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ABSTRACT
This paper presents a flexible framework to the task of fea-
ture selection in classification of DNA microarray data. The
user can select a number of filter methods in the preprocess-
ing stage and choose from a wide set of classifiers (models
and algorithms from WEKA [17] are available) and accu-
racy estimation methods. This approach implements wrap-
per methods, where Evolutionary Algorithms, with variable-
sized set based representations are used to reduce the num-
ber of attributes. Two case studies were used to validate
the approach, with three distinct classifiers (1-nearest neigh-
bour, decision trees, SVMs), a filter method based on dis-
criminant fuzzy patterns and k-fold cross-validation to esti-
mate the generalization error.

Categories and Subject Descriptors
J.3 [Computer Applications]: LIFE AND MEDICAL
SCIENCES—Biology and Genetics; H.2.8 [Information Sys-
tems]: DATABASE MANAGEMENT—Database Applica-
tions/Data mining

General Terms
Algorithms, Experimentation

1. INTRODUCTION
The application of Machine Learning techniques in the

context of DNA microarray data is becoming quite impor-
tant in the biomedical research. In particular, the auto-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

matic classification of samples has been a promising ap-
proach in cancer diagnosis[3] and a number of classifiers have
been proposed, including Support Vector Machines (SVMs)
[14], Neural Networks (NNs) [9] or k-nearest neighbor (kNN)
methods [8]. A major problem with the application of these
methods is the huge number of attributes (genes) in the
datasets (typically thousands). Gene reduction in microar-
ray data is extremely important because it usually increases
the accuracy of the machine learning techniques and it pro-
vides clues to researchers about genes that are important in
a given context (e.g. biomarkers for certain diseases).

There are two approaches for feature selection: filters and
wrappers. Filters are applied in the preprocessing stage, us-
ing some measure of relevance and are independent of the
learning algorithm used. These methods may overlook re-
lationships among genes and prune genes that, by them-
selves, seem unimportant but that may explain the phe-
nomena studied, when taken in consideration together with
others.

On the other hand, wrappers train the classifier with a
gene subset and estimate its generalization error. These
methods do not have the possible shortcomings of filters
but it is important to ensure that they do not overfit the
data. Besides, they are dependent of the classifier that is
used. Indeed, there is no guarantee that an optimal subset
of genes chosen for one classifier, will be the optimal one
when used with another algorithm.

This paper presents a flexible framework for the task of
gene selection in classification of DNA microarray data. The
user is free to apply any number of preprocessing filters
she deems necessary prior to the task. These will usually
be based on statistical measures. As the framework inter-
acts with the WEKA software [17], it is possible to use any
classifier it provides. Thus, this framework may work as a
wrapper to select genes for any of the classifiers provided by
WEKA.

In the wrapper method, an Evolutionary Algorithm (EA)
was developed to provide the optimization engine. The EA
uses a variable-sized set-based representation to encode the
set of genes to use by the classifier. The fitness function
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of the EA is computed by taking into account an accuracy
estimation of the classifier, but can take other metrics into
account (e.g. number of genes used).

It is important not to confuse the fitness function with the
evaluation of the generalization error of the solutions pro-
duced by the EA at the end of the run. In this framework,
the training set is used by the fitness function to perform
the 5-fold cross-validation. The evaluation of the solutions
provided by the EA at the end of the run are tested on a
test set that it never saw during evolution. To provide a
less biased estimation of the generalization error, a 5 times
10-fold cross-validation scheme was used.

2. PREVIOUS RESEARCH
Some researchers use the test set as a validation set, i.e., it

is provided to the EA when computing the accuracy measure
included in the fitness function The error rate estimate of
the final model on validation data will be biased (smaller
than the true error rate) since the validation set is used to
select the final model and thus overfitting can occur over this
data. If for some reason a validation set is used in training
to evaluate the generalization capabilities of the solutions,
it is imperative to use a test set with a set of examples used
only to assess the performance of the trained classifier.

There are several researchers that have used EAs for gene
selection in microarray data in previous work. Li et al [10]
used an EA to select an arbitrarily fixed set of 50 genes and
used a consensus kNN method for classification. The vali-
dation of their work uses a single test set for each data set
(the holdout method). Keedwell et al [9] use a NN as a clas-
sifier. They only used a training set and didn’t provide any
kind of estimation of the generalization error. Deutsch et
al [3] describes a replication algorithm with a kNN classifier
(k = 1). The holdout method was only used in some of the
datasets.

