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ABSTRACT

The main motivation for using a multi-objective evolution-
ary algorithm for finding biclusters in gene expression data
is motivated by the fact that when looking for biclusters in
gene expression matrix, several objectives have to be op-
timized simultaneously, and often these objectives are in
conflict with each other. Moreover, the use of evolutionary
computation is justified by the huge dimensionality of the
search space, since it is known that evolutionary algorithms
have great exploration power.

We focus our attention on finding biclusters of high qual-
ity with large variation. This is because, in expression data
analysis, the most important goal may not be finding bi-
clusters containing many genes and conditions, as it might
be more interesting to find a set of genes showing similar
behavior under a set of conditions. Experimental results
confirm the validity of the proposed technique.

Categories and Subject Descriptors

1.5.3 [Pattern Recognition]: Clustering; J.3 [Life and
Medical Sciences]; 1.2 [Artificial Intelligence]

General Terms
Algorithms
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1. INTRODUCTION

Microarray techniques allow to measure the expression
level of thousands of genes under different conditions in a
single experiment, producing in this way a huge amount of
data. Usually these data are organized in matrices, where
rows represent genes and columns represent experimental
conditions. Each element in the matrix refers to the expres-
sion level of a particular gene under a specific condition.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GECCO’07, July 7-11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

385

Jesus S. Aguilar—Ruiz
School of Engineering
Pablo de Olavide University
Seville, Spain
aguilar@Qupo.es

These data have enormous potential in gene profiling, fa-
cilitating the prognosis and the discovering of subtypes of
diseases.

Clustering is the most commonly applied technique for an-
alyzing gene expression data, with the main goal of finding
groups of genes that present a similar variation of expression
level. However, relevant genes are not necessarily related to
every condition. In other words, there are genes that can be
relevant for a subset of conditions [18]. On the contrary, it
is also possible to discriminate groups of conditions by using
different groups of genes. From this point of view, cluster-
ing can not only be addressed horizontally (conditions) or
vertically (genes), but also in the two dimensions simulta-
neously. This approach, named biclustering, identify groups
of genes that show “similar” levels of expression under a
specific subset of experimental conditions.

Biclustering was first introduced by [15], as a way to clus-
ter simultaneously rows and columns of a matrix, and it was
named “direct clustering”. The goal was to find biclusters
with minimum variance, which ideally provided biclusters
of size 1, since they looked for constant biclusters (constant
values within the sub-matrix).

In order to avoid this problem, k biclusters were searched
for at a time. Cheng and Church [9] proposed the biclus-
tering of gene expression data, introducing the residue of
an element in the bicluster and the mean squared residue
(MSR) of a sub-matrix. The row variance was used in or-
der to reject trivial biclusters. Getz et al. [13] presented
the coupled two—way clustering. It uses hierarchical clus-
tering applied separately to each dimension and then they
defined the process for combining both results. Lazzeroni
and Owen [16] used “plaid models” in the same context,
where the concept of “layers” is used to compute the values
in the data matrix, which is described as a linear function
of layers. Basically, each element is seen as a superposition
of layers. Yang et al. [19] presented d—clusters, and the
same authors improved the Cheng and Church’s approach
in FLOC [20], paying attention to missing values. FLOC fol-
lows the same technique as Cheng and Church’s algorithm,
by adding/removing each row/column to a set of initial bi-
clusters, improving its quality iteratively. Tanay et al. [1]
identified biclusters by means of a bipartite graph—based
model and using a greedy approach to add/remove vertices
in order to find maximum weight subgraphs, which are re-
lated to its statistical significance. Evolutionary Algorithms
(EAs) have been used in [3, 7, 12] for finding biclusters in
gene expression data. In these works single-objective EAs
were used. In particular, in [7], the EA adopted, incorpo-



rated some ad—hoc search techniques similar to those used
in [9]. In [8] the order preserving submatrix method by Ben—
Dor [6] was used inside an EA for biclustering in order to
treat separately strongly related experiments such as time
series. For an overview of biclustering techniques, we refer
the reader to [17].

