
Binary Ant Algorithm

Carlos M. Fernandes
LaSEEB, Technical Univ. of Lisbon

Av. Rovisco Pais, 1, TN 6.21, 1049-
001, Lisbon, PORTUGAL

cfernandes@laseeb.org

Agostinho C. Rosa
LaSEEB, Technical Univ. of Lisbon

Av. Rovisco Pais, 1, TN 6.21, 1049-
001, Lisbon, PORTUGAL

acrosa@isr.ist.utl.pt

Vitorino Ramos
LaSEEB, Technical Univ. of Lisbon

Av. Rovisco Pais, 1, TN 6.21, 1049-
001, Lisbon, PORTUGAL

vramos@laseeb.org

ABSTRACT
When facing dynamic optimization problems the goal is no longer
to find the extrema, but to track their progression through the
space as closely as possible. Over these kind of over changing,
complex and ubiquitous real-world problems, the explorative-
exploitive subtle counterbalance character of our current state-of-
the-art search algorithms should be biased towards an increased
explorative behavior. While counterproductive in classic
problems, the main and obvious reason of using it in severe
dynamic problems is simple: while we engage ourselves in
exploiting the extrema, the extrema moves elsewhere. In order to
tackle this subtle compromise, we propose a novel algorithm for
optimization in dynamic binary landscapes, stressing the role of
negative feedback mechanisms. The Binary Ant Algorithm
(BAA) mimics some aspects of social insects’ behavior. Like Ant
Colony Optimization (ACO), BAA acts by building pheromone
maps over a graph of possible trails representing pseudo-solutions
of increasing quality to a specific optimization problem. Main
differences rely on the way this search space is represented and
provided to the colony in order to explore/exploit it, while and
more important, we enrol in providing strong evaporation to the
problem-habitat. By a process of pheromone reinforcement and
evaporation the artificial insect’s trails over the graph converge to
regions near the ideal solution of the optimization problem. Over
each generation, positive feedbacks made available by pheromone
reinforcement consolidate the best solutions found so far, while
enhanced negative feedbacks given by the evaporation
mechanism provided the system with population diversity and fast
self-adaptive characteristics, allowing BAA to be particularly
suitable for severe complex dynamic optimization problems.
Experiments made with some well known test functions
frequently used in the Evolutionary Algorithms’ research field
illustrate the efficiency of the proposed method. BAA was also
compared with other algorithms, proving to be more able to track
fast moving extrema on several test problems.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods
and Search – Heuristic methods.

General Terms: Algorithms, Experimentation.

Keywords: Ant algorithms, Swarm Intelligence, Stigmergy,
Dynamic Optimization.

1. INTRODUCTION
Swarm Intelligence [8,12] refers to systems where unsophisticated
distributed entities evolve by interacting locally with their
environment or search landscape. The communication between
entities via the environment causes the emergence of coherent
global patterns and the formation of a social collective
intelligence that easily lead to bio-inspired computational
paradigms and Stigmergic Optimization [8, 12]. Ant Colony
Optimization (ACO) [6], Particle Swarm Optimization (PSO) [9]
and other algorithms inspired by the behavior of bees [22] or
bacteria [16], for instance, are examples of self-adaptive multi-
agent systems based on natural organisms.
ACO algorithms have proven to be suitable for several hard
combinatorial optimization problems. Based on the ability of
natural ants to find the shortest paths to food sources, ACO
simulates the ants’ process of pheromone deposition and their
stochastic tendency to walk in the direction of sensed pheromone.
Together with a constant pheromone evaporation rate, these
stigmergic mechanisms lead to the emergence of pheromone trails
which are found to represent valuable solutions to combinatorial
problems. ACO was first applied to the Traveling Salesman
Problem and since then it has proved to be efficient in a large
range of problems, like the quadratic assignment problem [14],
vehicle routing problem [5] or scheduling [7] and timetabling
problems [21]. Other Swarm Intelligent variations using discrete
3D grid representations instead of graphs as well as different local
heuristics were also applied to Clustering, Data or Text Mining
[17] and Image Processing and Pattern Recognition [10].
Following the eusocial insect foraging natural strategy of past
works our proposal also mimics the ants’ ability to create trails by
depositing and following pheromone in the environment. Our
objective is to build an algorithm suitable for the optimization of
binary coded functions via stigmergy by pheromonal
communication. Thus, the ants evolve in a binary landscape
(graph in Fig. 1) composed of two interconnected sequences of 0s
and 1s, moving in the environment along a chosen trail, creating a
solution or path (binary string) to the problem constituted by the
0s and 1s that are found along the trail (nodes). The ants act upon
the environment by depositing (a posteriori), on the visited
connections, an amount of pheromone directly proportional to the
quality of the solution represented by this binary string. Like so,
pheromone laying in those trails that represent higher fitness

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007...$5.00.

