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ABSTRACT 

In this paper, a model based on genetic algorithms for protein 
folding prediction is proposed. The most important features of the 
proposed approach are: i) Heuristic secondary structure 
information is used in the initialization of the genetic algorithm; 
ii) An enhanced 3D spatial representation called cube-octahedron 
is used, also, an expansion technique is proposed in order to 
reduce the computational complexity and spatial constraints; iii) 
Data preprocessing of geometric features to characterize the cube-
octahedron using twelve basic vectors to define the nodes. 
Additionally, biological information (torsion angles, bond angles 
and secondary structure conformations) was pre-processed 
through an analysis of all possible combinations of the basic 
vectors which satisfy the biological constrains defined by the 
spatial representation; and iv) Hashing techniques were used to 
improve the computational efficiency. The pre-processed 
information was stored in hash tables, which are intensively used 
by the genetic algorithm.  Some experiments were carried out to 
validate the proposed model obtaining very promising results.  

Categories and Subject Descriptors 
J.3 [Life and Medical Sciences]: Biology and genetics 

General Terms: Design, Algorithms 

Keywords: Genetic Algorithms, Protein Folding Problem, 
Ab-Initio methods, 3D- FCC spatial representation 

1. INTRODUCTION 
Scientists have studied for decades the complex processes that 

determine the structure, properties and functionality of proteins.  
Nowadays, many of these investigation topics converge to the 
protein folding problem, and extremely challenging and complex 
issues still remain. The protein folding problem consists of 
determining the tertiary protein structure from its amino acid 
sequence; such three-dimensional conformation will allow the 
protein to carry out its function [1].  

Understanding the complex process that determines the 
structure,  properties  and  functionality  of  proteins  is important  

 
because they carry out a wide variety of vitals functions 
developed in the living organisms; for example, proteins are 
involved in the catalysis of cellular chemical reactions, transport 
of molecules, transduction of signals, segregation of genetic 
material and production and use of energy [2]. 

A protein can be seen from four different structure levels. The 
primary protein structure is defined by the amino acid sequence. 
The secondary protein structure consists of local folding patterns, 
where the most common are α-helices and β-sheets. In contrast, 
the tertiary protein structure is the three-dimensional structure of 
the amino acids after proteins fold into its native state, at this 
level, proteins become functional. In the fourth protein structure, 
different polypeptide chains with tertiary structure interact to 
build a protein complex [3]. 

The laws of physics and the theory of evolution are the 
principles on which the techniques of protein structure prediction 
are based. Ab-initio methods use the laws of physics to predict a 
protein structure from its amino acid sequence. On the other hand, 
comparative methods rely on the folding similarity between the 
target protein and known protein structures [4]. 

Ab-initio computational approaches work at different levels of 
complexity, ranging from simple lattice models, where the amino 
acid residue of a protein is approximated as a point particle to all-
atom models with explicit solvent. However, simpler models are 
useful because they can be exhaustively investigated with a 
modest amount of computer resources [5]. 

In this paper, a computational model for protein folding is 
proposed. The protein folding space is represented using a cubo-
octahedral lattice, where the approach takes advantage of its 
geometric properties and biological feature representation [6]. 
Also, genetic algorithms are used to simulate the folding process 
because it has been shown that they are a good alternative in 
comparison with conventional Monte Carlo methods [7, 12]. 
Basis vector operations are used to guide possible location of an 
amino acid in the 3D-space during the protein structure search.  In 
order to overcome inherent complexity of the problem, highly 
developed hashing techniques and data preprocessing are 
exploited. Additionally, second structure protein prediction is 
used as heuristic information. Furthermore, some experiments 
were designed to predict a set of proteins in order to evaluate the 
advantages and limitations of the model. 

This paper is organized as follows. First, a biological 
background necessary to understand the computational simulation 
of the protein folding process is presented. Then, the proposed 
approach for protein folding prediction is described. Thus, the 
spatial representation, energy function and genetic algorithm 
characteristics are described. Subsequently, the experimental 
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framework and its results are discussed. Finally, some conclusions 
from this work are devised. 

