

Review of Simple Statistical Concepts Part 1

Random Variables Common Probability Distributions

Copyright is held by the author/owner(s).

Common Probability
 Distributions

- Normal (Gaussian) Distribution
- Continuous
- AKA Bell Curve
- Most common continuous distribution
found in nature (we will see why later)
$P(X=x ; \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)$
$X \sim N\left(\mu, \sigma^{2}\right)$

Standard Normal Distribution

$$
X \sim N(0,1)
$$

Review of Simple Statistical Concepts Part 2

Mean vs Average

Means and Variances

Expectation: taking the sum of the values of a random variable weighted by the probability of their occurrence

- result called expected value or mean

$$
\mu=\mathrm{E}(X)=\sum_{i=1}^{n} p_{i} \cdot x_{i} \quad\left\langle x_{i}, p_{i}\right\rangle \in X \quad \sum_{i=1}^{n} p_{i}=1
$$

Average: the straight sum of the values of a population (a set that allows duplicates) divided by the number of values n in the population

$$
\bar{v}=\operatorname{Avg}(P)=\frac{1}{n} \sum_{i=1}^{n} v_{i} \quad v_{i} \in P
$$

If we have a uniform probability distribution mean = average

Variance of a Random Variable

$\operatorname{var}(X)=E\left((X-\mu)^{2}\right) \quad$ A.K.A. the mean squared deviation
$\operatorname{var}(X)$ can be written as σ_{X}^{2} or σ^{2}

Standard Deviation

- Variance is measured in unit ${ }^{2}$
- So the standard deviation is

$$
\sigma=\sqrt{\operatorname{var}(X)}=\sqrt{E\left((X-\mu)^{2}\right)}
$$

- Statistical values are usually reported in terms of σ
- Most statistics are computed use variance

楊 \quad Variance Properties

Basic Properties

1) Variance is never negative

Because the squares are positive or zero
2) If all elements of X are equal then $\operatorname{var}(X)=0$

For example, the variance of $2,2,2,2$ is 0
3) If some elements of X are unequal then the $\operatorname{var}(X)>0$

Linear Transformations

$$
\operatorname{var}(a X+b)=a^{2} \operatorname{var}(X)
$$

Note: It follows that the variance in independent of the mean since

$$
\operatorname{var}(X-\mu)=\operatorname{var}(X)
$$

- Variance

$$
\operatorname{var}(X)=E\left((X-\mu)^{2}\right)
$$

$$
\operatorname{var}(X)=\frac{1}{n} \sum_{i=1}^{n}\left(v_{i}-\bar{v}\right)^{2}
$$

- Variance of a Population $\quad \operatorname{var}(X)=\frac{1}{n} \sum_{i=1}^{n}\left(v_{i}-\bar{v}\right)^{2}$
- Sample Variance

$$
\operatorname{var}(X)=\frac{1}{n-1} \sum_{i=1}^{n}\left(v_{i}-\bar{v}\right)^{2}
$$

Various Variances

Basic Statistical Tests

Using Confidence Intervals

What Are We Interested In?

- For most statistical analysis for CS the question is
- Is my new way better than the old way?
- Statistically this translates into a statement about the difference between means: "Is the difference between 'my mean' and 'the old mean' greater than zero?"
- We will approach this question in 2 steps:

1. What can we say about the true mean of a single distribution? - Called point estimation
2. How can we compare the true means of two or more distributions?

Distribution of the Mean

- Consider the distribution of the average of a set of n independent samples
- If $n=1$, the distribution of the average is just the distribution itself, since we have only the single data point
- If n is larger than one, the distribution of the mean must be narrower than the distribution of the population
- i.e. the variance and standard deviation must be smaller
- In fact, the standard deviation of the mean of n samples is given by $\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}$

