}$	$\left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{array} \right)$	0 instructions 1 instructions 2 instructions 3 instructions 4 instructions 5 instructions 6 instructions loop halt
	0 instructions	I instructions	2 instructions	3 instructions	4 instructions	5 instructions	6 instructions	loop	halt	

R. Poli and W. B. Langdon - University of Essev

Turing complete GP cannot possibly work?

□ If only halting programs can be solutions to problems, so

|solution spacel/lsearch spacel < p(halt)|

□ In T7, $p(halt) \rightarrow 0$, so,

Isolution spacel/Isearch spacel $\rightarrow 0$

Since the search space is immense, GP with T7 seems to have no hope of finding solutions.

R. Poil and W. B. Langdon - University of Essex

- □ Non-looping programs halt
- The distribution of instructions in nonlooping programs is the same as with a primitive set without jumps

JJy 2007 R. Pol and W. B. Langdon - University of Essex Limiting distribution of functionality for halting programs?

- So, as the number of instructions executed grows, the distribution of functionality of non-looping programs approaches a limit.
- Number of instructions executed, not program length, tells us how close the distribution is to the limit
- E.g. for T7, very long programs have a tiny subset of their instructions executed (e.g., 1,000 instructions in programs of L = 10⁶).

Schema Theories

July 200

- Divide the search space into subspaces (schemata)
- □ Characterise the schemata using *macroscopic* quantities

R. Poli and W. B. Langdon - University of Es

Model how and why the individuals in the population move from one subspace to another (*schema theorems*).

R. Poli and W. B. Langdon - University of Essex

Exact Schema Theorems

July 200

- □ The selection/crossover/mutation process is a random coin flip (Bernoulli trial). New individuals are either in schema *H* or not.
- \square So, m(H,t+1) is a binomial stochastic variable.
- □ Given the success probability of each trial
 - $\alpha(H,t)$, an exact schema theorem is

 $E[m(H,t+1)] = M \alpha(H,t)$

Exact Schema Theory for GP with Subtree Crossover

R. Poli and W. B. Langdon - University of Ess

GP Schemata

 Syntactically, a GP schema is a tree with some "don't care" nodes ("=") that represent exactly one primitive.

R. Poli and W. B. Langdon - University of Es

- Semantically, a schema is the set of all programs that match size, shape and defining nodes of such a tree.
- □ For example, (= x (+ y =)) represents the set of programs

 $\{(+ x (+ y x)), (+ x (+ y y)), (* x (+ y x)), ...\}$

R. Poli and W. B. Langdon - University of Esse

July 20

How can we get an exact schema theorem?

 Let us assume that only reproduction and (one-offspring) crossover are performed.
 Creation probability tree for a schema *H*:

 $\begin{bmatrix} July 2007 & R. Poil and W. B. Langton - University of Essex \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix}$ $\begin{bmatrix} P_{I} & Selecting parents with shapes k and l, such that if crossed over at points l and l produce an off spring in H \end{bmatrix}$ $= \Pr \begin{bmatrix} Selecting a root - donating parent with shape k such that its upper part w.r.t crossover point l matches the upper part of H w.r.t. l part w.r.t crossover point l matches the upper part of H w.r.t. l part w.r.t crossover point l matches the lower part of H w.r.t. l matches the lower part w.r.t. l matches the lower part w.r.t. l matches the lower part of H w.r.t. l matches the lower part w.r.t. l matches the lo$

Computing these two probabilities requires the introduction of a new concept: the variable arity hyperschema

Inriable Arity Hyperechemete

- □ A *GP variable arity hyperschema* is a tree with internal nodes from $F \cup \{=, \#\}$ and leaves from $T \cup \{=, \#\}$.
 - = is a "don't care" symbols which stands for exactly one node
 - # is a more general "don't care" that represents either a valid subtree or a tree fragment depending on its arity

R. Poli and W. B. Langdon - University of Es

So what?

- □ A model is as good as the predictions and the understanding it can produce
- □ So, what can we learn from schema theorems?

Sampling probability under Lagrange Probability of sampling a particular program of size *n* under subtree crossover

R. Poli and W. B. Langdon - University of Esse

$$p_{\text{sample}}(n) = \frac{(1-ap_a)}{\mathcal{F}^n \mathcal{T}^{(a-1)n+1}} \binom{an+1}{n} (1-p_a)^{(a-1)n+1} p_a$$

□ So, GP samples short programs much more often than long ones

R. Poli and W. B. Langdon - Univ

July 2007

- Crossover attempts to push the population towards distributions of primitives where each primitive of a given arity is equally likely to be found in any position in any individual.
- The primitives in a particular individual tend not just to be swapped with those of other individuals in the population, but also to diffuse within the representation of each individual.
- □ Experiments with unary GP confirm the theory.

R. Poli and W. B. Langdon - University of Es

Size Evolution

□ The *mean size* of the programs at generation *t* is

$$\mu(t) = \sum_{l} N(G_{l}) \Phi(G_{l}, t)$$

where

 G_l = set of programs with shape l $N(G_l)$ = number of nodes in programs in G_l $\Phi(G_l, t)$ = proportion of population of shape lat generation t

July 2007		R. Poli and	W. B. Langdon - L	Jniversity of Essex		
□ E.g.,	for the	popu	lation	:		
x, (+	x y)	(- y	x)	(+ (+	x y) 3))
	l 1 2 3 4		$N(G_l)$ 1 3 5 5	$\Phi(G_l, t)$ 1/4 2/4 1/4 0		
	$\mu(t) =$	$1 \times \frac{1}{4}$: + 3 × $\frac{2}{4}$	$\frac{1}{4}$ + 5 × $\frac{1}{4}$	= 3	

R. Poli and W. B. Langdon - University of Es

Size Evolution under Subtree XO In a GP system with symmetric subtree

In a GP system with symmetric subtree crossover

 $\mathbf{E}[\mu(t+1)] = \sum_{l} N(G_{l}) p(G_{l},t)$

where

- $p(G_{b}t)$ = probability of *selecting* a program of shape *l* from the population at generation *t*
- □ The mean program size evolves *as if* selection only was acting on the population

It was a standard of the second second

R. Poli and W. B. Langdon - University of E

Theory

- □ In the last few years the theory of GP has seen a formidable development.
- □ Today we understand a lot more about the nature of the GP search space and the distribution of fitness in it.
- □ Also, schema theories explain and predict the syntactic behaviour of GAs and GP.
- □ We know much more as to where evolution is going, why and how.

R. Poli and W. B. Langdon - University of Esse

July 2007

- Theory primarily provides explanations, but many recipes for practice have also been derived (initialisation, sizing, parameters, primitives, ...)
- So, theory can helping design competent algorithms
- Theory is hard and slow: empirical studies are important to direct theory and to corroborate it.