41

solutions is, eventually attracting other ants in the following
iterations. The necessary negative feedback is given by an
evaporation process avoiding the system to become trapped in
local optima as well as allowing the system to be highly adaptive
when dramatic changes occur. While the signal reinforcement
works as a dynamic distributed memory, the evaporation allows
for self-organized innovation and adaptation.
At each iteration, a certain number of ants go through this process
of pheromone reinforcement and evaporation, and path-solution
creation. The pheromone maps, created by the interaction
between all the ants and the fitness landscape, evolve to a state
where ants start to be attracted to regions near the optima of the
problem. The self-adaptive and stigmergic nature of the model
suggests that BAA may be an efficient strategy to deal with the
problem of tracking extrema in dynamic landscapes.
In Dynamic Optimization Problems, the fitness function and the
constraints of the problem are not constant [4, 1, 19]. When
changes occur, the solutions already found may be no longer
valuable and the process must engage in a new search effort
(check [4] for enhanced analysis). Traditional Evolutionary
Algorithms [2], for instance, may encounter some difficulties
while solving dynamic problems, when the first convergence
stage reduces population diversity, thus decreasing its capability
to react to sudden changes. The crucial and delicate equilibrium
needed between exploration and exploitation in static
environments becomes even more important and complex when
dealing with Dynamic Optimization Problems. Swarm
Intelligence and Stigmergic Optimization major characteristics
point toward promising research paths covering the field of
optimization in dynamic environments. Previous results on
different high-demanding areas like image processing between
two altering images [10] or mobile wireless networking using SI
[20] supports this general idea. Also, specific ACO algorithms
were designed to tackle dynamic Traveling Salesman Problems
[11] and dynamic real-world industrial problems [23], amongst
other applications. This paper will show that the proposed swarm
algorithm efficiently tracks the extrema in a set of dynamic binary
test problems and outperforms the Standard Genetic Algorithm
(SGA) when facing the same task. Also, results will show that
BAA is more able than a co-evolutionary model of Genotype
Editing (ABMGE) [20] when evolving on the dynamic landscapes
of the test set.

2. ANT ALGORITHMS
Ant algorithms are one of the most successful examples of Swarm
Intelligence. They have been applied to a wide set of problems,
ranging from the Traveling Salesman Problem [8] to clustering
problems [17]. We will briefly describe the ACO meta-heuristic
which defines a particular class of ant algorithms. There are
several ACO algorithms, each one designed for a specific problem
and differing in the transition, reinforcement and evaporation
rules, amongst other properties. In general, an ACO algorithm
comprises the following steps: pheromone trail initialization,
solution construction using pheromone trails and pheromone
update (evaporation and reinforcement). A state transition rule is
essential to guide the ants through the environment until a
complete solution is built. The process of solution construction
and pheromone update continues until a termination criterion is
reached. Since the Traveling Salesman Problem was the first

problem to be attacked by these methods we will take a closer
look at the heuristics of that particular ACO algorithm.
Starting from a city (node), an ant moves from one another until
all cities have been visited. When being at a node, the ant decides
to go to an unvisited node with a certain probability that depends
on two factors: the pheromone level of the connection and local
heuristic information (the distance between the two cities). After
all the ants have completed their tour, each one deposits an
amount of pheromone on each connection that is used in its trail.
The amount of pheromone is a function of the ant’s performance
since the shorter the tour, the greater the amount of pheromone
deposited. After updating the pheromone levels, evaporation takes
place by reducing the amount of pheromone in each connection.
This simple method of indirect stigmergic communication based
on the behavior of natural ant colonies proved to be effective not
only in the Traveling Salesman Problem but also in a wide range
of applications. Since its first use on the Traveling Salesman
Problem, ACO has experienced numerous modifications in order
to improve its performance or adapt itself to other types of
problems - see [8] for a survey.

Figure 1. The Binary Ant Algorithm (BAA) environment and
search space.

3. THE BINARY ANT ALGORITHM: BAA
In this section we describe BAA’s heuristics and analyze its
components and expected global behavior. This way, we look
forward to identify the strengths and weaknesses of the model, an
effort that not only guides further research in order to improve
some of its limitations, but also allow us to determine possible
areas of application. The model starts by building the
environment where our ant-like agents will evolve. This
environment is represented in fig. 1 and consists of two connected
sequences of 0s and 1s. Starting from the root, the ant has two
possible entries to the field.

 initialize pheromone field τi,j = γ
 do while stop criterion NOT TRUE
 for all N ants do
 for each bit do
 compute transition probabilities /*Eq. 1 and 2*/
 decide where to go and move to the next node
 end for
 evaluate the solution
 end for
 evaporate pheromone at all edges /*Eq. 3*/
 for all ants do
 if fitness is above average reinforce trail /*Eq. 4*/
 end for
 end do

Figure 2. Pseudo-code of the Binary Ant Algorithm (BAA).