Ooi et al [13] used an EA with a maximum likelihood
classifier. Their fitness function uses the error of the test
set. This makes it useless for purposes of estimation of the
generalization method, as the EA was trained with it. Peng
and Liu [14, 11] present similar approaches. Their EA is
based on Ooi’s approach and they use SVMs as a classifier.
They use leave-one-out cross-validation as a fitness function
and present that result as an estimation of the generalization
method. That is not a valid estimation as was explained
before. Umpai et al [8] uses an EA and a kNN as a classifier
and the holdout method for estimating the generalization
method.

Fröhlich et al [5] describe an EA used with a SVM. Their
approach allows the selection of either a given number of
genes or a variable one. They provide k-fold cross-validation
like estimation of the generalization error.

Most of these approaches did not provide acceptable es-
timations of the generalization error. This is extremely im-
portant in the field of Machine Learning and only k-fold
cross-validation (or leave-one-out if the number of examples
is too small) is acceptable. Some of the approaches are lim-
ited to an arbitrarily fixed number of genes and all of the
approaches only use a single classifier and there is no simple
way to implement other alternatives.

3. THE PROPOSED APPROACH
In this section, the proposed approach to feature selec-

tion and classification of DNA microarrays data is described.
The overall system aims at taking a given classification dataset
with DNA microarray data and provide, as the final out-
come, two main results: a list of genes that can discriminate
between the classes and a final classifier that is able to pre-
dict the class of new examples. The process is organized as
a flow of data blocks that are sequentially processed by sev-
eral components, thus defining a processing flow where the
outputs of some processes are taken as the inputs to others
to achieve the desired results at the end.

The main components that integrate this tool are illus-
trated in Figure 1 and can be briefly summarized:

• Feature selection - filter methods: this component is
able to apply a number of filters over the dataset, that
can reduce its number of attributes (genes). These
methods are independent of the classifier that will be
used and are typically obtained by some statistical cal-
culations over the data.

• Classifier - error estimation: this component handles
the estimation error of a classifier in a given dataset,
i.e. it implements the process of choosing a class of
classifiers and an error estimation method (e.g. cross
validation, holdout). The outcome is an estimate of
the accuracy of the classifier in the dataset.

• Feature selection - wrapper methods: this component
is closely connected to the previous, implementing an
optimization procedure that tries to find the best so-
lution to the feature selection problem (i.e. the best
list of genes). The cost function for the optimization
method takes into account the error estimates that are
provided by the previous module.

• Build classifier: this module handles the construction
of the final classifier given the dataset filtered by the
two feature selection schemes.

3.1 Filter methods
A number of methods can be used to filter a subset of

genes from a microarray dataset that are independent of
the classification model. These genes are expected to be
up- or down-regulated between healthy and diseased tis-
sues or between different classes. A differentially expressed
gene is a gene which has the same expression pattern for
all samples of the same class, but different for samples be-
longing to different classes. The relevance value of a gene
depends on its ability to be differentially expressed. How-
ever, a non-differentially expressed gene will be considered
irrelevant and will be removed from a classification process
even though it might well contain information that would
improve classification accuracy. One way or another, the
selected method has to pursue two main goals: (i) reduce
the cost and complexity of the classification model and (ii)
improve its accuracy.

Some simple schemes of filtering flat genes can be used by
computing a standard deviation or analyzing the peaks in
the gene expression. More complex methods include the use
of information gain metrics in order to rank the genes [1], re-
dundancy reduction and feature extraction [7, 15], as well as
the identification of similar gene classes making prototypes-
genes [6] or the use of Markov blanket filters [18], just to
name a few.
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Figure 1: Main components of this tool.

These methods rank genes depending on their relevance
for discrimination. Then by setting a threshold, one can
filter the less relevant genes among those considered. As
such, these filtering methods may be seen as particular gene
selection methods. An important task in microarray data
analysis is therefore to identify genes, which are differen-
tially expressed in this way. Statistical analysis of gene ex-
pression data relating to complex diseases is of course not
really expected to yield accurate results. A realistic goal is
to narrow the field for further analysis, to give geneticists a
short-list of genes for analysis into which hard-won funds are
worth investing. The aim of this component is to allow the
implementation of any filter method and therefore a flexi-
ble architecture was designed to allow the definition of new
methods and plug them into the system. In the experiments
provided in this work, a method for selecting genes based on
the notion of fuzzy pattern, is used.