Confidence Intervals

- As the "finger" gets narrower, the mean of the samples approaches the true mean
- We'd like to say that in the overwhelming majority of all possible experiments, the true mean of this distribution will lie within a specified interval
- Example: In 99% of cases, the true mean of the distribution, estimated from our 50 samples, lies within the interval [64,79] - called a confidence interval for the mean

t Distribution

- Of course, we don't know the true mean, μ, or true standard deviation, σ
- We do know the mean of the samples, \bar{X}, the sample size, n, and the sample standard deviation, s_{X}
- If the source distribution is normally distributed, the shape and size of the "finger" is known exactly!
- We can determine the odds that the true mean lies within a specified range of \bar{X}

t Distribution

- What is the T random variable's distribution?
- We know that the sample average is normally distributed
- Sum of normally distributed random variables is normally distributed
- So numerator is normally distributed
- Standard Deviation based on Variance $\operatorname{var}(X)=E\left((X-\mu)^{2}\right)$
- the square of a random variable has a different distribution
- so what is the denominator's probability distribution?

$$
T=\frac{(\bar{X}-\mu)}{s_{X}}=\frac{(\bar{X}-\mu)}{s_{X} / \sqrt{n}}
$$

Chi-Squared Distribution

- Variance has a Chi-Squared Distribution
- Sample variances have different Chi-Squared distribution
- Depends on the number of samples
- Called degrees of freedom

t Distribution

t Distribution

- What is the T random variable's distribution?
- We know that the sample average is normally distributed
- So numerator is normally distributed
- Standard Deviation, based on Variance
- so the denominator has a Chi distribution $\operatorname{var}(X)=E\left((X-\mu)^{2}\right)$
- A normal divided by a chi distribution produces a T distribution

$$
T=\frac{(\bar{X}-\mu)}{s_{\bar{X}}}=\frac{(\bar{X}-\mu)}{s_{X} / \sqrt{n}}
$$

- The t "distribution" is really a family of distributions - the shape of the distribution changes as the number of samples, n, changes
- This parameter is called the degrees of freedom of the distribution
- In the limit of many d.f., t distribution approaches a standard normal distribution

Estimating the Mean:

Confidence Intervals Around the Average
If samples taken from a standard normal distribution ($\mu=0, \sigma=1$), the sample average has a t distribution.

- For Confidence Intervals, we can use cutoff t values
- The wider the cutoff values, the more likely the true mean will fall between them
α is the probability of obtaining values outside the cutoffs
- Confidence Level is $1-\alpha$ Cut off t values can be computed using Excel: =TINV($\alpha, \boldsymbol{n}-\mathbf{1}$) - Note: TINV() is already 2 sided

Estimating the Mean:

Confidence Intervals Around the Average

- Confidence Intervals can be written in 3 equivalent ways

$$
\begin{gathered}
\text { Error Bounds } \\
\mu_{X}=\bar{X} \pm t_{\frac{\alpha}{2}}(n-1) \frac{s_{X}}{\sqrt{n}} \\
\text { Confidence Intervals } \\
\bar{X}-t_{\frac{\alpha}{2}}(n-1) \frac{s_{X}}{\sqrt{n}} \leq \mu_{X} \leq \bar{X}+t_{\frac{\alpha}{2}}(n-1) \frac{s_{X}}{\sqrt{n}} \\
\mu_{X} \in\left[\bar{X}-t_{\frac{\alpha}{2}}(n-1) \frac{s_{X}}{\sqrt{n}}, \bar{X}+t_{\frac{\alpha}{2}}(n-1) \frac{s_{X}}{\sqrt{n}}\right]
\end{gathered}
$$

Example:

- An experimenter runs a New Evolutionary Algorithm on a TSP
- At the end of each run, the smallest length tour
that had been found during the run was recorded
- NEA is run 50 times on the same TSP problem
- On average NEA found solutions with a tour length of 272
- The standard deviation of these tours is 87
- We want to compute a Confidence Interval using a 99% Confidence level

Estimating the Mean:

Confidence Intervals Around the Average

- From the problem we know that the average NEA run produced tours of

$$
\bar{X}=272 \text { that had } s_{X}=87
$$

We know that $\mu_{X}=\bar{X} \pm t_{\frac{\alpha}{2}}(n-1) \frac{s_{X}}{\sqrt{n}}$