After that point, each 0 or 1 has two connections, each leading
again to a 0 or a 1. These trails are unidirectional, since a solution

0 0 0

1 1 1

0

1

0

1

Solution Dimension

ROOT

42

to the problem at hands at a given time should be represented by a
finite binary string visiting those binary values at this precise left-
to-right order, as the way a genotype is coded on traditional
Genetic Algorithms. Any ant enters the field at the left side and
stops on the other edge, creating a binary string as it passes trough
the nodes. Notice that the field length is equal to the solution
dimension, so the binary string generated by each ant when
crossing the field represents a possible solution to the problem.
With a proper environment to evolve, the ants can now start the
search process, which is described in fig. 2. The pheromone is
deposited at the connections (edges) between the nodes. Its level
is initialized with value γ in the beginning of the search while
BAA guarantees that each node maintains at least this level of
pheromone along the search process. Thus, a connection has
always a chance of being chosen, maintaining a diversity for other
solutions. When visiting a node (0 or 1), an agent decides which
way to go by first computing the transition probabilities p – see
Eqs. 1 and 2 based on ACO [6].

() ()[]
()[]∑ Ν∈

=
k
il

t
t

ta α

α

τ
τ

1,0

1,0
1,0

 (1)

() ()
()∑ Ν∈

=
k
il

k

ta
ta

tp
1,0

1,0
1,0

 (2)

Then, according to the probabilities, the ant decides the next step,
repeating the process until it reaches the last bit, when finally the
string found during the ant’s way through the field is evaluated as
a solution to the problem. The procedure goes on until N ants (N >
1) have completed its journey across the field generating N
solutions. The amount of pheromone at all edges or connections c
is then evaporated according to Eq. 3, where ρ is the evaporation
rate.

() () ()11 −−= tt cc τρτ (3)

() ()
)(

_
1,01,0

k

kk

xfitness
fitnessaveragett +← ττ (4)

Finally, the reinforcement process acts upon the environment
reflecting the quality of the solutions on the pheromone levels.
This is done by first choosing those ants that generated solutions
with fitness equal or bellow population’s average fitness
(minimization is considered here). Then, the algorithm revisits
those trails that created the solutions and reinforces the
pheromone at the connections with a value proportional to the
quality of each solution – see Eq. 4. In Eq. 1, the parameter α
controls the relative weight of pheromone trail in the probability
computation and τ0,1(t) refers to the pheromone in the connection
for which the probability is being calculated, while in Eq. 4 the
term τk0,1(t) refers to a connection belonging to the trail traveled
by ant k, that generated the bit string xk that corresponds to a
solution with fitness below or equal or bellow average fitness.
The described procedure guarantees that trails which generate
better solutions receive larger amounts of pheromone, attracting
insects in further iterations to swarm-around their neighborhood,
increasing the probability of finding good solutions and,
consequently, the global optimum. With the described mechanism
working over the proposed binary environment we expect the

resulting algorithm to properly follow fast moving extrema on
Dynamic Optimization Problems.
Previous experiments made with some well known static test
functions showed that BAA is able to converge to the optimal
solution. The pheromone levels in the neighborhood of the global
optimum grow during the search and the algorithm ends up
finding the best solution. However, the process is not very fast
(even so, BAA convergence speed is similar to a generational
genetic algorithm in most of the functions we tested). This is not
surprising since we deal with a basic version of the algorithm.
Global and local search mechanisms are fundamental in any
search process. In Evolutionary Algorithms, for instance,
mutation guarantees global search (exploration), while crossover
is usually considered to be the main responsible for local search
ability of the algorithms (exploitation). Meanwhile, elitist
strategies are possible and frequently used since they assure not
only the maintenance of best solutions found but also the spread
of their higher fitted genes across the entire population. BAA also
holds mechanisms that may guarantee, even if indirectly, local
and global search abilities. While evaporation acts as a kind of
mutation enabler (by attenuating the differences in the pheromone
levels of the two connections leaving each node), reinforcement
drives the ants into the trails that already created good solutions,
forcing them to exploit that regions of the search space. However,
the BAA heuristic eliminates all solutions when starting a new
iteration. What rests is a kind of distributed memory, that is, the
remains of the collective action of the colony on the environment,
which indirectly reflect the quality of those previous solutions, as
well as somehow the features of the environment in itself. This
anti-elitist and implicit essence of BAA slows down the
convergence rate when optimizing static problems, but can be
advantageous in dynamic environments. More than high speed of
convergence (which may be even harmful to global performance),
Dynamic Optimization Problems require population diversity and
self-adaptive capabilities. When the objective function changes,
Evolutionary Algorithms mutation’s effort of moving away from
the old optimum has weak directional impact, while the
evaporation process of BAA acts upon the whole environment
clearing the way for the emergence of different paths that reflect
the new optimal bit string. A quick evaporation of the pheromone
is essential to ant algorithms on Dynamic Optimization Problems.
However, a fast reinforcement scheme is also necessary in order
to reacquire the position of the moving extrema in a small number
of generations. Remember that only above average solutions
contribute to the reinforcement process, so it is appropriate to say
that BAA emulates a kind of elitist selection. However, a strong
evaporation rate and the elimination of all the solutions when
starting a new iteration attenuates the selection pressure and
provide the algorithm with a non-elitist general nature.

