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ABSTRACT 
When facing dynamic optimization problems the goal is no longer 
to find the extrema, but to track their progression through the 
space as closely as possible. Over these kind of over changing, 
complex and ubiquitous real-world problems, the explorative-
exploitive subtle counterbalance character of our current state-of-
the-art search algorithms should be biased towards an increased 
explorative behavior. While counterproductive in classic 
problems, the main and obvious reason of using it in severe 
dynamic problems is simple: while we engage ourselves in 
exploiting the extrema, the extrema moves elsewhere. In order to 
tackle this subtle compromise, we propose a novel algorithm for 
optimization in dynamic binary landscapes, stressing the role of 
negative feedback mechanisms. The Binary Ant Algorithm 
(BAA) mimics some aspects of social insects’ behavior. Like Ant 
Colony Optimization (ACO), BAA acts by building pheromone 
maps over a graph of possible trails representing pseudo-solutions 
of increasing quality to a specific optimization problem. Main 
differences rely on the way this search space is represented and 
provided to the colony in order to explore/exploit it, while and 
more important, we enrol in providing strong evaporation to the 
problem-habitat. By a process of pheromone reinforcement and 
evaporation the artificial insect’s trails over the graph converge to 
regions near the ideal solution of the optimization problem. Over 
each generation, positive feedbacks made available by pheromone 
reinforcement consolidate the best solutions found so far, while 
enhanced negative feedbacks given by the evaporation 
mechanism provided the system with population diversity and fast 
self-adaptive characteristics, allowing BAA to be particularly 
suitable for severe complex dynamic optimization problems. 
Experiments made with some well known test functions 
frequently used in the Evolutionary Algorithms’ research field 
illustrate the efficiency of the proposed method. BAA was also 
compared with other algorithms, proving to be more able to track 
fast moving extrema on several test problems. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods 
and Search – Heuristic methods. 

General Terms: Algorithms, Experimentation. 

Keywords: Ant algorithms, Swarm Intelligence, Stigmergy, 
Dynamic Optimization. 

