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ABSTRACT 
Selecting the most relevant factors from genetic profiles that can 
optimally characterize cellular states is of crucial importance in 
identifying complex disease genes and biomarkers for disease 
diagnosis and assessing drug efficiency. In this paper, we present 
an approach using a genetic algorithm for a feature subset 
selection problem that can be used in selecting the near optimum 
set of genes for classification of cancer data.  In substantial 
improvement over existing methods, we classified cancer data 
with high accuracy with less features. 

Categories and Subject Descriptors 
I.2 [Computing Methodologies]: PATTERN RECOGNITION—
Design Metodology—Feature Evolution and Selection; J.3 
[Computer Applications]: LIFE AND MEDICAL 
SCIENCES—Biology and genetics 

General Terms 
Algorithms, Verification 

Keywords 
Biomarkers, colon cancer, prostate cancer, ovarian cancer, feature 
selection, classification, genetic algorithms. 

1. INTRODUCTION 
 

Microarray technology allows monitoring expression levels of 
thousands of genes simultaneously [1-4]. Through comparison of 
disease and control data sets, it is possible to obtain a significant 
set of genes that signals the existence of a disease. This set of 
genes can be used for the development of diagnostic kits that 
would enable early diagnosis of the disease. 
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The feature subset selection problem refers to the task of selecting 
a useful set of attributes. For practical purposes it is crucial to 
determine the minimum set of genes that can classify the disease 
data with highest accuracy. Since every measurement has its own 
financial cost and diagnostic value keeping these costs at minimal 
levels while maintaining accuracy is of significant practical 
interest.  

Pattern Classification problems require selection of a subset of 
features from a larger data set to represent the patterns to be 
classified. If the features do not capture the information for 
classification, the accuracy of the classification method will be 
limited by the lack of this information regardless of methodology. 
The abundance of irrelevant attributes would unnecessarily 
increase the search space while decreasing the accuracy of the 
classification algorithm. Using a large set of attributes in a 
classification problem would require a larger number of samples 
to learn the search space at high accuracy.  

2. RELATED WORK 
 

A number of approaches have been proposed in the literature for 
the feature subset selection problem. Early works used breadth 
first search and branch and bound algorithms which performed 
well with conventional statistical classifiers but poorly with non-
linear classifiers [5-8]. Others used heuristic search and 
randomized population based search techniques such as genetic 
algorithms [9-11]. 

Some of the most recent works on feature selection methods are 
using genetic algorithms. In order to optimize classification for 
feature selection, Punch et. al. applied genetic algorithm and K-
nearest neighbor algorithm to large biological data sets [12].    

In recent years several classification methods are applied to 
different types of data sets mostly including several disease gene 
expression data. For instance, Guyon et. al. points out another 
approach that uses Support Vector Machine methods based on 
recursive feature elimination to classify cancer patients and 
normal patients [13]. Support vector machines (SVMs) are linear 
classifiers that use supervised learning methods for classification 
and regression. They map input vectors to a higher dimensional 
space and construct a hyper plane that separates the data which at 
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the same time leads to minimum empirical classification error and 
maximum geometric margin. Moreover, Jirapech-Umpai and 
Aitken used evolutionary algorithm, a stochastic search and 
optimization technique, to find the near optimal set of predictive 
genes in order to classify a leukemia dataset [14].  

Another method was claimed by Fuyer et. al. for classification and 
verification of microarray expression data. They discovered mis-
labeled tissue sample in the dataset with SVMs. After they 
corrected this mislabeled data and removed outliers, the 
microarray expression data could be classified perfectly with 
SVM. [15] 

In the colon data set that is used in this paper, Alon et. al. used 
clustering algorithms to determine highly correlated expression 
levels of genes that can be used for diagnosis. They found a set of 
genes that could be used to cluster the disease data and the control 
data with 90% accuracy [16]. 