3.1 Ant Algorithms and PBIL
The Population-Based Incremental Learning algorithm (PBIL)
was first proposed in [3]. PBIL combines Evolutionary
Computation and competitive learning by evolving a probability
vector from previously generated solutions of a binary coded
problem. New solutions are then created based on those
probability values. The vector is initialized with values 0.5, which
means that the first population of solutions is randomly created
since there is an equal probability of generating a 0 or a 1 for each
locus. As the search advances, the probability values will tend to

43

0 or 1.0. If a highly fitted solution holds a 1 in a specific locus
then the corresponding position of the vector is increased,
approaching 1. Otherwise, the value is decreased and approaches
0. After certain a number of generations the vector values reflect
the genotypes of the best solutions found so far. The system
eventually converges to a situation where optimum solutions have
good chances of being created from the probability vectors.
In [13], the Binary Ant System was recently presented. Among
several differences, our proposal diverges from Binary Ant
System in the way the search space is codified into a graph. While
in BAA an ant-like agent faces distinct transition probabilities if it
stands on a 0 or a 1 (for the same position), Binary Ant System
has only two edges connecting each bit of the solution, that is, the
environment may be viewed has a transition probability vector
[13] similar to the one found in PBIL. Also, Binary Ant System
uses a great amount of parameters needed to be tuned, as well as
repair functions and local search mechanisms. The pheromone
update process is elitist and depends on the transition probabilities
rather than the fitness of the solutions. In addition, the pheromone
reinforcement process requires a set of five parameters. Due to its
complex design and the fact that it aims at solving static problems
we did not compare BAA and Binary Ant System directly.
However, we did compare the basic models by implementing
BAA transition and update mechanisms over the Binary Ant
System environment. The results are presented in section 4.1 and
show that BAA environment is more appropriate to solve the
proposed dynamic problems.

There are obvious similarities between PBIL and the ant
algorithms, namely with Binary Ant System since its graph is

easily translated into a probability vector like the one found in
PBIL. BAA, on the other hand, is based on a different concept
which emphasizes the paths rather than the locus, since a decision
made by an ant when standing on a bit will influence the rest of
its trail, while in PBIL and Binary Ant System the solution
construction is purely local and each bit is chosen without any
influence from previous decisions. BAA is built in a way that ants
easily engage in the exploration of new paths. Its environment
allows the search mechanism to be more adaptive and reactive to
sudden changes in the environment. For an exhaustive analysis of
the similarities between ant algorithms and PBIL please refer to
[24].

4. Test Set and Results
As already stated, the characteristics of BAA suggest that the
algorithm may be effective in the task of tracking the extrema of
dynamic problems. To explore this hypothesis, the algorithm was
tested under two optimization experiments taken from [19].

4.1 Oscillatory Royal Road
The first test is based on a small version of the Royal Road R1
[15] where the fitness of the global optimum is 80, corresponding
to a 40 bits string x with all 1’s (() () 1LxcxF

Ss ss ==∑ ∈
σ

where S = {s1,…, s8}; σs(x) is set as 1 if x is an instance of s and 0
otherwise, and cs = 10 for all s. To build the oscillatory Royal
Road [19] another function (L0) is defined where each schema is
composed of 0’s resulting in an optimal bit string with all 0s (also
with fitness 80). The objective function oscillates between these
two strings.

pm = 0.005

0

10

20

30

40

50

60

70

80

0 4000 8000 12000 16000 20000 24000 28000 32000 36000
Function evaluations

A
ve

ra
ge

d
be

st
-s

o-
fa

r

5

pm = 0.01

0

10

20

30

40

50

60

70

80

0 4000 8000 12000 16000 20000 24000 28000 32000 36000

Function evaluations

pm = 0.02

0

10

20

30

40

50

60

70

80

0 4000 8000 12000 16000 20000 24000 28000 32000 36000

Function Evaluations

pm = 0.04

0

10

20

30

40

50

60

70

80

0 4000 8000 12000 16000 20000 24000 28000 32000 36000 40000

Function evaluations

N = 20 N = 40 N = 80

Figure 3, Averaged best-so-far performance of SGA.