When searching for biclusters in microarray data, several
objectives, e.g., the volume and the mean squared residue,
are to be optimized at the same time. Often, these objec-
tives are in conflict with each other. For example, a biclus-
ter consisting of just one element has mean squared residue
equal to zero, or, again, a constant bicluster have row vari-
ance equal to zero, but also mean squared residue equal to
zero. It follows that the problem of finding biclusters can
be straightforwardly seen as a multi-objective optimization
problem. This represents our main motivation for introduc-
ing a Multi-Objective EA (MOEA) for finding biclusters in
gene expression data. Besides, by using a MOEA it will
not be necessary to combine all the objectives into a single
fitness function, which can be complicated, expecially given
the fact that some of the objectives are interdependent.

The MOEA we propose in this paper is similar to the ap-
proach proposed in [3, 12]. As the algorithm partially uses
the mean squared residue, the results have been compared
to those of Cheng and Church. In expression data analysis,
the most important goal may not be finding the maximum
bicluster or even finding a bicluster covering for the data
matrix. It is more interesting to find a set of genes showing
strikingly similar up-regulation and down-regulation under
a set of conditions. A low mean squared residue score plus
a large variation from the constant may be a good crite-
rion for identifying these genes and conditions. Therefore,
our goal is to find biclusters of maximum size, with mean
squared residue lower than a given §, with a relatively high
row variance, and with a low level of overlapping among
biclusters.

The paper is organized as follows: in Section 2 the def-
initions related to biclustering are presented; Section 3 de-
scribes in detail the algorithm, while experimental results
are discussed in Section 4, comparing the quality to those
generated by Cheng and Church’s algorithm. Finally, some
conclusions are summarized in Section 5.

2. THE MODEL OF BICLUSTER

We follow the biclustering model proposed in [9]. A bi-
cluster is defined on a gene—expression matrix. Let G =
{g1,...,9n} be a set of genes and C = {c1,...,cm} a set of
conditions. The data can be viewed as an [N X M expression
matrix £ M of real numbers, with possible null values. Each
eij € EM corresponds to the logarithm of the relative abun-
dance of the mRNA of a gene g; under a specific condition
Cj.

A bicluster essentially corresponds to a sub—matrix that
exhibits some coherent tendency. Each bicluster can be iden-
tified by a unique set of genes and conditions, that determine
the sub-matrix. Thus a bicluster is a matrix I x J, denoted
as (I,J), where I and J are set of genes (rows) and condi-
tions (columns), respectively, and |I| < |N| and |J| < |M].
We define the volume of a bicluster (I,.J) as the number of
elements e;; such that ¢ € [ and j € J, i.e., |I| X |J|.

Definition 1 Let (I,.J) be a bicluster, then we define the
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SMOB (4)
load Expression Matrix EM
repeat
MOEB(ENM, )
if (bicluster returned)
store bicluster in Results
adjust weights of EM
else
end_cond met
if (max_iter is reached)
end_cond met
until end_cond is met
return Results
(a) Sequential Covering

Figure 1: A general scheme of the sequential cover-
ing algorithm SMOB.
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define the base of a condition c; as er; = % The

base of a bicluster is the mean of all the entries contained
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Definition 2 The mean squared residue rr; of a bicluster
(I,J) is defined as
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The mean squared residue is an indicator of the degree of
coherence of an element with respect to the remaining ones
in the bicluster, given the tendency of the relevant gene and
the relevant condition. The lower the mean squared residue,
the stronger the coherence, and the better the quality of the
bicluster. If a bicluster has a mean squared residue lower
than a given value J, then we call the bicluster a §-bicluster.
In addition to the mean squared residue, we may prefer the
row variance to be relatively large to reject trivial bicluster,
where the row variance is

Yierjeseis —eir)’
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Biclusters characterized by high values of row variance
contains genes that present large changes in their expres-
sion values under different conditions. It follows that row
variance can be used to guarantee that the bicluster cap-
tures genes exhibiting fluctuating yet coherent trends under
some set of conditions.