Fröhlich et. al. worked on the same data set and used Genetic 
algorithms in combination with Support Vector classification to 
determine the minimum set of genes with the highest 
classification accuracy. They found a set of 30 genes that can 
distinguish cancer data from the control set with 85 % accuracy 
[19]. His graduation thesis has a section with detailed overview of 
the state of the art feature selection methods. 

3. METHODOLOGY 
 

Our algorithm involves a basic genetic algorithm with roulette 
wheel based selection strategy (Figure 1). We attempted several 
combinations of parameters and used the combination that yielded 
optimum results for all data. The following parameter settings are 
used at each run: 

Population Size: 20 
Number of generation: 160 
Crossover Rate: 0.9 
Mutation Rate: 0.05 

Each individual in the population represents a candidate solution 
to the feature subset selection problem. The vector representing 
the solution is m long, where m represents number of attributes. 
We used a binary encoding 1s representing that a feature is 
selected in that parent to be used in classification. There are 2m 
possible individuals. In our data sets, m ranges from 2000 to 
15154, thus making exhaustive search impossible.  

The number of selected features (1’s) in each individual is initially 
fixed to 20 to determine a subset of m features that has the highest 
classification accuracy. The features are randomly generated for 
the initial population. 

The fitness function uses the classification accuracy of the 
features in an individual realized by the Support Vector 
Classification tool in a toolbox called PRTools in Matlab [20] 
which used 50% of the data as a training set and 50% of the data 
as a test set. We used other classification methods including linear 
discriminant analysis (LDA) and neural networks but SVM 
yielded the highest classification accuracy. Basic cross over and 
mutation operations are applied to generate offspring from 
selected parents. After each generation, the worst scoring n 
offspring were replaced by best scoring n parents if the parent’s 

fitness scores are better than the scores of children’s. N is chosen 
as 10% of the population size. 

We implemented a dynamic parent generation procedure that 
enables selection of smaller number of good features while 
creating a new population. During the search, each feature present 
in an individual was assigned the fitness value of the parent they 
occupied. After initial 30 generations, the average fitness score for 
each feature is obtained by dividing the total fitness score of the 
feature by the number of times that feature was chosen in an 
individual. This value is high if the feature was mostly present in 
individuals with high prediction accuracy.  A new population of 
individuals is created according to this selection scheme. Basic 
GA is run for 10 generations; after every 10 generations, a new 
population of individuals is generated from the updates fitness 
scores of the genes. The algorithm of the method is given in 
Figure 2. 

Each feature is assigned a probability of selection in the 
generation of new individuals depending on its fitness score from 
the previous 10 runs. Individuals are generated via a roulette 
wheel selection scheme. Each feature is assigned a numerical 
region depending on its relative fitness score amongst m features. 
While generating an individual 20 random numbers are selected 
and corresponding features are chosen to be included in the 
individual. If a feature has a high fitness score, it may be selected 
several times thus decreasing the number of 1s in the individual. 
This novel parent generation scheme enabled us to achieve a 
dynamic selection of near optimal number of features (genes).  

After the generation of a new population, individuals are 
randomly selected to become parents according to their fitness 
scores and generate offspring. The cross over operator is devised 
to keep the number of features (1’s) in an individual constant. The 
number of features that will be involved in cross over is equals to 
a random proportion of the number of 1s that the parent with 
fewer features possesses (rounded to the nearest integer).  
Features participating in the cross over are also randomly selected 
and exchanged between the partners. 

 
 

Other feature selection methods find a fixed number selected 
features and usually decrease this number by leave one out 
strategy to determine the minimum set of features. The strength of 
our procedure relies on our dynamic parent generation scheme 

1. First generation G1 of n parents {P1, ..., Pn} is created 
using binary encoding. Each parent Pi is randomly 
generated and represents a feature subset of m features. 