1. INTRODUCTION 
Swarm Intelligence [8,12] refers to systems where unsophisticated 
distributed entities evolve by interacting locally with their 
environment or search landscape. The communication between 
entities via the environment causes the emergence of coherent 
global patterns and the formation of a social collective 
intelligence that easily lead to bio-inspired computational 
paradigms and Stigmergic Optimization [8, 12]. Ant Colony 
Optimization (ACO) [6], Particle Swarm Optimization (PSO) [9] 
and other algorithms inspired by the behavior of bees [22] or 
bacteria [16], for instance, are examples of self-adaptive multi-
agent systems based on natural organisms. 
ACO algorithms have proven to be suitable for several hard 
combinatorial optimization problems. Based on the ability of 
natural ants to find the shortest paths to food sources, ACO 
simulates the ants’ process of pheromone deposition and their 
stochastic tendency to walk in the direction of sensed pheromone. 
Together with a constant pheromone evaporation rate, these 
stigmergic mechanisms lead to the emergence of pheromone trails 
which are found to represent valuable solutions to combinatorial 
problems. ACO was first applied to the Traveling Salesman 
Problem and since then it has proved to be efficient in a large 
range of problems, like the quadratic assignment problem [14], 
vehicle routing problem [5] or scheduling [7] and timetabling 
problems [21]. Other Swarm Intelligent variations using discrete 
3D grid representations instead of graphs as well as different local 
heuristics were also applied to Clustering, Data or Text Mining 
[17] and Image Processing and Pattern Recognition [10]. 
Following the eusocial insect foraging natural strategy of past 
works our proposal also mimics the ants’ ability to create trails by 
depositing and following pheromone in the environment. Our 
objective is to build an algorithm suitable for the optimization of 
binary coded functions via stigmergy by pheromonal 
communication. Thus, the ants evolve in a binary landscape 
(graph in Fig. 1) composed of two interconnected sequences of 0s 
and 1s, moving in the environment along a chosen trail, creating a 
solution or path (binary string) to the problem constituted by the 
0s and 1s that are found along the trail (nodes). The ants act upon 
the environment by depositing (a posteriori), on the visited 
connections, an amount of pheromone directly proportional to the 
quality of the solution represented by this binary string. Like so, 
pheromone laying in those trails that represent higher fitness 
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solutions is, eventually attracting other ants in the following 
iterations. The necessary negative feedback is given by an 
evaporation process avoiding the system to become trapped in 
local optima as well as allowing the system to be highly adaptive 
when dramatic changes occur. While the signal reinforcement 
works as a dynamic distributed memory, the evaporation allows 
for self-organized innovation and adaptation.  
At each iteration, a certain number of ants go through this process 
of pheromone reinforcement and evaporation, and path-solution 
creation. The pheromone maps, created by the interaction 
between all the ants and the fitness landscape, evolve to a state 
where ants start to be attracted to regions near the optima of the 
problem. The self-adaptive and stigmergic nature of the model 
suggests that BAA may be an efficient strategy to deal with the 
problem of tracking extrema in dynamic landscapes.  
In Dynamic Optimization Problems, the fitness function and the 
constraints of the problem are not constant [4, 1, 19]. When 
changes occur, the solutions already found may be no longer 
valuable and the process must engage in a new search effort 
(check [4] for enhanced analysis). Traditional Evolutionary 
Algorithms [2], for instance, may encounter some difficulties 
while solving dynamic problems, when the first convergence 
stage reduces population diversity, thus decreasing its capability 
to react to sudden changes. The crucial and delicate equilibrium 
needed between exploration and exploitation in static 
environments becomes even more important and complex when 
dealing with Dynamic Optimization Problems. Swarm 
Intelligence and Stigmergic Optimization major characteristics 
point toward promising research paths covering the field of 
optimization in dynamic environments. Previous results on 
different high-demanding areas like image processing between 
two altering images [10] or mobile wireless networking using SI 
[20] supports this general idea. Also, specific ACO algorithms 
were designed to tackle dynamic Traveling Salesman Problems 
[11] and dynamic real-world industrial problems [23], amongst 
other applications. This paper will show that the proposed swarm 
algorithm efficiently tracks the extrema in a set of dynamic binary 
test problems and outperforms the Standard Genetic Algorithm 
(SGA) when facing the same task. Also, results will show that 
BAA is more able than a co-evolutionary model of Genotype 
Editing (ABMGE) [20] when evolving on the dynamic landscapes 
of the test set.   

2. ANT ALGORITHMS 
Ant algorithms are one of the most successful examples of Swarm 
Intelligence. They have been applied to a wide set of problems, 
ranging from the Traveling Salesman Problem [8] to clustering 
problems [17]. We will briefly describe the ACO meta-heuristic 
which defines a particular class of ant algorithms. There are 
several ACO algorithms, each one designed for a specific problem 
and differing in the transition, reinforcement and evaporation 
rules, amongst other properties. In general, an ACO algorithm 
comprises the following steps: pheromone trail initialization, 
solution construction using pheromone trails and pheromone 
update (evaporation and reinforcement). A state transition rule is 
essential to guide the ants through the environment until a 
complete solution is built. The process of solution construction 
and pheromone update continues until a termination criterion is 
reached. Since the Traveling Salesman Problem was the first 

problem to be attacked by these methods we will take a closer 
look at the heuristics of that particular ACO algorithm.  
Starting from a city (node), an ant moves from one another until 
all cities have been visited. When being at a node, the ant decides 
to go to an unvisited node with a certain probability that depends 
on two factors: the pheromone level of the connection and local 
heuristic information (the distance between the two cities). After 
all the ants have completed their tour, each one deposits an 
amount of pheromone on each connection that is used in its trail. 
The amount of pheromone is a function of the ant’s performance 
since the shorter the tour, the greater the amount of pheromone 
deposited. After updating the pheromone levels, evaporation takes 
place by reducing the amount of pheromone in each connection. 
This simple method of indirect stigmergic communication based 
on the behavior of natural ant colonies proved to be effective not 
only in the Traveling Salesman Problem but also in a wide range 
of applications. Since its first use on the Traveling Salesman 
Problem, ACO has experienced numerous modifications in order 
to improve its performance or adapt itself to other types of 
problems - see [8] for a survey. 