 

2. BACKGROUND 
Proteins are formed from one or more amino acid sequences 

in a folding process in which a three-dimensional structure is 
obtained. This three-dimensional structure is highly important 
because it determines the function of the protein. In order to 
understand the structure and formation of proteins, it is 
convenient to consider four structural levels. Primary structure 
consists in the order of the amino acids in the sequence. 
Secondary structure that contains regular components like α-
helices, β-sheets and β-turns, where these types of structures 
contribute to the stabilization of protein folding. Tertiary structure 
where the elements of secondary structure are folded forming an 
almost solid compact structure that is stabilized by weak 
interactions that involve polar groups as non-polar ones. 
Quaternary structure consists of several polypeptides chains with 
tertiary structure that are joined by weak connections – non-
covalent – to form a protein complex [9]. 

Protein structure prediction methods may be classified in four 
main groups: i) comparative models; ii) fold recognition; iii) 
primary principle methods with database information; and iv) first 
principle methods without database information (ab-initio) [4]. 

Methods based on knowledge for predicting protein structures 
have been widely criticized because they do not provide 
information about the mechanisms and forces that direct the 
formation of such structures. On the other hand, since methods 
based on primary principles support their predictions on physical 
models, they can discriminate between correct and incorrect 
assumptions of the model and have a deeper understanding of 
protein folding mechanisms. 

Ab-initio methods try to directly predict the three-dimensional 
structure without structural information of the target protein’s 
family. Although such methods are very demanding at a 
computational level, they are extremely important because in 
some cases, it is not possible to find homologous structures 
related to a target protein; also, new structures that are discovered 
can have unique or different structural characteristic with respect 
to other proteins already reported. 

A very important issue to consider in protein folding 
modeling is spatial representation, which refers to the space on 
which amino acid sequence is folded. Although protein folding in 
a three-dimensional space can consider all the possible degrees of 
freedom, the computational cost of this type of representation is 
extremely expensive; therefore, it is necessary to make some 
simplifications in the amino acid and space representation. 
Typically, specific spatial lattices or grids can be used to 
represent amino acid space and to allow folding having discrete 
degrees of freedom. 

The folding model is another essential aspect to consider, 
since it determines the protein structure. Several folding models 
have been formulated to explain a protein folding given physical 
assumptions (Levinthal´s Paradox) [5, 9] and the biological 
conditions in which the protein is folded. Thus, protein folding 
can be conceived as the exploration of different protein structures 
in an energy landscape which has the form of a funnel and is 
highly irregular. A general assumption is that the lower a structure 
is in the energy landscape, the closer the folding is to the native 
state of the protein. 

In order to explore the energy landscape, several search 
methods can be applied. Such approaches differ in the way they 
modify the folding to produce changes in protein energy and to 
move in the search space. The exploration of the energy landscape 
is determined by an evaluation criterion based on an energy 
function that represents low-level interactions between amino 
acids. Typically, in ab-initio methods, the energy function is used 
to search for the protein native state. Particularly, in the genetic 
algorithm proposed in this work, the energy function represents 
the fitness of each individual. 
 

3. PROPOSED APPROACH 
The proposed model is based on the following four key 

features:  

• the use of genetic algorithms for the evolution of 
protein folding populations;  

• heuristic information based on secondary structure 
and a priori biological information;  

• spatial representation with low computational cost 
and  high biological significance;  

• hash tables for efficient search and operations. 
In Section 3.1, a discrete structure called cube-octahedron to 

represent the protein folding is described; in Section 3.2 the 
energy function used in the model is briefly explained; in the 
subsequent sections the main details of the genetic algorithm are 
presented.  

Fig. 1 depicts the proposed protein folding prediction model. 
The process starts with the Pred2ary secondary structure 
prediction. Then that information is processed and used for the 
creation of the first population. Subsequently, the population is 
evolved using genetic operators and then the individuals for the 
following generation are selected. The previous step is repeated 
until a number of generations given by the user is reached or a 
stopping criterion is met. The process ends with the generation 
and visualization of a PDB file which contains the spatial 
information of the predicted model.     