- Also from the problem $n=50$ and $\alpha=(1-0.99)=0.01$

$$
\text { so the } \pm t \text { cutoff value is } \frac{t_{\frac{0.01}{}}^{2}}{}(50-1)=t_{\frac{0.01}{2}}^{2}(49)
$$

$$
\text { using Excel we see that } \operatorname{TINV}(0.01,49) \text { is } 2.68
$$

so $\quad \mu_{X}=\bar{X} \pm 2.68 \frac{s_{X}}{\sqrt{50}}=\bar{X} \pm 0.38 s_{X}$
and so $239 \leq \mu_{X} \leq 305$ with a 99% C.L.
i.e. there is only a 1% chance that the true mean lies outside the confidence interval formed around average

Basic Statistical Tests

Comparisons:

Non-Overlapping Confidence Intervals and the Student's T Test

Using Confidence Intervals to Determine Whether My Way is Better

If we have two different EC systems how can we tell if one is better than the other?

Trivial method: Find confidence intervals around both means

- If the CIs don't overlap
- Then it is a rare occurrence when the two systems do have identical means

The system with the better mean can be said to be better on average with a probability better than the Confidence Level

- If the CIs do overlap
- Can't say that the two systems are different with this technique - Either:

1. The two systems are equivalent
2. We haven't sampled enough to discriminate between the two

μ	σ
+10	10
-10	10

95% Confidence Level								
n	X	s_{X}	$1.96 \frac{s_{x}}{\sqrt{n}}$	Lower	Upper			
100	10.5	10.0	3.3	7.2	13.8			
100	-9.7	10.1	3.3	-13.1	-6.4			

Improving the Sensitivity: The Student t Test

- The Student t Test is the basic test used in statistics
- Idea: Gain sensitivity by looking at the difference between the means of the two systems
- If there is no difference between the actual means of the 2 systems
- then the difference between the sample averages should be 0 , with some error that should follow the t distribution
- this is because the difference btw 2 normal distributions is also normal
- so the sample average should be a t distribution as usual
- now we can see if the computed difference of the sample averages falls outside a confidence interval (for some α) for the t distribution
Where the normalized difference falls on the t distribution determines whether difference expected if both systems were actually performing the same

- Normalized difference called the t score

$$
t \text { score }=\frac{\bar{X}_{2}-\bar{X}_{1}}{\sqrt{\frac{s_{X_{1}}^{2}}{n_{1}}+\frac{s_{X_{2}}^{2}}{n_{2}}}}
$$

- Distribution again differs for different sample sizes
- Degrees of Freedom is now

$$
=n_{1}+n_{2}-2
$$

- t test either succeeds or fails
t score greater than cutoff for a given C.L. or not

The Student t Test: p-values

t Test Step by Step

1. Compute the 2 averages X_{1} and X_{2}
2. Compute standard deviations s_{1} and s_{2}
3. Compute degrees of freedom: $n_{1}+n_{2}-2$
4. Calculate T statistic: $T=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)}{2}$
5. Compute the p-value $\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s^{2}}{n_{2}}}$

- p-value $=$ the area under the t distribution outside $[-T, T]$
- Use $=\mathbf{T D I S T}\left(\boldsymbol{T}, \boldsymbol{n}_{\mathbf{1}}+\boldsymbol{n}_{\mathbf{2}}-\mathbf{2}, \mathbf{2}\right)$ in Excel
- The final " 2 " in Excel means "two-sided"

t Test with Binary Distributions

- Often, we are counting the number of successes versus the number of failures
- same as counting the number of heads vs number of tails in a coin flip

- This produces a Binomial Distribution
- b is the binomial count for the n repetitions
- i.e. the number of successes
- the number of repetitions are called Bernoulli trials
- p is the true probability of success - $q=1-p$ is the probability of failure - $B \sim \mathrm{~B}(n, p)$

t Test with Binary Distributions

t Test with Binary Distributions

- Often, we are counting the number of successes versus the
- The sample standard deviation is
- same as counting the number of heads vs number of tails in a coin flip
- Binomial Distribution

- $\mathrm{E}(b)=n p$
- $\operatorname{Var}(b)=n p(1-p)$
$\sigma_{b}=\sqrt{n p(1-p)}$

$$
\sigma_{P}=\frac{1}{n} \sigma_{b}=\frac{1}{n} \sqrt{n p(1-p)}=\sqrt{\frac{p \cdot(1-p)}{n}} \cong \sqrt{\frac{P \cdot(1-P)}{n}}
$$