 

Figure 1. The Binary Ant Algorithm (BAA) environment and 
search space. 

3. THE BINARY ANT ALGORITHM: BAA 
In this section we describe BAA’s heuristics and analyze its 
components and expected global behavior. This way, we look 
forward to identify the strengths and weaknesses of the model, an 
effort that not only guides further research in order to improve 
some of its limitations, but also allow us to determine possible 
areas of application. The model starts by building the 
environment where our ant-like agents will evolve. This 
environment is represented in fig. 1 and consists of two connected 
sequences of 0s and 1s. Starting from the root, the ant has two 
possible entries to the field.  
 

  initialize pheromone field τi,j = γ 
  do while stop criterion NOT TRUE 
         for all N ants do 
                for each bit do          
                     compute transition probabilities         /*Eq. 1 and 2*/ 
                     decide where to go and move to the next node 
                end for 
                evaluate the solution 
          end for 
          evaporate pheromone at all edges                     /*Eq. 3*/ 
          for all ants do 
                 if fitness is above average reinforce trail   /*Eq. 4*/ 
          end for     
  end do 

Figure 2. Pseudo-code of the Binary Ant Algorithm (BAA). 

After that point, each 0 or 1 has two connections, each leading 
again to a 0 or a 1. These trails are unidirectional, since a solution 
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to the problem at hands at a given time should be represented by a 
finite binary string visiting those binary values at this precise left-
to-right order, as the way a genotype is coded on traditional 
Genetic Algorithms. Any ant enters the field at the left side and 
stops on the other edge, creating a binary string as it passes trough 
the nodes. Notice that the field length is equal to the solution 
dimension, so the binary string generated by each ant when 
crossing the field represents a possible solution to the problem.  
With a proper environment to evolve, the ants can now start the 
search process, which is described in fig. 2. The pheromone is 
deposited at the connections (edges) between the nodes. Its level 
is initialized with value γ in the beginning of the search while 
BAA guarantees that each node maintains at least this level of 
pheromone along the search process. Thus, a connection has 
always a chance of being chosen, maintaining a diversity for other 
solutions. When visiting a node (0 or 1), an agent decides which 
way to go by first computing the transition probabilities p – see 
Eqs. 1 and 2 based on ACO [6].  
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Then, according to the probabilities, the ant decides the next step, 
repeating the process until it reaches the last bit, when finally the 
string found during the ant’s way through the field is evaluated as 
a solution to the problem. The procedure goes on until N ants (N > 
1) have completed its journey across the field generating N 
solutions. The amount of pheromone at all edges or connections c 
is then evaporated according to Eq. 3, where ρ is the evaporation 
rate. 
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Finally, the reinforcement process acts upon the environment 
reflecting the quality of the solutions on the pheromone levels. 
This is done by first choosing those ants that generated solutions 
with fitness equal or bellow population’s average fitness 
(minimization is considered here). Then, the algorithm revisits 
those trails that created the solutions and reinforces the 
pheromone at the connections with a value proportional to the 
quality of each solution – see Eq. 4. In Eq. 1, the parameter α 
controls the relative weight of pheromone trail in the probability 
computation and τ0,1(t) refers to the pheromone in the connection 
for which the probability is being calculated, while in Eq. 4 the 
term τk0,1(t) refers to a connection belonging to the trail traveled 
by ant k, that generated the bit string xk that corresponds to a 
solution with fitness below or equal or bellow average fitness. 
The described procedure guarantees that trails which generate 
better solutions receive larger amounts of pheromone, attracting 
insects in further iterations to swarm-around their neighborhood, 
increasing the probability of finding good solutions and, 
consequently, the global optimum. With the described mechanism 
working over the proposed binary environment we expect the 