 

3.1   Spatial Representation 
An architecture of residue packing called cube-octahedron 

that has 14 faces and 12 vertices developed by Raghunathan and 
Jernigan was used [6]. This grid is a face-centered cubic (FCC) 
lattice in which the connections between the 12 neighbors and its 
center have the same length (see Fig. 2).  

Taking advantage of the geometry of the cube-octahedron, it 
is possible to define 12 vectors that will determine the possible 
discrete points of the space where amino acids may be located. 
Thus, such vectors form 0°, 60°, 90° or 120° bond angles between 
them; however, it is important to notice that only 90° and 120° 
angles are biologically allowed due to steric constraints. 
Consequently, three of such vectors can only define certain valid 
torsions angles, specifically, 54.7°, 109.5°, 125.3° and 180°. 

Notice that the FCC lattice is formed by joining each two 
cube-octahedron units through six points on the surface of any 
layer of expansion as shown in Fig. 3. Thus, starting with a cube-
octahedron, the lattice can be expanded in a radial manner by 
adding a new layer of cube-octahedrons around it, with the 
corresponding geometrical constraints. Hence, as shown in [8], 
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the number of additional points N for a particular layer L is given 
by: 

 N = 10 L2 +2 (1) 
 

Thus, the number of points in an L layer FCC lattice is given by: 
 

N = 
10L3 + 15L2 +11L

3  + 1  
(2) 

 

     In other words, storing the lattice information is 
computationally expensive because the number of nodes grows in 
a cubic way with the number of layers. Thus, in order to consider 
all possible protein foldings without geometric constraints, the 
FCC lattice should have a number of layers around the number of 
amino acids in the protein sequence. In order to avoid this 
problem, which usually makes most approaches to consider a very 
limited lattice size, in this work, no structure information for the 
lattice is directly stored; instead, only the 3D discrete points, 
where the amino acids are located, will be stored. Besides, some 
tables that store the vector information that specify how to reach a 
neighbor point from the current location, according to the 
biological constraints, (only 90° and 120° bond angles are 
allowed). Fig. 4 shows a vector diagram that illustrates how to 
reach the neighbor points from the current amino acid location; in 
Fig. 4 each vector was represented with a different color (the 
opposite vectors were not included in the figure). Clearly, the 
neighbor points can be easily computed by a vector sum operation 
using the information in Table 2, where the first four columns 
correspond to 120° bond angles and the last two define 90° bond 
angles. 

The proposed implementation based on vectors uses some 
preprocessed data related to the spatial representation of the 
protein folding problem thus reducing to a great extent the 
computational complexity of the algorithm. 
 

3.2 Energy Function  
The next energy function is assumed for the protein folding [9]: 

∑ Δ=
ij

jiij BE ),( ηη      (3) 

In this function, the variable Δij can take either 1 or 0. If the 
amino acid i is located at a unit of distance from amino acid j and 
both of them are not consecutive in the sequence, variable Δij 
takes the value 1, otherwise it takes the value 0. In Eq. (3), the 
weight B(ηi, ηj) refers to the energetic value that correspond to the 
interaction between each possible pair of essential amino acids. 
Therefore, a 20x20 matrix is provided. 

In this work, two potential matrices are used; the first one was 
developed by Berrera et. al. [10] – this matrix will be referred as 
the BMF matrix–. The other matrix obtained by Miyazawa and 
Jerningan [11] is widely use in similar works – this matrix will be 
referred as the MJ matrix. 

 To compute the energy function, the amino acid sequence is 
scanned and for every amino acid, each one of the twelve basic 
vectors is checked in order to find another amino acid that is not 
consecutive in the sequence. Then, the energy is computed as the 
sum of the corresponding energetic values in the potential matrix 
for the neighbor amino acids. The final value is divided by two, 
since a same energetic value is considered twice in the 
computation. 