- The error bounds would be

$$
p=P \pm t_{\frac{\alpha}{2}}(n-1) \sqrt{\frac{P(1-P)}{n}}
$$

- Two compare two Binomial Distributions, use the t Test using the above standard deviation and success frequency

Tests on Non-Normally Distributed Random Variables

Central Limit Theorem
Data Reexpression
Non-Parametric Statistics

Assumptions, assumptions

- All we have said so far applies only if the source distribution is a normal distribution
- What if the source distribution is not a normal distribution?
- In EC, the source distribution is rarely normal!
- Fortunately, there is one nice property that can help us out
- The Central Limit Theorem: the sum of many identically distributed random variables tends to a Gaussian
- Equation of the mean:

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

- So the mean of any set of samples tends to a normal distribution

Central Limit Theorem

E.g. Uniform distribution (continued):

Copyright is held by the author/owner(s).

When The CLT Fails You

- Everything we have done so far depends on
the Central Limit Theorem holding
- But this is not always true
- In in many areas of CS it rarely holds
- Problems occur when
- ...you have a non-zero probability of obtaining infinity

Mean and standard deviation are infinite!

- ...the sample average depends highly on a few scores
- When the mean of your distribution is not measuring what you want, consider using the median instead (rank-based statistics)
- ...you don't know how fast your sample series converges to normal
if your sample average distribution converges very slowly than the number of samples may be insufficient to assume normality

There are 3 techniques

1. Transforming data to make them normally distributed

- also called data re-expression
- traditional approach

2. Re-sampling techniques
3. Non-parametric statistics

So what should we do?

Data Transformation / Reexpression

- Basic idea
- transform data so that result is approximately normal
- Reexpression Heuristics

Type	Reexpression Function
Categorical	N/A
Counts	$X \rightarrow \sqrt{X}$
Counted Fractions	Folded power family (see next slide)
Amounts	since $X \geq 0$ it is often skewed; then $X \rightarrow \log (X)$
Balances	often difference of two amounts if so transform amounts and take difference or ratio
Bounds	if $X \geq a$ treat $X-a$ as an amount if $a \geq X$ treat $a-X$ an an amount if $a \leq X \leq b$ treat $(X-a) /(b-a)$ as a counted fraction

Testing for Normality

- It would be nice to know if a random variable is normally distributed
- To see if reexpression worked
- (or if there is no need for remedial measures)
- Many approaches
- Jarque-Bera test
- Anderson-Darling test
- Cramér-von-Mises criterion
- Lilliefors test for normality
- Variant of the Kolmogorov-Smirnov (KS) test
- Pearson's chi-square test
- Shapiro-Francia test for normality
- Regression on a normality plot

Testing for Normality: Normality Plot

- Normality plot is a scatter plot
- Compares with data that one would expect to be produced from a normal distribution
- If there is a good correlation with your data, then it is normally distributed
- Scatter plot produces a straight line

Testing for Normality: Normality Plot

- To create a normality plot
- Produce known values from a standard normal distribution
- Generate linear cumulative probabilities

$$
\cdot\left(\operatorname{rank}_{0}+0.5\right) / n
$$

- Compute Z-values
- Use the inverse normal function
- Takes a probability and produces the Z-value z that 'produces' it when the standard normal curve is integrated from - ∞ to z
In Excel - NORMSINV (p), where p is a probability
- We would expect these values to be produced by n samples from a standard normal distribution
- Called rankits

Testing for Normality: Normality Plot

- To create a normality plot
- Sort data
- Compare sorted data with rankits using a scatter plot
- Called a normal probability plot, normality plot, or rankit plot
- If linear, can assume normal distribution
- The more linear, the more normal
- To compute how linear:
- Add a linear least square regression line to the displayed series
- Compute r^{2}
- a number between 0 (uncorrelated) and 1 (linear/correlated)
- Heuristic: if $r^{2}>0.92$ data can be treated as normally distributed if $r^{2}>0.87$ data may be normally distributed o.w assume not data is not normally distributed