44

ρ = 0.5

0

10

20

30

40

50

60

70

80

0 4000 8000 12000 16000 20000 24000 28000 32000 36000 40000
Function Evaluations

A
ve

ra
ge

d
be

st
-s

o-
fa

r

α = 0,76 α = 0.84

α = 0.78

0
10
20
30
40
50
60
70
80

0 4000 8000 12000 16000 20000 24000 28000 32000 36000 40000
Function evaluations

ρ = 0,5 ρ = 0,4 ρ = 0,3

Figure 4. Averaged best-so-far performance of BAA. Parameters: γ = 0.07 and N = 10.

A Standard Genetic Algorithm (SGA) with generational
replacement was tested with mutation rate (pm) ranging through
0.005, 0.01, 0.02, 0.04 and 0.08, binary tournament, one-point
crossover with crossover rate (pc) equal to 0.7 and 0.9 and
population size (N) ranging through 20, 40 and 80. Uniform
crossover was also tested without significant improvement in the
performance of the algorithm. By testing a wide range of
parameter values we avoid comparing BAA with a sub-optimal
configuration of a SGA. BAA was tested with populations of 5,
10, 20 and 40 ants. Evaporation rate (ρ) ranged through 0.3, 0.4
and 0.5 (meaning that 1- ρ in Eq. 3 is equal to 0.7, 0.6 and 0.5,
respectively). Parameter α was set to diverse values in the range
[0.5, 1.0] and parameter γ was set to 0.07 in all tests.
The graphics in figures 3 and 4 show the evolution of the best
solution found so far by the algorithms. (Notice that when the
objective function changes, the best-so-far solution must be
reevaluated according to the new landscape.) For SGA, the results
over the complete range of pm are presented in fig. 3 (pc = 0.9). A
proper following of the extrema should generate a best-so-far
curve that not only reaches the global optimum of the first
environment, but also on later stages, producing a plot with a
periodic appearance, as in fig. 3. SGA with pm = 0.005 and N =
80, for instance, clearly fails in both objectives, producing a curve
that resembles a rectangular wave. When mutation increases, the
curves tend to be more stable and similar to the first search stage
(between 0 and 4000 evaluations) which means that the algorithm
is maintaining an higher genetic diversity, an essential feature to
properly deal with dynamic problems. However, the SGA runs are
far from reaching the global optimum of L0 and L1. BAA, on the
other hand, revealed to be capable of performing the task of
tracking the extrema of oscillatory Royal Road with several
combinations of parameter values but, in general, performed
better with α ranging from 0.65 to 0.85 and revealed a higher
sensitivity to this parameter. Fig. 4 illustrates the previous
statements. Notice how the performance degrades when
increasing α from 0.76 to 0.84 while maintaining the other
parameters fixed – left graphic of fig. 4. Changing the evaporation
rate has much less impact in BAA performance – graphic on the
right. In general, when comparing the algorithms’ performance, it
is evident that BAA is much more efficient, since the
correspondent curves are in all stages almost replicas of the best-
so-far fitness growth when searching the optimum of the first

environment. BAA’s ability to track the solutions may be clarified
by the graphic of fig. 5 where it is shown the evolution of the
average value of 1→1 and 0→0 transition probabilities. The 1→1
connections are the optimal local connections to attain the global
optimum of environment L1 while 0→0 are the optimal paths of
L0. Notice how the 1→1 transition probabilities grow in the
periods where algorithm’s task is to track L1 optimum. When the
environment changes, the 1→1 average probability decrease
dramatically, and the ants will tend to choose 0→0 connections
that at same time increased its transitions probabilities
considerably.

0

0,2

0,4

0,6

0,8

1

0 4000 8000 12000 16000 20000 24000 28000 32000 36000 40000
Function evaluations

P
ro

ba
bi

lit
y

1→1 0→0

Figure 5. Evolution of the transition probabilities of 1→1 and
0→0 connections.