3. THE ALGORITHM

The algorithm we propose in this paper is called SMOB (for
Sequential Multi-Objective Biclustering) and is outlined in
Figure 1. As in [3, 12], SMOB adopts a sequential covering
strategy. The d—biclusters returned are stored in a list, until
the evolutionary algorithm is called a maximum number of
times. § is an user supplied parameter, as in [9].

We can individuate two main reasons that justify the use
of a MOEA for finding biclusters. First, the problem of



finding biclusters in an expression matrix can be straight-
forwardly seen as a multi-objective problem. Second, with
a MOEA, it is not necessary to combine the objectives in a
single weighted fitness function. Finding a way to combine
the objectives to be optimized in a single function can be
problematic, and may require more parameters to set [11].
The objectives considered for being optimized are: the
mean squared residue, the volume and the row variance.
We want to minimize the mean squared residue, while the
volume and the row variance have to be maximized.

[oftfolofrfe]  [+]efsfofofe[e]o]  [o[t]o]

Genes Conditions-

Figure 2: Encoding for the biclustering problem. In
this example four genes and three conditions were
chosen, so the potential bicluster has 12 elements.

The encoding of biclusters is the one proposed in [3, 12],
where bit strings are used (see Figure 2). A bit is associated
to each gene and each condition of the expression matrix. If
a bit is set to one, it means that the relative gene/condition
belongs to the bicluster, otherwise it does not.

Individuals are initialized in the following way. First the
number of genes |I| and of conditions |J| contained in the
biclusters are randomly determined. Then, |I| bits corre-
sponding to genes and |J| bits corresponding to conditions
are randomly selected. The selected bits are set to one,
which means that the relative gene/condition is contained
in the bicluster encoded by the individual. We perform this
initialization instead of a pure random initialization of bit—
strings because in that way the initial biclusters would con-
tain all about the same number of genes and conditions.

The fitness f(x) of an individual z is calculated on the
basis of the Pareto dominance [14], namely f(x) is based
on the number of individuals x dominates. In order to es-
tablish if x dominates y, we use the mean squared residue,
the volume and the row variance of x and y. However if x
dominates n individuals, n is increased for each individual
y dominated by x such that the mean squared residue of x
is lower than y.

Moreover, in order to promote diversity in the population,
two distance measures are used: one is calculated on the ob-
jective set and the other one on the decision set. The former
is implemented by calculating the distance from the near-
est neighbor in term of objectives, i.e., mean square residue,
volume and row variance. The latter is the normalized aver-
age number of individuals covering the same elements of the
expression matrix covered by the biclustering being evalu-
ated. The inverses of these two distances are added to the
fitness.

The fitness of an individual z is then given by

1 1 1

n  distoy;

T
f(z) o
where n is computed as described above, distq; is the dis-
tance considering the objectives and cov is the normalized
average of individuals covering the elements of the expres-
sion matrix covered by x. Notice that the fitness has to be
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minimized. Biclusters with a mean squared residue higher
than § are penalized by adding to f(z) the value %(x)_é,
where M SR(x) is the mean squared residue of z.

Individuals are selected with a tournament mechanism,
with a tournament size of four. Three crossover operators
are used with different probabilities: one-point crossover,
two-point crossover and uniform crossover. The applica-
tion of the uniform crossover is the one having the highest
probability. Uniform crossover is preferred to one—point and
two—point crossovers, as both would prohibit certain combi-
nations of bits to be crossed over together [7].

Three mutation operators are used: a classical mutation
operator, one that can add a row and one that can add a
column. We consider columns and rows separately, because
typically there are many more rows than columns, thus con-
sidering them together, would give more probability of mu-
tation to rows than to columns.

Elitism is applied by letting the non—dominated individ-
uals to survive to the next generation.

In order to avoid overlapping among biclusters, after each
call of MOEB, we assign a weight to each element e;; of the
expression matrix. This weight w;; is equal to the number
of biclusters stored in the Results list (see Figure 1) that
contain e;;. When a bicluster z is evaluated inside MOEB, a
penalty P(x),

Ve —

L We,
Plz) =1~ iy e

Va

is added to the fitness of x, where V,, is the volume of z. In
this way, if a bicluster has low volume and it covers elements
of the expression matrix that are already contained in many
biclusters already found, P(z) will be high. On the other
hand, if the bicluster has a high volume and it overlaps with
few biclusters, the penalty will be lower. If the bicluster x
does not overlap with any biclusters then P(z) is zero.

