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ABSTRACT 
In this paper we describe the use of a learning classifier system to 
control the electrical stimulation of cultured neuronal networks. 
The aim is to manipulate the environment of the cells such that 
they display elementary learning, i.e., so that they respond to a 
given input signal in a pre-specified way. Results indicate that 
this is possible and that the learned stimulation protocols identify 
seemingly fundamental properties of in vitro neuronal networks.  
Use of another learning scheme and simpler stimulation confirms 
these properties. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods 
and Search – backtracking, control theory, dynamic 
programming, graph and tree search strategies, heuristic 
methods, plan execution formation and execution, scheduling. 

General Terms 
Algorithms, Measurement, Experimentation. 

Keywords 
Multi-Electrode Array, Unconventional Computation, XCS. 

1. INTRODUCTION 
There is growing interest in research into the development of 
hybrid wetware-silicon devices focused on exploiting their 
potential for non-linear media computing, particularly cultured 
neurons. The aim is to harness the as yet only partially understood 
intricate dynamics of in vitro neuronal networks to perform 
complex ‘computations’ (potentially) more effectively than with 
traditional AI architectures and to further the understanding of 
how nervous systems function. The area provides the prospect of 
radically new forms of machines and is enabled by improving  

 

Capabilities  in cell  culturing,  neurobiology and  wetware-silicon 
interfacing. Such systems also have many possible medical uses 
such as in prosthetics, the study of degenerative diseases, etc. The 
study of in vitro networks has the potential to discover the 
underlying behaviours of neurons since they are typically created 
from dissociated cells; the self-organizing characteristics of such 
cells become identifiable. Such networks have already been 
reported as being capable of simple learning, memory and other 
computation-like behaviours. 

It is well-established that in vitro neuronal networks display a 
strong disposition to form synapse and sensitivity to electro-
chemical stimulation. Shahaf and Marom [17] have highlighted 
these latter characteristics in their work with cultured rat neurons 
in commercially available multi-electrode hardware 
(Multichannel Systems Ltd. MEA-60, as shown in Figure 1). 
Some electrodes are designated as input sources and those 
remaining are monitored for recurring patterns in action 
potentials; such technology enables network/ensemble level 
analyses (e.g., [14]). They were able to demonstrate a simple form 
of supervised stimulus-response learning in the cultured networks 
such that a required response for a given input was obtained from 
a pre-determined neuron/electrode through timed stimulus 
removal. That is, drawing on ideas proposed during the 1940’s by 
behavioural psychologists, they showed that with incremental 
single-step training, desired discrete output computations could be 
achieved from essentially randomly connected neuronal networks.  

Shahaf and Marom’s [ibid.] work is related to that by DeMarse et 
al. [6] who have used the same hardware to randomly control a 
simulated mobile robot, again with feedback from output to the 
inputs. That is, they have presented an approach to in vitro AI 
wherein the neuronal network exists within a feedback loop to its 
environment: the sensors of the simulated mobile robot are fed 
directly into the network and its responses fed to the robot’s 
actuators. They report the emergence of a number of repeated 
spiking patterns during the control scenario. 

Ruaro et al. [15] describe the use of neuronal networks for an 
image processing task. Here two spatial patterns are exposed to 
the network through appropriate electrode stimulation. They show 
that the response of the network to one pattern can be trained to 
be significantly higher than for the other. 

It has also recently been shown that controlled pair-wise 
stimulation can be used to alter network response thereby 
indicating a rudimentary memory mechanism for in vitro 
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networks; response to a given stimulus on one electrode alters if 
another has been stimulated within a time window (e.g., [21]). 

 

 
Figure 1. Multi-electrode array technology, showing the dish 

in which the neuronal network grows. Image from Multi 
Channel Systems. 

We are currently exploring the use of evolutionary computing 
techniques, particularly versions of Holland’s Learning Classifier 
System (LCS) [9], to manipulate the stimulation of in vitro 
neuronal networks with the aim of shaping their behaviour. In this 
paper we present initial results from our approach. 