resulting algorithm to properly follow fast moving extrema on 
Dynamic Optimization Problems. 
Previous experiments made with some well known static test 
functions showed that BAA is able to converge to the optimal 
solution. The pheromone levels in the neighborhood of the global 
optimum grow during the search and the algorithm ends up 
finding the best solution. However, the process is not very fast 
(even so, BAA convergence speed is similar to a generational 
genetic algorithm in most of the functions we tested). This is not 
surprising since we deal with a basic version of the algorithm. 
Global and local search mechanisms are fundamental in any 
search process. In Evolutionary Algorithms, for instance, 
mutation guarantees global search (exploration), while crossover 
is usually considered to be the main responsible for local search 
ability of the algorithms (exploitation). Meanwhile, elitist 
strategies are possible and frequently used since they assure not 
only the maintenance of best solutions found but also the spread 
of their higher fitted genes across the entire population. BAA also 
holds mechanisms that may guarantee, even if indirectly, local 
and global search abilities. While evaporation acts as a kind of 
mutation enabler (by attenuating the differences in the pheromone 
levels of the two connections leaving each node), reinforcement 
drives the ants into the trails that already created good solutions, 
forcing them to exploit that regions of the search space. However, 
the BAA heuristic eliminates all solutions when starting a new 
iteration. What rests is a kind of distributed memory, that is, the 
remains of the collective action of the colony on the environment, 
which indirectly reflect the quality of those previous solutions, as 
well as somehow the features of the environment in itself. This 
anti-elitist and implicit essence of BAA slows down the 
convergence rate when optimizing static problems, but can be 
advantageous in dynamic environments. More than high speed of 
convergence (which may be even harmful to global performance), 
Dynamic Optimization Problems require population diversity and 
self-adaptive capabilities. When the objective function changes, 
Evolutionary Algorithms mutation’s effort of moving away from 
the old optimum has weak directional impact, while the 
evaporation process of BAA acts upon the whole environment 
clearing the way for the emergence of different paths that reflect 
the new optimal bit string. A quick evaporation of the pheromone 
is essential to ant algorithms on Dynamic Optimization Problems. 
However, a fast reinforcement scheme is also necessary in order 
to reacquire the position of the moving extrema in a small number 
of generations. Remember that only above average solutions 
contribute to the reinforcement process, so it is appropriate to say 
that BAA emulates a kind of elitist selection. However, a strong 
evaporation rate and the elimination of all the solutions when 
starting a new iteration attenuates the selection pressure and 
provide the algorithm with a non-elitist general nature.    

3.1 Ant Algorithms and PBIL 
The Population-Based Incremental Learning algorithm (PBIL) 
was first proposed in [3]. PBIL combines Evolutionary 
Computation and competitive learning by evolving a probability 
vector from previously generated solutions of a binary coded 
problem. New solutions are then created based on those 
probability values. The vector is initialized with values 0.5, which 
means that the first population of solutions is randomly created 
since there is an equal probability of generating a 0 or a 1 for each 
locus. As the search advances, the probability values will tend to 
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0 or 1.0. If a highly fitted solution holds a 1 in a specific locus 
then the corresponding position of the vector is increased, 
approaching 1. Otherwise, the value is decreased and approaches 
0. After certain a number of generations the vector values reflect 
the genotypes of the best solutions found so far. The system 
eventually converges to a situation where optimum solutions have 
good chances of being created from the probability vectors. 
In [13], the Binary Ant System was recently presented. Among 
several differences, our proposal diverges from Binary Ant 
System in the way the search space is codified into a graph. While 
in BAA an ant-like agent faces distinct transition probabilities if it 
stands on a 0 or a 1 (for the same position), Binary Ant System 
has only two edges connecting each bit of the solution, that is, the 
environment may be viewed has a transition probability vector 
[13] similar to the one found in PBIL. Also, Binary Ant System 
uses a great amount of parameters needed to be tuned, as well as 
repair functions and local search mechanisms. The pheromone 
update process is elitist and depends on the transition probabilities 
rather than the fitness of the solutions. In addition, the pheromone 
reinforcement process requires a set of five parameters. Due to its 
complex design and the fact that it aims at solving static problems 
we did not compare BAA and Binary Ant System directly. 
However, we did compare the basic models by implementing 
BAA transition and update mechanisms over the Binary Ant 
System environment. The results are presented in section 4.1 and 
show that BAA environment is more appropriate to solve the 
proposed dynamic problems.  