2. Fitness function of each Pi, F(Pi)  is calculated using the 
Support Vector Classification. 

3. Until the termination condition met 
a- Randomly pair all the parents {P1, ..., Pn} with 

each other.  
b- Basic cross over and mutation operations are 

applied to generate a new generation G(i+1) of n 
offspring {P1’, ..., Pn’} 

c-        Fitness score of each Pi’, F(Pi’) is calculated using 
the Support Vector Classification. 

d- Roulette Wheel Selection is used and worst 
scoring n offspring were replaced by best scoring n 
parents if the parent’s fitness scores F(Pi) are better 
than the scores of children’s F(Pi’). 

Figure 1. Basic Genetic Algorithm 
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based on a fitness score of each feature (gene). This approach 
resembles the selfish gene idea where individuals are mere 
transporters of genes and the parent’s function is to carry on the 
strong genes to next generations. 

The ultimate goal is the survival of the gene. In our dynamic 
selection approach strong genes are selected more by individuals 
and passed on to succeeding generations. In dynamic individual 
generation, the number of genes in an individual can be decreased 
if the individual has a good fitness value with fewer genes. This 
procedure mimics the efficiency of nature as well. In nature, as the 
species evolve, similar functions can be achieved with a fewer 
number of genes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Several other researchers worked on the same data sets to 
determine the set of genes that can be used to differentiate the 
cancer patients from the control group. So far the best results were 
obtained by Bing et al. for prostate and colon cancer data sets in 
2004 [21]. They used a combination of feature selection methods 
such as ranksum test, Principle Component Analysis and t test 
along with clustering algorithms in their work. These researchers 
chose top ranked 30 genes that are differentially expressed and 
verified their classification accuracy using 3 fold, 10 fold, and 
leave-one-out cross validation. The best result for ovarian dataset 
was obtained from Liu et. al. in 2002 [22]. The correlation based 

feature selection method was used in their work. They also ranked 
subsets of features rather than ranking individual features and 
determined the most discriminative features. They employed 
several classification methods with 10-fold cross validation to 
confirm their results using kNN, SVM, Naïve Bayes, and others 
[22]. 

4. RESULTS 

4.1 Data Set 
The experiments given here are real world data sets obtained from 
three different sources. They all show expression levels of certain 
number of genes in cancer and control patients. The expression 
data were obtained from micro array studies. 

In the first data set we used a colon cancer data obtained by Alon 
et. al. using Affymetrics oligonucleotide arrays. Data showed gene 
expression levels of 2000 genes for 40 tumor and 22 normal colon 
tissue samples [16]. 

Second data set consisted of gene expression levels of 15154 
genes in 162 ovarian cancer and 91 control patients are obtained 
from Petricoin et. al. [17]. 

The third data set consisted of gene expression levels of 12,600 
genes taken from 52 prostate cancer and 50 control samples are 
obtained from Singh et. al. [18]. 

4.2 Experiments 
The features obtained from GA that yield to the highest 
classification accuracy are selected for each data set. These 
features are given to BSVM1 package for 10 fold cross validation 
of each data set with selected features. We could not run n fold 
cross validation in the SVM classification step due to time 
considerations during the GA; for this reason the accuracy values 
of our algorithm and the BSVM differ.  

Table 1. Classification Accuracy using ten fold cross validation 
and BSVM tool 

  Colon Ovarian  Prostate 

  Acc. #Feat. Acc. #Feat. Acc. #Feat.
All 
Features 96.77 2000 100 15154 88.83 12600
Our 
Features 98.38 12 100 12 96.07 19 
Others 
Results 91.94* 30* 100** 17** 97.06* 30* 

* Results from Bing et. al[21], ** Results from Liu et.al.[22] 

The results of the experiments are summarized in Table1. The 
colon data can be classified with 98.38 % accuracy using 12 
features only. In the literature highest classification accuracy for 
this data set was 91.94% using 30 features. Our accuracy was 
higher than the accuracy (96.77%) we would obtain if we had 
used all the features in ten fold cross validation.  