2. A LEARNING CLASSIFIER SYSTEM 
XCS [26] is a significant development of Holland’s Learning 
Classifier System formalism and has been shown able to tackle 
many complex tasks effectively (see [2] for examples). It consists 
of a limited size (N) population [P] of classifiers (rules). Each 
classifier is in the form of “IF condition THEN action” 
(condition action) and has a number of associated parameters. 
Conditions traditionally consist of a trinary representation, 
{0,1,#}, where the wildcard symbol facilitates generalization, and 
actions are binary strings. 

On each time step a match set [M] is created. A system prediction 
is then formed for each action in [M] according to a fitness-
weighted average of the predictions of rules in each action set 
[A]. The system action is then traditionally selected either 
deterministically or stochastically based on the fitness-weighted 
predictions (usually 0.5 probability per trial). If [M] is empty a 
covering heuristic is used which creates a random condition to 
match the given input and then assigns it to a rule for each 
possible action.  

Fitness reinforcement in XCS consists of updating three 
parameters, ε, p and F for each appropriate rule; the fitness is 
updated according to the relative accuracy of the rule within the 
set in five steps: 

 

i) Each rule’s error is updated: εj = εj + β( | P - pj | - εj)  
where 10 ≤≤ β  is a learning rate constant. 

ii) Rule predictions are then updated: pj = pj + β(P-pj) 

iii) Each rule’s accuracy κj is determined:   

κj = α(ε0/ε)ν or κ=1 where ε < ε0
                   

ν, α and ε0 are constants controlling the shape of the 
accuracy function. 

iv) A relative accuracy κj’ is determined for each rule by 
dividing its accuracy by the total of the accuracies in the 
action set. 

v) The relative accuracy is then used to adjust the 
classifier’s fitness Fj using the moyenne adaptive 
modifee (MAM) procedure: If the fitness has been 
adjusted 1/β times, Fj = Fj + β(κj’ - Fj). Otherwise Fj is 
set to the average of the values of κ ’ seen so far. 

 

In short, in XCS fitness is an inverse function of the error in 
reward prediction, with errors below ε0 not reducing fitness. The 
maximum P(ai) of the system’s prediction array is discounted by 
a factor γ and used to update rules from the previous time step and 
an external reward may be received from the environment. Thus 
XCS exploits a form of Q-learning [25] in its reinforcement 
procedure. 

A Genetic Algorithm (GA) [8] acts in action sets [A], i.e., niches. 
Two rules are selected based on fitness from within the chosen 
[A]. Two-point crossover is applied at rate χ and point mutations 
at rate μ. Rule replacement is global and based on the estimated 
size of each action set a rule participates in with the aim of 
balancing resources across niches. The GA is triggered within a 
given action set based on the average time since the members of 
the niche last participated in a GA (after [1]). 

The intention in XCS is to form a complete and accurate mapping 
of the problem space through efficient generalizations. In 
reinforcement learning terms, XCS learns a value function over 
the complete state/action space. In this way, XCS represents a 
means of using temporal difference learning on complex problems 
where the number of possible state-action combinations is very 
large (other approaches have been suggested, such a neural 
networks – see [20] for an overview). The reader is referred to [4] 
for an algorithmic description of XCS and [3] for an overview of 
current formal understanding of its operations. 

3. NEURONAL NETWORKS 
The majority of in vitro studies of the electrophysiological 
properties of neuronal networks exploit either tissue slices or 
monolayer cell cultures. For example, all the research described in 
the introduction used monolayers, i.e., cells in a network grown 
across the surface of the multi-electrode array dish. However it 
has long been known that aggregated, i.e., 3-D, neuronal cell 
cultures exhibit properties that are remarkably similar to their in 
vivo counterparts. For example, early studies showed structures 
identical to hippocampal architecture [5][18] and Seeds [16] 
showed how the temporal biochemical differentiation of brain cell 
aggregates was very similar to that seen during development in 
mice, much more so than equivalent monolayer cultures. Indeed, 
the amount and type of cell differentiation was suggested to be the 
main difference between monolayer and aggregate cultures (e.g., 
[13] [22]). 
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Figure 2. Scanning Electron Microscope image of DIV21 hen 

embryo aggregate neuronal culture. 