 
Figure 1. Flow diagram of the proposed protein folding model 
 

 
                    Figure 2. Cube-octahedron unit 
 

 
 

Figure 3. Face-centered Cube-octahedron lattice 
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Figure 4. Face-Centered Cube-Vector Representation 

 

Table 1. Vector Definition: Base on the geometry on octahedron 
and tetrahedron, the spatial representations for each vector 
defined by the indexing scheme V = (i, j, k) were found. 
 

 
 
 
 
 
  
 
 
 

Table 2. Vectors with valid bond angles: If e6 is the vector used 
to reach amino acid i, vectors –e1,-e2,-e3, -e4, e4 and e5 are 
candidates to be the next vector.  

Input   
Vector 

Bond 
Angle 1200 

Bond  
Angle 900 

-e6 e1 e2 e3 -e5 e4 -e4 
-e5 e1 -e3 -e4 -e6 e2 -e2 
-e4 -e1 e2 -e3 -e5 e6 -e6 
-e3 -e2 -e4 -e5 e6 e1 -e1 
-e2 e1 -e3 e4 e6 e5 -e5 
-e1 e2 -e4 e5 e6 e3 -e3 
e6 -e1 -e2 -e3 e5 e4 -e4 
e1 -e2 e4 -e5 -e6 e3 -e3 
e2 -e1 e3 -e4 -e6 e5 -e5 
e3 e2 e4 e5 -e6 e1 -e1 
e4 e1 -e2 e3 e5 e6 -e6 
e5 -e1 e3 e4 e6 e2 -e2 

 

 

3.3 Hashing 
The use of hashing is highly important in the proposed approach 
because it drastically reduces the computational time, as a 
consequence of the efficiency offered by hash tables in search, 
updating and erasing processes. Additionally, hash tables have a 
constant size, depending on the protein sequence length, thus 
avoiding the hash table degeneration while keeping its efficiency. 
The hash tables used in this work are described next. 

3.3.1 Amino acid Hash table  
This hash table stores amino acid 3D coordinates; 

nonetheless, the main purpose of this table is to be able to 
determine if a 3D coordinate is already occupied by an amino 
acid. Consequently, this hash table is also used to calculate the 
energy function for each individual. Having access to this 
information in constant time allows designing very efficient 
genetic operators to modify individuals.  

Each individual is associated one of these hash tables. Each 
hash table has an entry for each amino acid in the sequence. The 
key for this hash table corresponds to the concatenation of the 
Cartesian coordinates occupied by the amino acid. The key in 
these hash tables is formed by the concatenation of the 
coordinates seen as strings and separated by commas.  
 

3.3.2 Secondary structure hash tables 
Three hash tables are used to provide the information for all 

the possible combinations of three vectors that form secondary 
level structures. These hash tables were obtained by preprocessing 
bond and torsion angles information for all possible vector 
conformations with biological significance; for this reason, it is 
not necessary to calculate bond and torsion angles at run-time, 
thus reducing significantly computation time. 

 Therefore, there are two hash tables that contain the set of 
necessary vectors to form α-helices. This set of three vectors form 
alternate 120° and 90° bond angles with a torsion angle of 55° [6]. 
The vector combinations that form β-sheets are stored in another 
hash table that has 120° bond angles and a 180° torsion angle.  

The key for each hash table corresponds to the string obtained 
as the concatenation of two vectors separated by commas and the 
key-value is the third vector necessary to complete the set of 
vectors with the bond and torsion angles required to complete the 
desired protein secondary structure.  
 

3.4 The proposed genetic algorithm  
Genetic algorithms are systematic methods based on 

biological evolution used to solve search and optimization 
problems. A population of individuals that typically represent the 
solutions to a particular problem is evolved, based on the survival 
of the fittest principle and introducing genetic variation in the 
individuals of the population. Thus individuals are encoded as 
chromosomes, and genetic operators are applied over them to 
introduce changes that allow an exploration of the solution search 
space. The individuals compete among them, and the environment 
that consists of other possible solutions produces a selective 
pressure over the population to favor the survival of the fittest 
individuals. Genetic information in the chromosomes will be 
preserved and transmitted to the next generations [13, 14]. A 
genetic algorithm can be described in a general way by the 
following pseudo code: 