We compared performance of our algorithm with a basic GA in 
Colon dataset, without a dynamic population generation scheme, 
run for 160 steps while keeping all the other parameters (20 
parents and 20 features) the same (see Figure 3).  Our algorithm 
                                                                 
1 The current implementation of BSVM can be downloaded from  

http://www.csie.ntu.edu.tw/~cjlin/bsvm/ 

1. The first generation G1 of n parents {P1, ..., Pn} is 
created using binary encoding. Each parent Pi is 
randomly generated and represents a feature subset of 
m features. 

2. Fitness function of each Pi, F(Pi)  is calculated using 
the Support Vector Classification. 

3. Until the termination condition is met 

a- Randomly pair all the parents {P1, ..., Pn} with each 
other.  

b- Standard cross over and mutation operations are 
applied to generate a new generation G(i+1) of n 
offspring {P1’, ..., Pn’} 
OR 

At each n generation, G(k) where k=0 (mod n), new 
offspring are generated by using population. 

 The average fitness score for each feature fi is 
obtained by dividing the total fitness score of the 
feature by the number of times that feature was 
chosen in a parent. 

 Each feature fi is assigned a probability to be 
selected in generation of new individuals depending 
on its fitness score from the previous n runs. 

 Roulette wheel selection is used to generate new 
parents. 

c- The fitness score of each Pi’, F(Pi’) is calculated 
using the Support Vector Classification. 

d- Each feature that is present in a parent Pi is assigned 
the fitness value of that parent, F(Pi).  

e- Roulette Wheel Selection is used and worst scoring 
n offspring were replaced by best scoring n parents 
if the parent’s fitness scores F(Pi) are better than the 
scores of children using F(Pi’). 

ff Figure 2. Population Genetic Algorithm 
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(see Figure 4) finds a better solution and converges faster than the 
basic GA (93.6% accuracy). As seen in Figure 4, a number of 
features used in classification steadily decreases to around 12 
features.  

The ovarian data can be classified with 100% ten fold cross 
validation accuracy using the 12 features determined by our 
algorithm.  

 
 

 

 

 
 

 

In the literature, the highest classification accuracy for the ovarian 
data set was also 100% by Liu et. al.[22]. However, they could 
only bring down the number of features to be used to 17 without 
lowering the classification accuracy. 

The accuracies for both approaches are the same; however, we 
accurately classified the data using a smaller number of features. 
One hundred percent classification accuracy was achieved when 
we used all the features in ten fold cross validation. (Table 1.) 

We compared our results for ovarian data with a basic GA to see 
the improvement over basic GA. The results are summarized in 
Figure 5 and Figure 6. The basic GA obtained 99% accuracy 
comparable to our results but our algorithm converged faster and 
used only 12 features to achieve the same accuracy while the basic 
GA used 20 features. The number of features gradually decreased 
to 12 gradually as seen in Figure 6. 

 
 

 
 

 
 

 

Prostate cancer data can be classified with a 96.07% ten fold cross 
validation accuracy using the 19 features that were determined by 
our algorithm. In the literature, highest classification accuracy for 
this data set was also 97.06% by Bing et. al.[22]. Although they 
could decrease the number of features to be used, as many as 30 
features were employed without lowering the classification 
accuracy. The accuracies for both approaches are comparable; 
however, we classified the data using smaller number of features. 

Figure 3. Average error rates of the population and the 
best individual scores of 10 Basic GA runs for Colon 

Data  

Figure 4. Average error rates of 10 runs of our 
algorithm for Colon Data. Green lines indicate the 

average number of minimum features in each iteration. 

 

Figure 5. Average error rates of the population and the 
best individual scores of 10 Basic GA runs for Ovarian 

Data. 

Figure  6.  Average error rates of 10 runs of our 
algorithm for Ovarian Data. Green lines indicate the 

average number of minimum features in each iteration.
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88.83% classification accuracy is achieved when we used all the 
features in ten fold cross validation. (Table 1.) 
 