 

 

Advances in cell culturing mean that it is now possible to 
differentiate neuronal and neuroglial cells obtained from ovoid 
primary cultures and maintain them for relatively long periods of 
time, typically several months. These organotypic cultures are 
derived from hen embryos at day 7 in ovo. We have recently 
described how the maturation of spontaneous spiking behaviour in 
aggregated cultures of such cells is typically very similar to that 
reported in monolayers of mammalian cortical cells [23]. 
However, response to simple stimulation has been shown able to 
cause an increase in the relative spiking frequency during 
maturation, typically up to around two times larger after fourteen 
days in culture (DIV14). This result indicates strong self-
organizing processes within the neuronal networks of such 
aggregate cultures wherein networks containing mutual inhibition 
form under steady-state (unstimulated) conditions in such a way 
that external stimulation causes significant excitation within the 
structure. It is this feature we aim to explore further using 
evolutionary computation. Figure 2 shows an example of the 
aggregates used in this study. The reader is referred to [23] for 
details of the cell culturing protocol used here. 

Multi-electrode arrays (MCS-2100, 3-D Multi Electrode Array, 
Multi Channel Systems MCS GmbH, Aspenhaustrasse 21, 72770 
Reutlingen, Germany) with (3D-40 x 40 x 70 μm, spaced on 200 
μm) pyramid shaped electrodes were used to record electrical 
activity of the aggregates. The multi-electrode (MEA) dish 
surface was modified with 10 μg/ml aqueous solution of Polymer 
Ethylene Imine (PEI) (Fluka Chemie AG, Buchs, Switzerland) 
under sterile conditions. The molecular weight of PEI varied 
between 0.610 and 1.010 according to product specifications. 
After the modification, two washing steps with demineralized 
(DEMI) water were undertaken before the plating of the 
aggregates. 

The electrical recordings from the cell aggregates was performed 
with a 60 channels data acquisition system, where the sampling 
frequency of each channel was set to 25 kHz and the single 
channel amplification kept at 1200 with a digital resolution of 12 
bits. At these conditions, data sampling of the input band of 
spikes within 5 kHz including a high pass 300Hz filter was 
performed in a way that was similar to other studies (e.g., 
[12][7]). The spikes were detected by threshold depending upon 
the standard deviation and the offset of noise. A set of data was 
monitored and raw signal, filtered signal and spikes chosen in 
order to perform fast and reliable recordings and analysis with the 
MC Rack software (Multi Channel Systems MCS, GmbH). The 
recorded data was written in the custom ‘*.mcd’ MC Rack format 
and stored for further data analysis. The recorded signals were 
analyzed and the spike parameters extracted using the MC Rack 
software and analyzed with bespoke software as a post processing 
step. 

 

 

 

Figure 3. Phase contrast microscopy images taken at various 
optical magnifications and focal planes of aggregate cell 

cultures on multi-electrode array dish. 

 

 

The stimulation of the aggregate cell culture neuronal networks 
was realized with the 8 channel programmed generator STG2008 
(Multi Channel Systems MCS, GmbH). The stimulation protocol 
was created within the MC Stimulus II software (Multi Channel 
Systems MCS, GmbH). The elaborated protocol shared features 
of relevant published studies (e.g., [24]), consisting of a single 
sharp biphasic impulse of 300 μs and voltages between 300 mV 
and 2000 mV each phase per sweep of 1 sec.  

4. XCS CONTROL 
In the current study XCS has been applied to the control of the 
electrical stimulation of the neuronal networks in the following 
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way. Firstly, the average spontaneous spiking frequency of a 
chosen aggregate network is ascertained over a 300 second 
window. Typically, an individual aggregate covers three or four 
electrodes in a dish as shown in Figure 3, one or two of which 
will show a suitably good connection into the neuronal network 
therein, i.e., spikes will be detected of the kind shown in Figure 4. 
The standard deviation in the spiking frequency is also calculated 
over the window. The task of the XCS controller is then to cause 
the chosen neuronal network to reply to the simple stimulus 
described above with a spiking frequency of the spontaneous 
mean plus two standard deviations; a significant increase in 
typical spiking frequency is required under stimulation. 