Begin Genetic Algorithm 
  gc:=0  { generation counter } 
  Initialize population P(gc)  
  Evaluate population P(gc)   
  while not stopping criterion met do  
      gc:=gc+1  
      Select P(gc) from P(gc-1)  
      Mutate P(gc) 
  Crossover P(gc)  
      Evaluate P(gc)  
  end while  
end Genetic Algorithm  

Vector Value {x, y, z} 
e1 {-0.5,0,0.866} 
-e1 {0.5,0,-0.866} 
e2 {-0.5,0,-0.866} 
-e2 {0.5,0,0.866} 
e3 {-0.5,0.8165,-0.288} 
-e3 {0.5,-0.8165,0.288} 
e4 {0,0.8165,0.577} 
-e4 {0,-0.8165,-0.577} 
e5 {0.5,0.8165,-0.288} 
-e5 {-0.5,-0.8165,0.288} 
e6 {1,0,0} 
-e6 {-1,0,0} 
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3.4.1 Individual Representation 
The chromosome is a data array of the same length as the 

amino acid sequence. Each location of the array contains two 
integer numbers and three real values. The first integer identifies 
one of the vectors defined in Table 1. The second integer 
represents a bond angle between the current vector and its 
previous vector. On the other hand, the three real values 
correspond to a 3D coordinate (x, y, z) where an amino acid is 
located.  It is important to notice that the coordinates and the 
torsion angle do not belong to the chromosome since genetic 
operators are not actually applied over them. Such coordinates are 
computed during the chromosome evaluation phase and it is 
convenient to store them together for implementation purposes. 

The range for the real numbers that represent the points in the 
three-dimensional space is defined as follows: (-n, +n) for the x 
coordinate, (-0.8165×n, +0.8165×n) for the y coordinate and (-
0.866×n, +0.866×n) for the z coordinate, where n is the length of 
the amino acid sequence. These intervals were computed by 
considering the longest length of a folding for a protein of length 
n (see Table 1).  

A chromosome represents a particular folding for a given 
protein sequence, and it contains the spatial information of each 
amino acid and other information necessary to determine the 
protein folding.  

The individual representation is quite convenient because all 
the necessary information to reproduce the three-dimensional 
structure of the protein is stored in a very simple data structure 
that maintains the flexibility of the model without adding 
computational constraints and is very efficient with respect to the 
use of computational resources. 
 

3.4.2 The initial population 
A heuristics based on secondary structure information is used 

to generate the initial population. This heuristics helps the search 
process, thus increasing the precision and quality of the results. 
Moreover, the protein folding is modeled in a more realistic 
manner, because the formation of a secondary structure is an 
important step previous to a more complex process that leads to 
the native structure of the protein. 

The generation of the secondary structure information is 
based on the method Pred2ary, developed by Chandonia and 
Karplus [15]. Pre2dary is implemented as a feedforward neural 
network that receives an amino acid sequence as input and 
outputs a secondary structure prediction. Thus, for each amino 
acid, a classification of helix, sheet or coil with its respective 
probabilities is obtained. This method reported a near to 79% 
accuracy [15]. 

The information of this secondary structure prediction process 
is then used to create the initial population.  First, a set of two 
vectors using a uniform random distribution is generated, keeping 
in mind the restrictions given in the Table 2; the main objective of 
these two vectors is to create the first key necessary to get from 
the secondary structure hash table the next vector that will 
guarantee valid secondary structure formation. 

Based on the predicted probabilities for each amino acid, they 
are classified as α-helix, β-sheet or coil – where coil is an 
unknown structure. Given the secondary structure classification, 
for each amino acid the next valid vector from the corresponding 

hash table is chosen or a random process is applied if the amino 
acid is classified as coil. 

 
Figure 5. Genetic operators: a. Initial individual before 

mutation; b. Individual after mutation (amino acid 5); c-d. 
Parents for crossover operators; e-f. Children after crossover n = 1 
(amino acid 5); g-h. Children after crossover n = 2 (amino acid 3 
and 6) 

 

3.4.3 Fitness Function 
Given that an individual represents a protein folding, the fitness 
function is equal to the energy function based on amino acid 
interaction described in Section 3.2.  
 