4.2 Dynamic Schaffer’s Function
The second experiment was also taken from [19]. The test is a
dynamic version of the Schaffer’s function where the landscape is
shifted every 10000 evaluations with linear dynamics’ severity S -
see [4, 1, 19, 18] for detailed descriptions, functions and
experiments. Sketches of this multimodal function for different
parametric values (different instances in time) are illustrated in
fig. 6. Being s a parameter to set the severity and Xi = xi + δ(t)
(with -1 ≤ xi ≤ 1 for i = 1, 2 and δ(t) described by Eq. 6), a
possible test problem [19] can be described by Equation 5. In
here, X and Y axis represent the index of the sample points in
parameters x1 and x2 that are used to compute f(x), which is then
plotted on the z axis, being our aim to maximize it. The example

45

uses linear dynamics with severity s. (This means that the extrema
moves always in the same direction. Other modes of severity of

δ=0 (e.g. s=0.1,T=0 or
s=1,T=0)

δ=0.5 (e.g. s=0.1,T=5)

Figure 6. Sketches from the Schaffer F7 complex multimodal
function seen for different values of T related to the severity

tests (here, s=0.1).

(5)

(6)

changes are possible, like circular or random. See Angeline [1] for
a study and definition of dynamic test problems parameters.)

Each run on the algorithms evaluated 40000 individuals, which
corresponds to four different environments. The two variables
were encoded by 50 bits, so the solutions are binary strings of
length 100. The results are averaged over 100 runs. These settings
follow the experiences made in [19,18].

SGA parameter settings are the same as in the oscillatory Royal
Road tests, except for N, that ranged through 20, 50 and 100.
BAA was run with N equal to 10 and 50, γ = 0.07, ρ = 0.5 and

several α values in the range [0.6, 0.8]. Fig. 7 shows the curves
obtained by BAA and SGA with different mutation rate. This set

of configurations is representative of SGA general behavior on
dynamic Schaffer function. Notice that SGA only achieves a

stable performance through the four optimization stages with high
mutation rate (pm = 0.08). However, the performance is poor. The
population remains away from the optimum even when
optimizing the first environment. On the other hand, with pm =
0.02, the SGA does well on the first stage but degrades its
performance significantly when the environment changes. BAA
not only follows properly the optimum in the first environment,
but also maintains the sameefficiency when tracking the extrema
when the function changes. When comparing the graphics of fig.
6 it is clear BAA doesn’t perform differently when tracking the
extrema of Schaffer with s = 0.1 and s = 0.3. Table 1 shows the
average value of the best-so-far fitness error (difference between
the fitness of the best-so-far solution and the optimal solution).
The results confirm that BAA performs better on both tests.
Notice that SGA 2 improves its performance when facing s = 0.3,
but the error value is still far from that attained by BAA.

Table 1. Best-so-far error values attained by the algorithms on
the dynamic Schaffer’s function. Results averaged over 100

runs.

 BAA SGA 1 SGA 2 SGA 3

s = 0.1 0,023 0,389 0,288 0,091

s = 0.3 0,025 0,397 0,217 0,091

s = 0.1

1,8

1,9

2

2,1

2,2

2,3

2,4

2,5

0 10000 20000 30000
Function Evaluations

Av
er

ag
ed

 b
es

t-s
o-

fa
r

BAA
SGA 1 (pm = 0.005)
SGA 2 (pm = 0,02)
SGA 3 (pm = 0,08)

s = 0.3

1,8

1,9

2

2,1

2,2

2,3

2,4

2,5

0 10000 20000 30000
Function evaluations

Figure 7. BAA and SGA on the dynamic Schaffer function. SGA: N = 20; pc = 0.9. BAA: N = 20; α = 0.68, ρ = 0.5, γ = 0.07.

() () ⎥⎦
⎤

⎢⎣
⎡ +⎟

⎠
⎞⎜

⎝
⎛ ++−=⎟

⎠
⎞

⎜
⎝
⎛ →

1.50sin5.2
1.02

2
2
1

225.02
2

2
1 XXXXXf

()
() () sTT +−=

=
1

,00
δδ

δ

46

Figure 8. Results from [19] for Dynamic Schaffer with S = 0.1.
ABMGE and GA with N = 100 and pm = 0.01

4.1 Comparing BAA with ABMGE and the
Binary Ant System
The graphic of fig. 8 was taken from [19] and show the
performance of ABMGE [19] on dynamic Schaffer with severity
0.1. Although the algorithm appears to outperform the SGA, it is
clear that BAA is more able to track the optima on both
experiments - compare figures 7 and 8. Please notice the
algorithms have populations of 100 individuals which means that
the functions change at 10000 as in our experiments, since each
generation evaluates 100 solutions.
Although we did not directly compare Binary Ant System and
BAA (as already stated, Binary Ant System is designed to
optimize stationary functions and uses a great amount of
parameters needed to be tuned, as well as repair functions and
local search) we did compare the two ways of translating the
search space into a graph. For that purpose we built BAA’s
pheromone trail initialization, solution construction and
pheromone update over a Binary Ant System-like graph (or
probability vector), and run the resulting algorithm on the
Dynamic Schaffer function. The performance of this probability
vector BAA (v-BAA) is still clearly superior to SGA. However,
when comparing BAA and v-BAA we conclude that the first
model is more able to track the extrema of Dynamic Schaffer
function. Also, v-BAA is more sensitive to parameters α than
BAA. Some results are shown in fig. 9.