Resampling

- Estimate the precision of sample statistics (medians, variances, percentiles) by using
- drawing randomly with replacement from a set of data points - Bootstrapping
- subsets of available data
- Jackknife
- Also used in machine learning for training/testing: n -fold validation
- performing significance tests
- Exchanging labels on data points
- Permutation test
- A type of non-parametric statistic

Non-Parametric Statistics

Non-Parametric Tests

- Basic Idea
- Sort the data and then rank them
- Use Ranks instead of actual values to perform statstics
- Also known as
- order statistics,
- ordinal statistics
- rank statistics
- Measures how interspersed the samples are from the 2 treatments
- If the result is "alternating" it is assumed that there is no difference
- Can't be affected by outliers (extrememly large or small values)
- Just the highest or lowest rank
- Reason behind the appropriateness of non-parametric tests
- Both the sum of ranks and average of ranks will be approximately normally distributed
- because of the Central Limit Theorem,
- as long as we have 5 or more samples
- result is independent of the underlying distribution
- Ranked T-test
- Perform a t test on the ranks of the values - instead of the values themselves
- 2 other techniques with similar results are commonly seen
- Wilcoxon's Rank-Sum test
- Mann-Whitney U test
- All are effectively equivalent

How To Rank the Data

- Augment each data point with a treatment identifier and an additional slot for its rank
- Sort the data sets together by value
- record the ranks of all values in their rank slot
- assign the average rank of tied values to each tied value
- Resort by the original order thus splitting the data sets back out
- keep the combined ranking with each data point
- Apply your t test on the ranked values

Copyright is held by the author/owner(s).
GECCO'07, July 7-11, 2007, London,, England, United Kingdomn ACM 978-1-59593-698-1/07/0007.

Ranked t Test: What do we pay? t Test is optimized for the normal distribution t Test on the ranks is not - How much do we pay?			
Distribution	\# Samples for t Test	\# Samples for t Test on Ranks	\# Samples of t_{R}, normalized to 50 runs of t
Normal	31	32	52
Exponential	29	16	27
Uniform	31	34	55
Bimodal	31	34	54
Chubby Tails	40	12	15

Copyright is held by the author/owner(s).
GECCO'07, July 7-11, 2007, London,, England, United Kingdom

A Confidence Interval Around the Median: Thompson-Savur

A Confidence Interval Around the Median: Thompson-Savur

- Find the b the binomial value that has a cumulative upper tail probability of $\alpha / 2$
- In Excel:
- b will have a value near $n / 2$
- The lower percentile $l=\frac{b}{n-1}$

To calculate b use
CRITBINOM ($n, 1 / 2, \alpha / 2$)

- to compute the value $_{u}$ use the function PERCENTILE (dataArray, u)
- The upper percentile $u=1-l$
- to compute the value $_{l}$ use the function PERCENTILE (dataArray, l)
- Confidence Interval is [value $_{l}$, value $_{u}$]
- i.e. value ${ }_{l} \leq$ median \leq value $_{u}$
- With a confidence level of $1-\alpha$

A Confidence Interval Alternative to the Ranked t Test

Effect Size and Repetitions

- Find the median confidence interval for the two data sets
- If the confidence intervals do not overlap
- Data sets are taken from different distributions
- With a confidence level of $1-\alpha$ where α is the upper tail probability used in computing b
- Advantages:
- Gives better understanding of system
see median values with error bounds
- Easy to draw and productive on a graph

Disadvantage:

- Not as sensitive as the ranked t test

Does My Difference Matter?

- Okay, so your results are significantly better than the published results. So what?
- Statistics can answer, "is it better?", but not "does it matter?"
- You perform 100000 runs of your classifier and 100000 runs of the reference classifier
- You get a t score of 31.6 ! ©
- The p-score is reported by Excel as 0 ! (Actually 2.0×10^{-219})
- But...your way classifies data at 91.0% accuracy, whereas the reference technique classifies at 90.8% accuracy.
- Not much difference!
- Especially if your technique is much slower than the reference way
- One statistic for effect size: Cohen's d^{\prime}
- d^{\prime} is computed by $d^{\prime}=\frac{t}{\sqrt{\left(n_{1}+n_{2}\right) / 2}}$
- Measures the difference between means in terms of the pooled standard deviation
- Cohen suggests that 0.25 is a small difference; 0.50 is a medium-sized difference; 0.75 is a large difference
- For our example, d^{\prime} is 0.10
- Essentially an insignificant difference
- Problem: we did too many runs!