There are obvious similarities between PBIL and the ant 
algorithms, namely with Binary Ant System since its graph is 

easily translated into a probability vector like the one found in 
PBIL. BAA, on the other hand, is based on a different concept 
which emphasizes the paths rather than the locus, since a decision 
made by an ant when standing on a bit will influence the rest of 
its trail, while in PBIL and Binary Ant System the solution 
construction is purely local and each bit is chosen without any 
influence from previous decisions. BAA is built in a way that ants 
easily engage in the exploration of new paths. Its environment 
allows the search mechanism to be more adaptive and reactive to 
sudden changes in the environment. For an exhaustive analysis of 
the similarities between ant algorithms and PBIL please refer to 
[24]. 

4. Test Set and Results 
As already stated, the characteristics of BAA suggest that the 
algorithm may be effective in the task of tracking the extrema of 
dynamic problems. To explore this hypothesis, the algorithm was 
tested under two optimization experiments taken from [19]. 

4.1 Oscillatory Royal Road 
The first test is based on a small version of the Royal Road R1 
[15] where the fitness of the global optimum is 80, corresponding 
to a 40 bits string x with all 1’s ( ( ) ( ) 1LxcxF

Ss ss ==∑ ∈
σ  

where S = {s1,…, s8}; σs(x) is set as 1 if x is an instance of s and 0 
otherwise, and cs = 10 for all s. To build the oscillatory Royal 
Road [19] another function (L0) is defined where each schema is 
composed of 0’s resulting in an optimal bit string with all 0s (also 
with fitness 80). The objective function oscillates between these 
two strings.  
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Figure 3, Averaged best-so-far performance of SGA. 
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Figure 4. Averaged best-so-far performance of BAA. Parameters: γ = 0.07 and N = 10. 

A Standard Genetic Algorithm (SGA) with generational 
replacement was tested with mutation rate (pm) ranging through 
0.005, 0.01, 0.02, 0.04 and 0.08, binary tournament, one-point 
crossover with crossover rate (pc) equal to 0.7 and 0.9 and 
population size (N) ranging through 20, 40 and 80. Uniform 
crossover was also tested without significant improvement in the 
performance of the algorithm. By testing a wide range of 
parameter values we avoid comparing BAA with a sub-optimal 
configuration of a SGA. BAA was tested with populations of 5, 
10, 20 and 40 ants. Evaporation rate (ρ) ranged through 0.3, 0.4 
and 0.5 (meaning that 1- ρ in Eq. 3 is equal to 0.7, 0.6 and 0.5, 
respectively). Parameter α was set to diverse values in the range 
[0.5, 1.0] and parameter γ was set to 0.07 in all tests.  
The graphics in figures 3 and 4 show the evolution of the best 
solution found so far by the algorithms. (Notice that when the 
objective function changes, the best-so-far solution must be 
reevaluated according to the new landscape.) For SGA, the results 
over the complete range of pm are presented in fig. 3 (pc = 0.9). A 
proper following of the extrema should generate a best-so-far 
curve that not only reaches the global optimum of the first 
environment, but also on later stages, producing a plot with a 
periodic appearance, as in fig. 3. SGA with pm = 0.005 and N = 
80, for instance, clearly fails in both objectives, producing a curve 
that resembles a rectangular wave. When mutation increases, the 
curves tend to be more stable and similar to the first search stage 
(between 0 and 4000 evaluations) which means that the algorithm 
is maintaining an higher genetic diversity, an essential feature to 
properly deal with dynamic problems. However, the SGA runs are 
far from reaching the global optimum of L0 and L1. BAA, on the 
other hand, revealed to be capable of performing the task of 
tracking the extrema of oscillatory Royal Road with several 
combinations of parameter values but, in general, performed 
better with α ranging from 0.65 to 0.85 and revealed a higher 
sensitivity to this parameter. Fig. 4 illustrates the previous 
statements. Notice how the performance degrades when 
increasing α from 0.76 to 0.84 while maintaining the other 
parameters fixed – left graphic of fig. 4. Changing the evaporation 
rate has much less impact in BAA performance – graphic on the 
right. In general, when comparing the algorithms’ performance, it 
is evident that BAA is much more efficient, since the 
correspondent curves are in all stages almost replicas of the best-
so-far fitness growth when searching the optimum of the first 