4. EXPERIMENTS

In order to asses the goodness of the proposed method
for finding biclusters in expression data, we conduct experi-
ments on three well known datasets. The first dataset is the
yeast Saccharomyces cerevisiae cell cycle expression dataset
originated from [10]. The expression matrix contained in
this dataset consists of 2884 genes and 17 conditions. For
the yeast dataset § was set to 300. The second dataset is the
human B—cells expression data originated from [5]. The hu-
man dataset consists of an expression matrix of 4026 genes
and 96 conditions. For the human dataset § was set to 1200.

The two datasets are taken from [9], were the original data
are preprocessed. The most important preprocessing opera-
tion regards missing values: missing values are replaced with
random values, although it is known the existing risk that
these random numbers can affect the discovery of biclusters
[19]. The expectation was that these random values would
not form recognizable patterns. These values of § used in
the two datasets are taken from [9].

The third dataset is the Colon Cancer dataset. This
dataset originated from [10], and it contains an expression
matrix consisting of 2000 genes and 62 conditions. This
dataset was preprocessed as in [9], where each entry z of the
original dataset was substituted by the value 100-log(10°-z).
For this dataset the value of § was set to 500, becasue the
expression matrix contained in the dataset has a size that
is about the double of that contained in the yeast dataset.
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Figure 3: Nine biclusters found on the yeast dataset.

A similar reasoning was adopted in [9] for determining the
values of § for some datasets.

In these experiments we used the default parameters of the
evolutionary algorithms, which have proven to be effective
when used in the single—objective EA on which SMOB is based
on (see [12]). These parameters are shown in Table 1.

Table 1: Standard parameter values for SMOB.

Parameter | Value
Generations 100
Population size 200
Crossover probability | 0.85
Mutation probability 0.2

In Figure 3 nine biclusters out of the one hundred found
on the yeast dataset are shown. Biclusters 77 and 19 are
particularly interesting. They present a similar behavior,
but they only have two genes in common. It is interesting
to notice that in both biclusters a gene assume a behav-
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ior similar to that of all the other genes, even if its level
of expression is much lower than the others on all the con-
ditions. In both biclusters the expression values of all the
genes increase in unison under the ninth condition. A sim-
ilar behavior can be noticed also in bicluster 20, where two
genes assume lower expression levels than that assumed by
the main group of genes on all the conditions. Nevertheless
the behavior of all the genes is similar under all the sixteen
conditions contained in the bicluster. Bicluster 99 is also
interesting. It contains ten genes showing strikingly up-—
regulation and down-regulation under thirteen conditions.
This similar behavior is also highlighted by the high row
variance characterizing this bicluster. Another interesting
fact to notice is that the first bicluster found by SMOB (bi-
cluster 1) is not as flat as the first biclusters found by SEBI.
This confirms the validity of a multi-objective approach to
the biclustering problem. Information about the biclusters
shown in Figure 3 is summarized in Table 2. The one hun-
dred biclusters found on the yeast dataset cover 47.02% of
the gens, 100% of the conditions, and in total 40.39% of the
elements of the expression matrix.
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Figure 4: Nine biclusters found on the human lymphoma dataset.

Table 2: Information regarding the biclusters found
on the yeast dataset shown in Figure 3.

Bicluster | Genes Conditions Residue Row Variance
1 36 17 216.59 629.68
17 7 15 206.61 979.39
19 41 17 205.21 623.70
20 26 16 205.36 600.99
38 23 17 201.92 371.72
55 13 12 201.91 996.74
64 29 17 211.69 450.95
77 19 17 202.18 701.68
99 10 13 203.06 1248.97
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According to the characterization of shifting and scaling
patterns in biclusters described in [2], biclusters 17, 55 and
99 are particularly interesting due to the similar behavior
of genes under several conditions (15, 12 and 13, respec-
tively) and the wide range of levels of expression (aprox.
300, 250 and 350, respectively) for few genes (7, 13 and 10,
respectively), what produces excellent results of row vari-
ance (aprox. 979, 996 and 1248, respectively). Anyway, it
is important to note, as it is pointed out in [2], that a mean
squared residue of about 200 might also indicate that some
scaling factor is present in the biclusters.