 

 

 
 

Figure 4. Example spiking behaviour recorded on a single 
electrode. 

 

 

The input to the XCS on each cycle is the spiking frequency of 
the neuronal network averaged over the last three seconds and the 
length of time the stimulus was applied. The first number is 
presented as a fraction of the maximum spiking frequency 
observed under the 300 seconds of spontaneous behaviour and the 
second as a fraction of the maximum allowed stimulation time of 
600 seconds. The XCS returns one of three actions: to double, 
halve or maintain the current stimulation time. A reward of 500 is 
given if the spiking frequency increased over the last stimulation 
period compared to that immediately prior and a reward of 1000 
is given if the target spiking frequency, or one greater, was 
achieved. 

Following [17] we allow a 300 second rest period between 
applications of the stimulus and truncate the maximum duration 
of stimulation to be 600 seconds. Thus 300 seconds after the last 
stimulation period, the XCS controller is given the last recorded 
spiking frequency of the neuronal network under stimulation, as a 
three-point running average, and the amount of time for which the 
stimulus was applied that caused the response. It then adjusts or 

maintains the stimulus duration for the coming cycle. For the 
initial cycle a stimulation period of 60 seconds is used.   

Hence the XCS is presented with an environmental input 
consisting of two real numbers scaled between 0.0 and 1.0; the 
condition part of the classifiers is encoded as un-ordered pairs of 
real numbers in the range [0, 1], one pair for each environmental 
input (after [19]). A pair is considered to match the corresponding 
input value if one of the pair is smaller or equal to the target, and 
the other is larger or equal. The action of the classifier is an 
integer. 

The mutation operator is altered from that in XCS as described 
above to deal with the new representation. Mutation in the case of 
the real numbers of the condition is effected either by the addition 
or subtraction of either a small number drawn from a Gaussian 
distribution centred on the current value, or a fixed small change 
(here 0.1). Action mutation is by picking an integer from the set 
{0,1,2} at random, such that the chosen action is different from 
the current one. 

In the initial population, classifier conditions are created 
randomly in the range [0,1]. During cover, the current 
environmental input e is used as a centre and two values are 
created in the range [e-Cmax, e+Cmax], where Cmax is 0.1.  

One further change is made to the standard XCS described above: 
roulette wheel action selection is used on explore trials rather than 
random selection since this is more appropriate to the on-line 
learning scenario. 

The XCS parameters used were typical for those in the literature: 
N=3000, β=0.2, μ=0.04, χ=0.8, θdel=20, δ=0.1, ε0=10, α 
=0.1, ν=5.0, θmna =3, θGA =2, ρI = εI = FI =10.0. The reader is 
referred to [4] for a full description of these parameters. The 20 
cell cultures used were all in the range of 20-30 days old in vitro. 

5. RESULTS 
After a number of experiments it became clear that the XCS was 
only able to alter a neuronal network’s behaviour in roughly a 
third of cases. Figure 5 shows an example where it was able to 
cause the required spiking response to the stimulus. As can be 
seen, and as was typical here, the XCS controller achieves this by 
increasing the duration for which the stimulation is applied. 
However Figure 6 shows a case where no significant change in 
spiking appears to have occurred regardless of how the XCS 
adjusts the network’s stimulation. In other cases the average 
spiking response decreases during the experiment regardless of 
stimulation duration (not shown). These figures show both the 
exploration and exploitation trial behaviour of XCS, i.e., the 
actual on-line stimulation as experienced by the neuronal 
networks. This is in contrast to the more typical presentation of 
exploit trials only (e.g., after [26]).   
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(a) 

 
(b) 

 

Figure 5. Example learning behaviour under XCS control, 
showing the spiking frequency response becoming repeatedly 

higher than the target indicated by the dashed line (a) and 
how XCS altered the stimulus application time to achieve this 

(b). 