environment. BAA’s ability to track the solutions may be clarified 
by the graphic of fig. 5 where it is shown the evolution of the 
average value of 1→1 and 0→0 transition probabilities. The 1→1 
connections are the optimal local connections to attain the global 
optimum of environment L1 while 0→0 are the optimal paths of 
L0. Notice how the 1→1 transition probabilities grow in the 
periods where algorithm’s task is to track L1 optimum. When the 
environment changes, the 1→1 average probability decrease 
dramatically, and the ants will tend to choose 0→0 connections 
that at same time increased its transitions probabilities 
considerably. 
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Figure 5. Evolution of the transition probabilities of 1→1 and 
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4.2 Dynamic Schaffer’s Function 
The second experiment was also taken from [19]. The test is a 
dynamic version of the Schaffer’s function where the landscape is 
shifted every 10000 evaluations with linear dynamics’ severity S - 
see [4, 1, 19, 18] for detailed descriptions, functions and 
experiments. Sketches of this multimodal function for different 
parametric values (different instances in time) are illustrated in 
fig. 6. Being s a parameter to set the severity and Xi = xi + δ(t) 
(with -1 ≤ xi ≤ 1 for i = 1, 2 and δ(t) described by Eq. 6), a 
possible test problem [19] can be described by Equation 5. In 
here, X and Y axis represent the index of the sample points in 
parameters x1 and x2 that are used to compute f(x), which is then 
plotted on the z axis, being our aim to maximize it. The example 
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uses linear dynamics with severity s. (This means that the extrema 
moves always in the same direction. Other modes of severity of  

δ=0 (e.g. s=0.1,T=0 or 
s=1,T=0) 

δ=0.5 (e.g. s=0.1,T=5) 

Figure 6. Sketches from the Schaffer F7 complex multimodal 
function seen for different values of T related to the severity 

tests (here, s=0.1). 

 
(5)  

 
(6)  

changes are possible, like circular or random. See Angeline [1] for 
a study and definition of dynamic test problems parameters.) 

Each run on the algorithms evaluated 40000 individuals, which 
corresponds to four different environments. The two variables 
were encoded by 50 bits, so the solutions are binary strings of 
length 100. The results are averaged over 100 runs. These settings 
follow the experiences made in [19,18]. 

SGA parameter settings are the same as in the oscillatory Royal 
Road tests, except for N, that ranged through 20, 50 and 100. 
BAA was run with N equal to 10 and 50, γ = 0.07, ρ = 0.5 and 

several α values in the range [0.6, 0.8]. Fig. 7 shows the curves 
obtained by BAA and SGA with different mutation rate. This set  

of configurations is representative of SGA general behavior on 
dynamic Schaffer function. Notice that SGA only achieves a 

stable performance through the four optimization stages with high 
mutation rate (pm = 0.08). However, the performance is poor. The 
population remains away from the optimum even when 
optimizing the first environment. On the other hand, with pm = 
0.02, the SGA does well on the first stage but degrades its 
performance significantly when the environment changes. BAA 
not only follows properly the optimum in the first environment, 
but also maintains the sameefficiency when tracking the extrema 
when the function changes. When comparing the graphics of fig. 
6 it is clear BAA doesn’t perform differently when tracking the 
extrema of Schaffer with s = 0.1 and s = 0.3. Table 1 shows the 
average value of the best-so-far fitness error (difference between 
the fitness of the best-so-far solution and the optimal solution). 
The results confirm that BAA performs better on both tests. 
Notice that SGA 2 improves its performance when facing s = 0.3, 
but the error value is still far from that attained by BAA.  

 

Table 1. Best-so-far error values attained by the algorithms on 
the dynamic Schaffer’s function. Results averaged over 100 

runs. 