3.4.4 Genetic Operators 
In the genetic algorithm, tournament selection is used. In addition, 
genetic variation is introduced by particular crossover and 
mutation operators, which will be described next (see Fig. 5).  

 

3.4.4.1 Mutation Operator 
The mutation genetic operator is very important to explore the 

search space and to maintain the diversity between individuals. In 
general, by changing the local direction of an amino acid vector, 
drastic effects on the protein structure are produced.  

A random number uniformly between 0 and n - where n is the 
number of amino acids in the sequence- is generated, and then the 
vector located in that position is replaced with a new vector 
randomly chosen from Table 2. This process ensures that a valid 
vector is generated with respect to its previous and contiguous 
neighbors. Then, the (x, y, z) coordinates of the amino acids that 
are located after that position are recomputed (see Fig. 5). The 
amino acid hash table is used to verify the absence of collisions 
and to know if the result of the mutation process is a valid 
individual. This guarantees that each amino acid occupies a 
unique Cartesian point in the space.   

 

3.4.4.2 Crossover 
N-point crossover operator is considered, for n=1 and n=2. 

The main objective of the first crossover is to exploit local 
minima in order to find better individuals; on the other hand, the 
main objective of the second crossover is to allow a better 
exploration of the search space. 

In one-point crossover, a random number between 0 and the 
length of the amino acid sequence is generated, then the set of 
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vectors from this position to the last position of each individual 
are swapped. In order to exchange the information of each 
individual, it is necessary to check the vectors in Table 2 to 
ensure that the new set of neighbor vectors do not break the bond 
angle constraints. Using the new set of swapped vectors, the new 
positions of the amino acids for each individual are recalculated. 
If the new points are valid, the two new individuals are kept to be 
selected as part of the new population (see Fig. 4). 

On the other hand, in two-point crossover, two random 
numbers between (0, n/2) and (n/2, n) are generated. The set of 
vectors in the range between the first random number and the 
second random number for each individual are swapped. In order 
to exchange the information of each individual, again, it is 
necessary to check the vectors in the Table 2 in order to ensure 
that the new set of neighbor vectors of the two insertion positions 
do not break the bond angle constraints. Using the new set of 
vectors exchanged, the new positions of the amino acids for each 
individual are recalculated. If the new points collide, the process 
is repeated using another possible vector from Table 2 until a new 
valid individual is generated or all the possible vectors have been 
checked (see Fig. 4). 

It is important to notice that the crossover operator produces 
unfeasible protein foldings than mutation, which is better 
observed as the protein attains a more globular structure. 
 

3.5 Computational Complexity 
      The use of hash tables and data preprocessing significantly 
speeds up the proposed algorithm. Each iteration of the algorithm 
runs in linear time in the length of the amino acid sequence. 
Specifically, the fitness function is computed in time O(n), 
corresponding to checking the twelve basic vectors at each amino 
acid in the sequence in order to compute the energy function. On 
the other hand, the genetic operators can be computed in O(n), 
corresponding to the worst case n evaluations performed in order 
to validate the spatial constrains for each amino acid in the 
sequence.      

 

4. EXPERIMENTATION 
The main objectives of the experiments that were carried out 

were: i) To evaluate the prediction accuracy of the proposed 
approach; ii) To analyze and compare the results obtained using 
the MJ potential matrix and the BMF potential matrix; iii) To 
quantify the conservation of the secondary structure in the 
predicted protein foldings produced by the proposed model with 
respect to the Pred2ary prediction; iv) To study the behavior of 
genetic algorithms as a search method in the energy landscape. 