Hedges' \hat{g}

- Problem with Cohen's d^{\prime}
- d^{\prime} is independent if sample sizes
- Generally good, but there is a problem
- If one variance is larger than the other
- the denominator is weighted in that direction
- the effect size is more conservative
- But it makes more sense to put stock in the larger sample size
- One solution: Hedges' \hat{g}
- Hedges and Olkin (1985)
- Balances respective variances with sample size

Perils of Stats for EC

- We can generate lots of data very quickly
- Leads to over-complicated experimental designs
- Always draw a scatter plot or histogram of your data!
- This alerts you to strange things
e.g. the mean is very bad, but some individuals are very good
- Always record the performance of $A L L$ the individuals
- You'll need this for doing the t test on the ranks
- In EC, we mean ALL individuals of interest; i.e. best of run

Perils of Stats for EC

- Don't confuse Population averages with Best-of-Run averages!
- In any GA or GP, the average of the population tells you almost nothing of interest
- Use the median of the best-of-run,
- do the WHOLE experiment several times
- In GP use the tree size of the best-of-run individuals as well!
- They are the Heroes - hence they are of interest, unless you're really looking to optimize average tree size during evolution
- What is the number of repetitions needed to see if there is a difference between two means or between two medians?
- Depends on the underlying distributions
- But underlying distributions are unknown
- Rule of thumb
- Perform a minimum of 30 repetitions for each system
- Performing 50 to 100 repetitions is usually better

Multiple Levels and Factors

Multiple Levels

Post-Hoc Analysis: Bonferonni Correction Simple Intro to Multiple Factors

Factorial Design

More Than 2 Treatments

- Preceding stats to be used for simple experiment designs
- More sophisticated stats needs to be done if:
- Comparing multiple systems instead of just 2 treatments
- E.g. comparing the effect on a Genetic Algorithm of using no mutation, low, medium and high levels of mutation
- We say there are 4 levels of the mutation variable
- Need $\binom{4}{2}=6$ possible comparisons to test all pairs of treatments
- Called a 'multi-level' analysis

Multiple Levels:
 Post-hoc Analysis

- For 4 levels of mutation there are 6 comparisons possible
- Each one of the comparison holds at a 95% C.L. independent of the other comparisons
- If all comparisons are to hold at once the odds are $0.95 \times 0.95 \times 0.95 \times \ldots \times 0.95=(0.95)^{6}=0.735$
- So in practice we only have 73.5% C.L
- Wrong $1 / 4$ of the time
- For 7 levels of mutation there are 21 comparisons possible
- C.L. $=(0.95)^{21}=0.341$
- Chances are better than half that at least one of the decisions may be wrong!

The Bonferroni Correction for Tests

- To correct, choose a smaller α
$\begin{aligned} & \alpha^{\prime}=\frac{\alpha}{m} \\ & \text { - Where } m \text { is the number of comparisons }\end{aligned}$
- So for 95% CL use $\alpha=0.025 / 6=0.004167$
- For a Z test the critical value changes from 1.96 to 2.64
- Called a Bonferroni post-hoc correction
- Other post-hoc techniques such as Tukey and Scheffé that are more powerful than Bonferroni; also Holm's and Sidak's procedures can be useful
- You should apply the Bonferroni correction:
- To t tests (t tests and ranked t tests)
- To Confidence Intervals and Error Bounds
- Whenever you mean "all the significant results we found hold at once"

The Bonferroni Correction for Experiments

- The Bonferroni Correction is more widely applicable than just for multi-level comparisons
- We really need to control for the dilution of the confidence levels throughout the study, whether or not the CLs are applied to analyses of independent 'phenomena'
- We must divide the α used for each CL test by the total number of CL tests in the study
- To apply the Bonferroni correction to p-values multiply the p-values by the number of CL tests performed
- "Probabilities" bigger than 1 means "not significant"