 BAA SGA 1 SGA 2 SGA 3 

s = 0.1 0,023 0,389 0,288 0,091 

s = 0.3 0,025 0,397 0,217 0,091 
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Figure 7. BAA and SGA on the dynamic Schaffer function. SGA: N = 20; pc = 0.9. BAA: N = 20; α = 0.68, ρ = 0.5, γ = 0.07. 
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Figure 8. Results from [19] for Dynamic Schaffer with S = 0.1. 
ABMGE and GA with  N = 100 and pm = 0.01  

4.1 Comparing BAA with ABMGE and the 
Binary Ant System 
The graphic of fig. 8 was taken from [19] and show the 
performance of ABMGE [19] on dynamic Schaffer with severity 
0.1. Although the algorithm appears to outperform the SGA, it is 
clear that BAA is more able to track the optima on both 
experiments - compare figures 7 and 8. Please notice the 
algorithms have populations of 100 individuals which means that 
the functions change at 10000 as in our experiments, since each 
generation evaluates 100 solutions. 
Although we did not directly compare Binary Ant System and 
BAA (as already stated, Binary Ant System is designed to 
optimize stationary functions and uses a great amount of 
parameters needed to be tuned, as well as repair functions and 
local search) we did compare the two ways of translating the 
search space into a graph. For that purpose we built BAA’s 
pheromone trail initialization, solution construction and 
pheromone update over a Binary Ant System-like graph (or 
probability vector), and run the resulting algorithm on the 
Dynamic Schaffer function. The performance of this probability 
vector BAA (v-BAA) is still clearly superior to SGA. However, 
when comparing BAA and v-BAA we conclude that the first 
model is more able to track the extrema of Dynamic Schaffer 
function. Also, v-BAA is more sensitive to parameters α than 
BAA. Some results are shown in fig. 9. 
 

5. CONCLUSIONS 
Our model was tested with success on the proposed Dynamic 
Optimization Problems: the Binary Ant Algorithm (BAA) 
efficiently tracks the extrema of oscillatory Royal Road and 
Dynamic Schaffer’s function. Increasing the severity of changes 
in dynamic Schaffer posed no extra problems to BAA. In general, 
BAA clearly outperformed Standard Genetic Algorithm (SGA) in 
the experiments made for the current paper. The best-so-far curve 
shapes attained by the best configurations of BAA don’t change 
throughout the different stages of the search (when the function 
changes). The plots resemble periodic functions and converge to 
the optimal neighborhood in all stages of the search.  
When comparing our results with those found in [19], we can 
conclude that BAA is more able to follow the optima of the 
dynamic test functions than ABMGE. Also, BAA’s approach to 
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Figure 9. Comparing BAA with original graph and Binary 
Ant System-like graph (v-BAA) on the dynamic Schaffer’s 

function with s = 0.3. 

the binary graph where ants evolve revealed to be more suitable to 
deal with the experiments than the Binary Ant System [13] 
environment. The good performance of our algorithm on dynamic 
environments may be explained by the fast variation of 
pheromone levels, which provides the algorithm with self-
adaptive capabilities to follow the moving optimum. As the 
results obtained when comparing BAA with a probability vector 
BAA suggest, the graph may be also playing an important role in 
the algorithm’s behavior. 
The way parameters ρ, γ, α and N affect BAA’s performance is 
still a matter for further research, but these preliminary 
experiments suggest that α may influence significantly the 
algorithms performance. Whether or not the optimal values of α 
change drastically with different problems or the optimal 
performance is more dependent on the combination of all 
parameter values are also questions that need to be answered. 
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Harder tests are also needed in order to perceive when BAA 
looses the ability to track the optimum in all stages as it does in 
the first one. Increasing severity of changes and changing update 
frequency may show the limits of the model. Comparing BAA to 
some variations of Evolutionary Algorithms usually applied to 
Dynamic Optimization Problems [4], like the Random Immigrants 
[4], is also needed and some preliminary results are encouraging. 
Finally, we also intend to investigate the possibility of optimizing 
static and noisy functions with BAA. As already stated, BAA is 
still very slow in some test functions. Some modifications in the 
algorithm were already suggested in section 3 that might improve 
BAA’s capability of finding the optimum of static problems. 
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