Figure 4 shows nine biclusters out of one hundred found by
SMOB on the human dataset. Information regarding these bi-
clusters is given in Table 3. All the biclusters shown contain
genes that behave in a very similar way. Bicluster 8 is par-
ticularly interesting. It is characterized by its very high row
variance, together with very small mean squared residue.
This is reflected in the very similar changes in expression
level assumed by the three genes under the ninety—four con-
ditions of the bicluster. Another interesting bicluster is the
number 71. In this case, it can be noticed that under one
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Figure 5: Nine biclusters found on the colon cancer dataset.

Table 3: Information regarding the biclusters found
on the human dataset shown in Figure 4.

Bicluster | Genes Conditions Residue Row Variance
1 21 82 1175.08 2028.91
14 10 89 967.74 2784.85
17 17 70 1167.99 2945.48
45 6 91 1155.33 4931.82
52 12 71 1147.07 2806.31
59 5 93 851.08 3725.49
71 4 73 1111.24 6082.14
8 3 94 688.34 9067.13
85 15 58 1148.79 3156.68
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condition, all the genes have an very high increment in their
expression levels, while for the rest of the conditions they be-
have in a similar way. Bicluster 17 contains seventeen genes
that oscillate in the same way under all the 70 conditions
contained in the bicluster. For this dataset, there is no evi-
dence of clear shifting patterns. The one hundred biclusters
found on the human dataset covered 33.52% of the elements
of the expression matrix (45.05% of the genes and 100% of
the conditions).

Nine biclusters found on the colon datasets are reported
in Figure 5. Infomation about these biclusters is shown in
Table 4.

Also in these biclusters, shifting patterns can be clearly
noticed in biclusters 100, 97, 74, 46 and 55. In particular, in
bicluster 100, two groups of genes, one consisting of two gens
and the other of the remaining ten genes, can be noticed.
The two group of genes have different magnitude of expres-
sion level, but nevertheless they show the same behavior un-
der the twenty conditions contained in the bicluster. Biclus-
ter 74 presents shifting patterns, where three group of genes
can be noticed to have the same up and down regulations



Table 5: Performance comparison between SMOB, SEBI and CC. The third column reports the average mean
squared residue of the 100 biclusters found on each dataset, the fourth column reports the average volume,
while the fifth and the sixth columns report the average number of genes and conditions contained in the
biclusters, respectively. Standard deviation is reported between parentheses.

Dataset] Avg. residue Avg. Volume Avg. genes Avg. cond.
Yeast | 206.17 (15.82) | 453.48 (231.76) | 27.28 (14.88) | 15.46 (1.88)
SMOB (| Human [1019.16 (120.78)| 709.13 (378.05) | 11.60 (12.55) |78.47 (19.46)
Colon | 472.01 (20.94) | 658.96 (376.53) | 15.45 (12.42) |48.93 (11.01)
Yeast 205.18 (4.49) 209.92 (171.39) | 13.61 (10.38) | 15.25 (1.37)
SEBI || Human | 1028.84 (29.19) | 615.84 (278.35) 14.07 (5.39) | 43.57 (6.20)
Colon | 492.46 (6.23) 403.48 (215.70) 9.86 (4.51) 40.91 (8.00)
cc Yeast | 204.29 (42.78) [1576.98 (2178.46)|166.71 (226.37)| 12.09 (4.39)
Human | 850.04 (153.91) [4595.98 (3353.72)|269.22 (204.71) | 24.5 (20.92)

Table 4: Information regarding the biclusters found
on the colon dataset shown in Figure 5.