The Bonferroni Correction for Experiments

- Example:
- A robot dog has been created
- Genetic Programming is used to control the ear wiggles of the robot
- a Genetic Algorithm is used to optimize its tail wagging ability
- A study is being done to improve both the ears and the tail independently, and we want to be 95% confident in our over all tests
- For the ears the GP is tested with 3 different sets of terminal nodes
- For the tail the GA is tested with 4 different fitness functions
- There are $\binom{3}{2}+\binom{4}{2}=3+6=9$ total CL inferences used in the study
- Consequently the α used for any CL should be $\alpha=0.025$ / $9=0.0028$

Multiple Factors

Multiple Factors: Factorial Design

- Most of the time, there are many different properties we are interested in studying
- e.g. We may be trying out various kinds of crossovers, with
hen dealing with multiple factors with multiple levels
- Important that all combinations of factor levels are tried
- A given combination of factor levels is called a treatment and without mutation, under different selection pressures
- If you want accurate information about each possible interaction, each treatment should be repeated at least 30
- Each of the above parameters has multiple levels times
This is called a multiple factor analysi
- If you interested largely in main effects, 10 repetitions is often fine, if you have enough levels
- Use Analysis of Variance or General Linear Models to analyze
- See text books on ANOVA and GLMs

Multiple Factors: Factorial Design

Multiple Factors: Factorial Design

- If we are performing 50 reps per treatment
- In previous example we have
$S \times X \times P \times 50=2 \times 2 \times 3 \times 50=12 \times 50=600$ experiments to perform
- The number of experiments goes up as the product of the number of levels in each factor
- This is exponential in the number of factors
- Consequently, carefully choose the factors and factor levels that you study in your experiments
- Minimize what factors you vary (focus your experiments on the relevant factors)

Statistical Myths

A fun summary... with some new information

Top 5 Experimental Analysis Myths in CS

Results from 1 run is all that is needed
No, shows only proof of concept
ii. The best value achieved in a set of runs tells you something about the population distribution
ii. Using the same random number gene systems provides a fairer comparison

It doesn't -it's the statistical properties of the system that we are
looking for
iv. One system is obviously better than the other when looking at the data or graph - no statistics necessary

- If it is so obvious, then will be easy to show statistically
- might as well do the stats
shows that you are objectively confident in your conclusion
v. "My average is better than yours" means "my technique is better than yours"
- In the best case you would need to take variance into account

Top 12 Statistics Myths in EC

5. The mean performance of the best-of-run individuals of your system is what matters

- It's usually the median you want

6. 10 runs is enough to show significant differences between groups

- It can be, but the statistics required to show this are hairy

7. 95% confidence levels are generally sufficient

- Try 99.9%

8. Drawing 95% confidence intervals around each sample mean on a graph implies that it's a rare event if any of the true means fall outside the CIs

- Nope; need Bonferroni correction

Top 12 Statistics Myths in EC

Reporting the results of several comparisons where each is made at a 95% confidence level means that all conclusions are valid simultaneously - Nope; need Bonferroni correction for that too
10. 95% confidence intervals can be computed using the sample mean ± 1.96 standard deviations of the mean

Nope; need the Student's t score given your degrees of freedom
11. An experimental setup where more than one parameter is varied can be treated like one where exactly one parameter varies

- Need ANOVA, MANOVA or regression

12. One can infer trends from observed data beyond the data you've generated

- Generally, this would be a consequence of some model, and you probably haven't supported said model with enough experimental data
- Slides online:
http://www.scs.carleton.ca/~schriste/tamale/UsingAppropriateStatistics.pdf
- Hyperstat Online Textbook:
- http://davidmlane.com/hyperstat/index.html
- Statistics textbook for psychology students
- Easy math, nice examples. ©
- Statistics Chapter of Numerical Recipes in C
- http://www.library.cornell.edu/nr/cbookcpdf.html
- Chapter 14, "Statistical Description of Data"
- Very detailed, more for advanced users