5. CONCLUSIONS
Our model was tested with success on the proposed Dynamic
Optimization Problems: the Binary Ant Algorithm (BAA)
efficiently tracks the extrema of oscillatory Royal Road and
Dynamic Schaffer’s function. Increasing the severity of changes
in dynamic Schaffer posed no extra problems to BAA. In general,
BAA clearly outperformed Standard Genetic Algorithm (SGA) in
the experiments made for the current paper. The best-so-far curve
shapes attained by the best configurations of BAA don’t change
throughout the different stages of the search (when the function
changes). The plots resemble periodic functions and converge to
the optimal neighborhood in all stages of the search.
When comparing our results with those found in [19], we can
conclude that BAA is more able to follow the optima of the
dynamic test functions than ABMGE. Also, BAA’s approach to

N = 10; ρ = 0.5

2,4

2,42

2,44

2,46

2,48

2,5

0 10000 20000 30000
Function Evaluations

Av
er

ag
ed

 b
es

t-s
o-

fa
r

BAA (α = 0.68) v-BAA (α = 0.64)
v-BAA (α = 0.66) vector-BAA (α = 0.68)

N = 20; ρ = 0.5

2,4

2,42

2,44

2,46

2,48

2,5

0 10000 20000 30000
Function Evalutions

BAA (α = 0.68) v-BAA (α = 0.60)
v-BAA (α = 0.64) v-BAA (α = 0.68)

N = 10; ρ = 0.4

2,4

2,42

2,44

2,46

2,48

2,5

0 10000 20000 30000
Function Evalutations

BAA (α = 0.68) v-BAA (α = 0.64)
v-BAA (α = 0.66) v-BAA (α = 0.68)

Figure 9. Comparing BAA with original graph and Binary
Ant System-like graph (v-BAA) on the dynamic Schaffer’s

function with s = 0.3.

the binary graph where ants evolve revealed to be more suitable to
deal with the experiments than the Binary Ant System [13]
environment. The good performance of our algorithm on dynamic
environments may be explained by the fast variation of
pheromone levels, which provides the algorithm with self-
adaptive capabilities to follow the moving optimum. As the
results obtained when comparing BAA with a probability vector
BAA suggest, the graph may be also playing an important role in
the algorithm’s behavior.
The way parameters ρ, γ, α and N affect BAA’s performance is
still a matter for further research, but these preliminary
experiments suggest that α may influence significantly the
algorithms performance. Whether or not the optimal values of α
change drastically with different problems or the optimal
performance is more dependent on the combination of all
parameter values are also questions that need to be answered.

47

Harder tests are also needed in order to perceive when BAA
looses the ability to track the optimum in all stages as it does in
the first one. Increasing severity of changes and changing update
frequency may show the limits of the model. Comparing BAA to
some variations of Evolutionary Algorithms usually applied to
Dynamic Optimization Problems [4], like the Random Immigrants
[4], is also needed and some preliminary results are encouraging.
Finally, we also intend to investigate the possibility of optimizing
static and noisy functions with BAA. As already stated, BAA is
still very slow in some test functions. Some modifications in the
algorithm were already suggested in section 3 that might improve
BAA’s capability of finding the optimum of static problems.

ACKNOWLEDGMENTS
The first author wishes to thank FCT, Ministério da Ciência e
Tecnologia, his Research Fellowship SFRH/BD/18868/2004, also
partially supported by Fundação para a Ciência e a Tecnologia
(ISR/IST plurianual funding) through the POS_Conhecimento
Program that includes FEDER funds..

References
[1] Angeline P., Tracking Extrema in Dynamic Environments,

Proc. of the 6th Int. Conf. on Evolutionary Programming,
LNCS, Springer, 1213: 335-345, 1997.

[2] Back, T., Evolutionary Algorithms in Theory and Practice,
Oxford University Press, 1996.

[3] Baluja, S., Population-Based Incremental Learning: A
Method for Integrating Genetic Search Based Function
Optimization and Competitive Learning, Technical Report
CMU-CS-94-163, Carnegie Mellon 0University, USA, 1994.