   

4.1 Experimental framework 
     The set of proteins used in the experiments were obtained 
from CASP7 and they corresponded to the category of free 
modeling. CASP (Critical Assessment of Techniques for Protein 
Structure Prediction) establishes the current state of the art in 
protein structure prediction. It identifies what progress has been 
made based on the prediction of a set of known structures using 
different approaches and techniques of research groups worldwide 
[17]. 
      In this work, CASP is considered as a good way to evaluate 
the proposed approach and compare it to other techniques, since 
CASP contains the state of the art in PSP problems and it reflects 
the biological significance by ranking the solutions with respect to 

other approaches. The main characteristics of the proteins used in 
the experiments are listed in Tables 3 and 4.  

In order to accomplish the first objective, the measure given 
by the CASP-LGA Server, particularly the RMSD (Root-mean-
square deviation) measure was used [16]. This measure is one of 
the measures used to rank participant models in CASP.  

Tests were performed using several runs of the model with 
different parameters for each potential matrix and the results 
obtained for each one of them were evaluated.  

Tables 5 and 6 show the results of all the experiments carried 
out. In the genetic algorithm, populations of 50 individuals were 
evolved for a maximum of 20000 generations. 

For each experiment, the probability of mutation was 0.7 and 
0.2 for each type of crossover. It is important to emphasize that 
these probabilities were necessary to maintain the population 
diversity, thus avoiding premature convergence. This can be 
explained by the low probability of crossover to create feasible 
individuals as opposed to the mutation operator. 

It is also important to emphasize that the preservation of 
secondary structure was measured taking as a reference the 
prediction done by the preprocessing with the method Pred2ary. 
Such measure is based on a correspondence for each amino acid 
of the predicted secondary structure and the Pred2ary prediction.  

The behavior of the genetic algorithm with respect to the 
evolution of the populations and its energy significance was 
plotted in order to understand the search process on the energy 
landscape. Besides, the behavior of the RMSD measures was 
evaluated in order to study the biologic significance of the 
evolved populations.  

 

4.2 Experimental Results 
Analyzing the results of the experiments with respect to the 

results reported in CASP7 [17], it can be stated that the proposed 
model obtained good predictions; the results were ranked in the 
best third of the reported predictions, although the approach 
is classified in the free modeling (FM) category, where the use of 
protein database information is not allowed. 

It should be stressed that an advantage of the proposed 
approach is that it generates not only one protein folding but, in 
general, it may produce a set of foldings.  

Even though, a solution set corresponds to neighbors of the 
possible native state (their energy and RMSD values are similar), 
the individuals have different structures.  As an example, in Fig. 9 
reports a box plot of the family of foldings corresponding to the 
last evolved generation. The absence of outliers in Fig. 9 means 
that the final set of solutions is near to one possible native state of 
the protein. 

In addition, the experiment shows that there is a strong 
relation between their accuracy and their energy values in the 
predicted foldings. In Fig. 7 and 8, it is clear that lower energy 
values imply better predicted models measured by the RMSD 
value. Although not all the energetic interactions are included and 
strong simplifications exist in biological conditions of the protein 
environment, the genetic algorithm was able to obtain accurate 
predictions. 

The experiments carried out using the two different potential 
matrices produced similar results (see Tables 5 and 6). However, 
the best results were obtained using the BMF potential matrix. It 
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is important to mention that BMF Matrix was computed more 
recently than MJ potential matrix and it was tested using CASP 4 
experiments [10].  

On the other hand, regarding the conservation of secondary 
structure information, it can be stated that the proposed model 
conserved a good proportion of information predicted by 
Pred2ary (see Table 7). Nonetheless, it is clear that the α-helix 
conformation is more preserved than the β-sheets structure. These 
results show that the proposed model takes into account heuristic 
information provided by the pre-processed data and takes 
advantage of the heuristics to solve more accurately the protein 
folding problem (see Fig. 7, 8 and Table 7). 

From the genetic algorithm chart (Fig. 6), it is clear that the 
population set evolves through the generations towards 
populations with better energy values approaching the native state 
of the protein. Sample prediction obtained by the proposed 
approach is shown in Fig. 10. This figure was obtained using the 
molecule viewer called JMOL. 