 

 

 

 

 

 

 
 

In the prostate cancer data set, there are large number of features 
(12600) and a relatively less amount of cancer and control data. 
Therefore, our algorithm could not converge and efficiently search 
the space with existing parameters. To this end, we searched the 
parameter space for several combinations of parameters and 
discovered that starting the search with 30 parents and 30 features 
yielded the best prediction accuracy. Figure 5 summarizes the 
basic GA algorithm run with 30 parents and 30 features for 
prostate cancer. The best classification accuracy was 98.4%. Our 
algorithm converges faster to a better solution (100%). (Figure 8.) 

 
 

 

The classification power of the features selected by our method 
could not be achieved randomly. To prove this claim, we 
randomly selected 12 features from the ovarian and colon dataset 
and 19 features from the prostate dataset and classified the data 
using BSVM ten fold cross validation. This experiment was 
repeated 40 times. The results are summarized in Figure 9. The 
results were much worse than our results for prostate and colon 
data sets. Randomly selected genes could achieve on average 
91.6% classification accuracy, an amount a little worse than our 
results in ovarian data set.  

The consistency of the selected features by our algorithm was 
checked by running the algorithm ten times on the same training 
and the test colon data set. Each run ended up with different 
subset of features, however, the correlation between the features 
coming from different subsets were higher than 76%.  

5. CONCLUSION AND DISCUSSION 
Feature subset selection problem is of significant practical interest 
especially in determining number features to be used for 
diagnostic purposes from real disease data. As the number of 
attributes to be tested increase, the cost of diagnostics increases 
proportionally. Also determining the most relevant genes involved 
in a disease pathway may lead to development of novel   
therapeutic measures.  

In this study, we have tried to determine the minimum set of genes 
that can be used to differentiate the cancer patients from the 
control group. The selection of the subset of features is a 
combinatorial optimization problem which can not be solved in 
polynomial time; furthermore the complexity of the problem 
increases exponentially with the total number of features. 

Several researchers have used a combination of GA with several 
different classification algorithms as we did in our algorithm with 
SVM but in most of these cases, they fix the number of features to 
be used and solve for a fixed number of features. Then they use a 
heuristics to decrease the number of features selected while 
keeping the classification accuracy. GA was only used to search 
the space for different combinations of a fixed number of features. 
In our approach while initially searching the space for optimum 
combination of features, we also determine which features are 

Figure 7. Average error rates of the population and the 
best individual scores of 10 Basic GA runs for Prostate 

Cancer Data. 

Figure 8. Average error rates of  10 runs of  our 
algorithm for Prostate Cancer Data. Green lines 

indicate the average number of minimum features in 
each iteration. 

Figure 9. Classification accuracies of 40 experiments of 
randomly chosen features from each dataset
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involved in good solutions. Using this information we could 
generate fitter parents and converge faster than do existing 
approaches. During the parent generation step, each gene has 
different survival probability proportional to their fitness value. 
We choose a fixed number of features and if the same gene is 
chosen several times, this selection would automatically decrease 
the number of genes in that parent. If selected features decrease 
the fitness score of that individual it would be eliminated by the 
survival of fittest approach of GA.  If selected features improves 
the score this parent will be selected and passed onto the next 
generations. 

Dynamic parent generation step is inspired by nature.  The idea of 
a fitter and fewer genes (features) make-up for fitter and more 
evolved efficient parents enabled us to dynamically reduce 
number of genes. In this way we could obtain a smaller number of 
features with the highest classification accuracy for each data set.  
If selection of features decreases the fitness score of that parent, 
this parent would be eliminated by the survival of the fittest 
approach of GA. 

The selected set of genes for the colon cancer data includes 
oncogenes, cell adhesion molecules and collagens which were 
shown to be involved in colon cancer by experimental studies. 
Similar set of features were also found with Guyon et. al. as well 
however these genes were amongst 16 genes that were selected by 
their method with the same accuracy. Our method selected 11 
genes for this data set and 5 of them were known colon cancer 
related genes. 
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