[4] Branke, J., Evolutionary Optimization in Dynamic
Environments. Kluwer Academic Publishers, 2002.

[5] Bullheimer B., Ant Colony Optimization in Vehicle Routing,
PhD Thesis, University of Vienna, 1999.

[6] A. Colorni, M. Dorigo and V. Maniezzo, Distributed
Optimization by Ant Colonies, In Proceedings of the 1st
European Conference on Artificial Life, F.J. Varela and P.
Bourgine (Eds.), MIT Press, Cambridge, MA, 134-142,
1992.

[7] Colorni, A., Dorigo, M., Maniezzo, V., Trubian, M., Ant
System for Job-shop Scheduling, Belgian Journal of
Operations Research, Statistics and Computer Science,
34(1): 39-53, 1994.

[8] Dorigo M., Blum C., Ant Colony Optimization theory: A
Survey, Theoretical Computer Science, 344: 243-278, 2005.

[9] Eberhart R. C., Kennedy J., A new optimizer using particle
swarm theory, In Proceedings of the 6th International
Symposium on Micromachine and Human Science, Nagoya,
Japan. pp. 39-43, 1995.

[10] Fernandes C., Ramos V., Rosa A.C., Self-Regulated
Artificial Ant Colonies on Digital Image Habitats,
International Journal of Lateral Computing, 2(1): 1-8, 2005.

[11] Guntsch M., Middendorf M., Applying Population Based
ACO to Dynamic Optimization Problems, Proceedings of the
3rd International Workshop ANTS2002, LNCS 2463: 111-
122, 2002.

[12] Kennedy J. Eberhart R.C., Russel C. and Shi, Y., Swarm
Intelligence, Academic Press, Morgan Kaufmann Publ., San
Diego, London, 2001.

[13] Kong, M., Tian P. Introducing a Binary Ant Colony
Optimization, In Proceedings of the 6th International
Workshop on ACO and Swarm Intelligence, LNCS, 4150:
444-451, 2006.

[14] Maniezzo V., Colorni A., The Ant System applied to the
Quadratic Assignment problem, IEEE Transactions on
Knowledge and Data Engineering, 11(5): 769-778, 1999.

[15] Mitchell M., Holland J., Forrest S., When will a GA
outperform Hillclimbing?, Advances in Neural Information
Processing Systems, 6: 51-58, 1994.

[16] Passino, K.M., Biomimicry of Bacterial Foraging for
Distributed Optimization and Control, IEEE Control
Systems Magazine, 52-67, 2002.

[17] Ramos V., Merelo J.J., “Self-Organized Stigmergic
Document Maps: Environment as a Mechanism for Context
Learning”, in E. Alba, F. Herrera, J.J. Merelo et al. (Eds.),
AEB’2002,– 1st Spanish Conf. on Evolutionary and Bio-
Inspired Algorithms, pp. 284-293, 2002.

[18] Ramos, V., Fernandes, C., Rosa, A.C., On Self-Regulated
Swarms, Societal Memory, Speed and Dynamics, in L.M.
Rocha, L.S. Yaeger, M.A. Bedau, D. Floreano, R.L.
Goldstone and A. Vespignani (Eds.), Proc. of ALifeX, MIT
Press, pp. 393-399, 2006.

[19] Rocha L., Maguitman A., Huang C., Kaur J., and Narayanan
S., An Evolutionary Model of Genotype Editing, In
Proceedings of ALifeX, MIT Press, pp. 105-111, 2006.

[20] Roth M., Wicker S., Asymptotic Pheromone Behavior in
Swarm Intelligent MANETs: An Analytical analysis of
Routing Behavior, Sixth IFIP IEEE International Conference
on Mobile and Wireless Communications Network, 2004.

[21] Socha K., Sampels M., Manfrin M., Ant Algorithms for the
University Course Timetabling problem with regard to the
state-of-the-art, In Proceedings of the EvoWorkshops 2003,
LNCS, Berlin Springer, 334, 345, 2003.

[22] Wedde H., Farooq M., Zhang Y., BeeHive: An Efficient
Fault Tolerance Routing Algorithm under High Loads
Inspired by Honey Bee Behavior, In Proceedings of the 4th
International Workshop on Ant Colony and Swarm
Intelligence (ANTS 2004), LNCS, 83-94, 2004.

[23] Xiao J., Li J., Xu Q., Huang W., Lou H., ACS-based
Dynamic Optimization for Curing of Polymeric Coating, in
AIChE Journal, 52(4): 1410-1422, 2005.

[24] Zlochin M., Birattari M., Meuleau N., Dorigo M., Model-
based search for combinatorial optimization: A critical
survey, in Annals of Operations Research, 131:373--395,
2004.

48