 

Table 3: Protein 2J6A description 
Protein’s name  TRM112 ( 2j6a) 

Organism name  Saccharomyces cerevisiae 

Amino acid length  135 

Amino acid sequence  MKFLTTNFLKCSVKACDTSNDNFPLQYDGSKCQLVQD
ESIEFNPEFLLNIVDRVDWPAVLTVAAELGNNALPPTKP
SFPSSIQELTDDDMAILNDLHTLLLQTSIAEGEMKCRNC
GHIYYIKNGIPNLLLPPHLV 

Experimental method Ray structure 
 

Table 4: Protein 2HFQ description 
Protein’s name  NeT5  ( 2hfq) 
Organism name  Nitrosomonas europaea 
Amino acid length  85 
Amino acid sequence  MQIHVYDTYVKAKDGHVMHFDVFTDVRDDKKAIEFA

KQWLSSIGEEGATVTSEECRFCHSQKAPDEVIEAIKQN
GYFIYKMEGCN 

Experimental method NMR 
 

Table 5. Protein  2j6a (135 residues) 

P. Matrix Generation Population Energy RMSD 

BMF 20000 50 -249.193 15.470 

MJ 20000 50 -815.82 16.747 
 

Table 6. Protein  2hfq (85 residues) 

P. Matrix Generation Population Energy RMSD 

BMF 20000 50 -158.97 12.151 

MJ 20000 50 -543.17 12.243 
 

Table 7: Secondary structure conservation 

  Helix Sheet Coil 
Predicted  41 100% 14 100% 77 100% Protein 

2j6a Conservatio
n 

19 46.3% 2 14.2% 48 62.3% 

Predicted 21 100% 22 100% 39 100% Protein 
2hfq Conservatio

n 
7 33.3% 1 4.5% 23 58.9% 

 
Figure 6: Genetic algorithm analysis using BM potential 

matrix for 2hfq protein 
 

 
Figure 7: RMSD analysis using 2j6a protein 

 

 
Figure 8: RMSD analysis using 2hfq protein 
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Figure 9: 2HFQ protein last evolved population box plot 

 
Figure 10: 2J6A tertiary structure prediction 

 

5. CONCLUSIONS AND FURTHER WORK 
In this work, an ab-initio genetic-based protein folding 

prediction approach was developed. Even though ab-initio 
predictions are less accurate than comparative methods, they have 
the advantage of providing a better understanding of protein 
folding principles. Analyzing the results, it is clear that the 
proposed model is a good protein folding predictor, although, 
more work needs to be done to improve the quality of the energy 
function and the spatial representation. 

The cube-octahedron is a computational feasible spatial 
representation that can be implemented using very efficient 
techniques and data structures. Additionally, this spatial 
representation has biological significance allowing to model 
secondary structures and some spatial characteristic of the protein 
such as torsion and bond angles. The construction of the spatial 
model from the radial expansion can be widely improved using 
the proposed representation, i.e., infinite radial expansion through 
each node in the cube-octahedron applying a set of basic vectors. 

The implementation developed in this research drastically 
decreased the algorithmic complexity of the protein folding 
construction and search. Specifically, strategies such as data 
preprocessing, hashing techniques and spatial vector 
representation made possible a highly efficient model in terms of 
time and computational resources. 

The use of hash tables provides an excellent computational 
technique to model amino acid spatial occupancy, because the 
number of collisions are reduced to zero and the insertion, erasing 
and search are very efficient.  

Secondary structure information is fundamental for the 
accuracy of the predicted models, given the importance of those 
conformations in the protein folding process present in nature. 

     Though the results obtained in this work were very 
encouraging, further exploration is necessary. The use of hash 
tables for efficient search, updating, and erasing operation to 
speed computation of secondary structure prediction 
conformance, bump checking, and fitness calculation has shown 
to be an excellent alternative to speed up the algorithm. Future 
work will focus on the implementation of all-atom three-
dimensional coordinates to represent the polypeptide chain, the 
use of a more complex potential energy function, and the use of 
this research to  predict 20 polypeptides used by the Colombia 
Institute of Immunology (FIDIC) about their research on malaria 
vaccines. 
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