 

Given these findings we implemented the aforementioned 
behaviour shaping/learning protocol of Shahaf and Marom [17] 
for comparison. This scheme, in contrast to the more widespread 
consideration of neuromodulatory reward mechanisms for 
learning, is inspired by the work of behaviourists such as Clark 
Hull (e.g., [10]) in the 1940’s. Known as the Stimulus Regulation 
Principle (SRP) it proposes that reward and hence learned 
behaviour is achieved through the removal of the driving 
stimulus. That is, neurons cease a constant alteration to their 
connectivity when the driving stimulus is removed and hence the 

behaviour becomes fixed; no other mechanism, i.e., no 
neuromodulator, is required for such (low-level) learning. 

In our implementation the target spiking frequency was again the 
mean plus two standard deviations recorded under spontaneous 
behaviour for 300 seconds. The same stimulus was applied as 
before and removed either when the required spiking response 
was obtained (as a running average over the last 3 seconds, as 
before) or if 600 seconds had elapsed. Again, a 300 second rest 
period between applications was allowed.  

 
(a) 

 
(b) 

 

Figure 6. Example unsuccessful learning behaviour under 
XCS control, showing the spiking frequency response never 
rising to the target indicated by the dashed line (a) and how 

XCS altered the stimulus application time (b). 
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Figure 7 shows a successful experiment akin to those reported by 
Shahaf and Marom. Here the amount of time the stimulus must be 
applied before the required spiking frequency is seen rapidly 
decreases until it is consistently obtained almost immediately with 
every application. To our knowledge this represents the first 
reproduction of the work by Shahaf and Marom. However we 
again found that such results occurred only about a third of the 
time. Figure 8 shows an example where the target frequency is 
never seen, i.e., the stimulation always remains applied for the 
maximum of 600 seconds, and the spiking frequency drops over 
time. Examples with no significant change were again also seen 
(not shown). 

 
(a) 

 
(b) 

Figure 7. Example learning behaviour under SRP control, 
showing the spiking frequency response becoming repeatedly 

higher than the target indicated by the dashed line (a) and 
how the stimulus was applied/removed to achieve this (b). The 
spiking frequency shown is the last recorded on a given cycle. 

6. CONCLUSIONS 
The results from using XCS, and then an SRP-inspired protocol, 
to induce learning indicate three possible rudimentary responses 
to simple stimulation from such in vitro 3-D neuronal networks: 
excitation, giving the potential for significant increases in typical 
spiking behaviour; inhibition, wherein spiking behaviour 
decreases due to stimulation; and unchanging, i.e., no significant 
shift in spiking behaviour over spontaneous behaviour is seen due 
to the stimulus. We found that each such behaviour was equally 
likely and that neither learning protocol could affect the 
underlying behaviour of a given neuronal network.  

 
(a) 

 
(b) 

Figure 8. Example unsuccessful learning behaviour under 
SRP control, showing the spiking frequency response falling 

away from the target indicated by the dashed line (a) and how 
the stimulus was therefore constantly applied throughout (b). 
The spiking frequency shown is the last recorded on a given 

cycle. 
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(a) 

 
(b) 

 
(c) 

Figure 9. Showing examples of the three responses obtained 
under the simple stimulation protocol wherein the stimulus is 

constantly applied for 600 seconds before a rest of 300 
seconds. 

To examine how strong these underlying behaviours might be we 
also stimulated cultures in a very simple way, that is, constantly 
for periods of 600 seconds, followed by a 300 second rest period. 
Figure 9 shows how the same three responses were again 
obtained.  

Jimbo et al. [11], using monolayer cultures of mammalian cortex, 
reported simple stimulation to an electrode could induce either an 
excitatory or inhibitory response at other electrodes - “pathway-
dependent plasticity”. Our results therefore suggest the same is 
also true for aggregate neuronal cell cultures but that a third class 
of behaviour is possible. It is not clear at this time whether such 
behaviour is typical in monolayers.  

We are currently exploring the use of XCS to elicit more subtle 
responses to stimulation from such neuronal networks and to use 
them for computation. 
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