Bicluster | Genes Conditions Residue Row Variance

1 26 48 482.85 3889.90

11 10 50 485.00 4661.39
46 15 48 453.26 4794.21
50 4 57 492.40 6389.89
55 13 49 469.85 3748.42
59 15 52 474.98 4133.75
74 19 37 454.95 3839.95
97 9 29 446.52 4874.55
100 12 20 467.60 3919.60

under the thirty—seven conditions included in the bicluster
(this result shows the good performance of multi-objective
evolutionary computation on this task, as this bicluster was
not previously identified by other approaches). Bicluster
50 is also particularly interesting. It contains four genes
showing a very similar behavior under fifty—seven conditions.
This fact is reflected by the high row variance characterizing
this bicluster. Also in the case of the colon dataset, the first
bicluster found (labelled 1 in Figure 5) is very interesting.
It contains twenty—six genes that behave in a very similar
way under forty—eight conditions. The one-hundred biclus-
ters found on the colon dataset cover 45.05% of the genes,
100% of the conditions for a total of 33.53% of the elements
of the expression matrix.

In order to analyze the behavior of the multi-objective
evolutionary algorithm, we have also conducted experiments
with a single-objective evolutionary algorithm (SEBI) and a
non-evolutionary algorithm (CC). Table 5 shows a compar-
ison between the results obtained by SMOB and the results
obtained by SEBI [3] and CC [9].

As far as the yeast dataset is concerned, in general the
three algorithms obtained similar results. The results ob-
tained by SMOB and SEBI are usually more stable. CC could
find bigger biclusters. However, the first biclusters found by
CC are huge, although not very interesting, since they are
characterized by a very low row variance, i.e., they are “flat”.
Instead, we have seen that the first bicluster found by SMOB
is interesting, and this is not true only for the yeast dataset,
but also for the other datasets used in the experimentation
carried out in this paper.
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The results obtained on the human dataset by SMOB are
better than those obtained by SEBI. SMOB found biclusters
characterized by a slightly lower mean squared residue and
with higher volumes. In general, SMOB and SEBI find smaller
biclusters, partially due to the overlapping policy adopted
by them. On the colon dataset, SMOB again performed better
than SEBI. The biclusters found have lower mean squared
residue and much higher volume. We have seen that the bi-
clusters found by SMOB are very interesting on this dataset,
including the first biclusters, unlike CC, where some unin-
teresting biclusters have to be found before interesting bi-
clusters are discovered [9].

We believe that the overlapping policy adopted by both
SMOB and SEBI is more appropriate than the one adopted
by CC. In fact, after a bicluster is found, CC substitutes the
values of the entries covered by the bicluster with random
values. It is known the existing risk that these random num-
bers can affect the quality of further biclusters discovered by
the algorithm [19].

In short, SMOB finds more stable biclusters, including clearly
some relevant shifting patterns, which reveal the co-regulation
of groups of genes under subsets of experimental conditions.

5. CONCLUSIONS

In this paper we have proposed a multi—objective evolu-
tionary algorithm, called SMOB, for finding biclusters in gene
expression data.

The algorithm is based on the single—objective algorithm,
called SEBI, introduced in [3, 12]. In that algorithm, the
fitness of an individual encoding one bicluster was based on
a weighted sum of the mean squared residue, the volume
and the row variance. All these three objectives are to be
optimized, and they are in conflict with each other. Thus,
a multi-objective approach seems a natural solution for the
problem of finding biclusters in gene expression data. More-
over, by using a multi-objective algorithm, the definition of
a fitness, based on the Pareto front, is straightforward, and
it reduces at the same time the number of parameters of the
algorithm.

Experimental results show that SMOB is able to find inter-
esting biclusters on expression data. The biclusters found by
SMOB improve the results obtained by SEBI, both in terms
of volume and of mean squared residue. It is worth noticing
that the first biclusters found by CC are usually not very
significant, while even the first biclusters found by SMOB are



interesting, and that the biclusters found by SMOB are, in
general, characterized by a higher row variance.

As a future development of SMOB, we are considering to
implement a version of the algorithm by using a specific
representation, named natural encoding [4], which seems to
be very useful for this problem.
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