The whole algorithm comprises of three main steps. First,
we represent each gene value in terms of one from the fol-
lowing linguistic labels: Low, Medium and High and their
intersections LowMedium and MediumHigh. The output is
a fuzzy microarray descriptor (FMD) for each existing sam-
ple (microarray). The second phase aims to find all genes
that best explain each pathology, constructing a supervised
fuzzy pattern (FP) for each class. Starting from the previous
obtained FPs, our proposed method is able to discriminate
those genes that can provide a substantial discernibility be-
tween existing classes, generating an unique discriminant
fuzzy pattern (DFP).

3.1.1 Discretizing microarray data using fuzzy la-
bels (FMD)

Given a set of n features or attributes (in this work, gene
expression levels), F = {F1, F2, ..., Fn}, the discretization

process is based on determining the membership function
of each feature to three linguistic labels (Low, Medium and
High). Then, each real value Fj is replaced by its three val-
ues of membership to these fuzzy labels (μjL, μjM and μjH ,
respectively), and so, a new set of 3n features, F’ = μ1L,
μ1M , μ1H , ..., μnL, μnM , μnH is constructed from the origi-
nal set of features F. The membership functions to linguistic
labels are defined in a similar way to the form that has been
used by [4].

Once defined the three membership functions for each fea-
ture Fj , a threshold value θ can be established (for example,
0.5) to discretize the original data in a binary way, according
to any linguistic label from the defined labels Low, Medium
and High. The discriminatory criterion for any label is sim-
ply defined by:

F ′
j• =

j
1 if μj•(x) � Θ
0 if μj•(x) < Θ

(1)

As is shown in Figure 2, for concrete values of threshold
θ, specific zones of the feature domain for which none of the
labels will be activated can exist (zone A in Figure 2). This
fact must be interpreted as the specific value of the feature
is not enough to assign it a significant linguistic label at the
significance degree of membership fixed by threshold θ. On
the other hand, one value can activate simultaneously two
linguistic labels, since at the significance level given by θ, any
assignment of the measure to a linguistic label is significant
(zone B in Figure 2).

In this way, we have developed a method used to discretize
numeric features into binary variables according to the defi-
nition of three linguistic labels, and therefore the method is
defined in a fuzzy sets manner. Summarizing, given a data
set D with m observations {x1, ..., xm} about n numeric
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Figure 2: Example of membership functions for a
given gene.

features F = {F1, ..., Fn}, namely, xi ∈ Rn, the fuzzy dis-
cretization process, defined above, transforms the original
data set into another set with the same number of obser-
vations but a different number of features. The new data
set D’ has m observations which are now referred to as a
set of 3n binary features, namely, x′

i ∈ {0, 1}3n. The real
value of feature Fj for the observation xi, denoted by xij , is
replaced by the three binary values given by expression 1 for
each linguistic label, that is to say, by the tuple 〈F ′

jL(xij),
F ′

jM (xij), F ′
jH(xij)〉.

3.1.2 Assembling a supervised fuzzy pattern of rep-
resentative genes (FP)

This section explains how to generate a fuzzy pattern from
data, which is representative for a specific decision class.
The process is carried out according to a supervised learning
process from the available data as described below.

Given a subset of observations Di = {xi1 , xi2 , ..., xim}
⊆ D, which have associated the same class label Ci, for any
observation xi1 (i1 ≤ il ≤ im ).

First, it is discretized with regard to the linguistic la-
bels Low, Medium and High associated to each feature, Fj .
Namely, the discrete values F ′

jL(xilj), F ′
jM (xilj), F ′

jH(xilj).
are computed using the expression given by 1. Then, the
three binary values for each feature are replaced by a single
label, F ′′

j (xil) ∈ {L, LM, M, MH, H, *}. If only one of the
three binary values is active, the respective label is assigned:
L (Low), M (Medium), and H (High). As previously men-
tioned, a unique real value can activate simultaneously two
linguistic labels, so it may occur that two binary values are
activated - the possible cases are LM (Low and Medium) and
MH (Medium and High). Finally, it is also possible that one
value does not fire any linguistic label, and then, the label
* is assigned. The assignment criteria for F ′′

j (xil) is given
completely by the following expression:

8>>>>>><
>>>>>>:

L if F ′
jL(xilj) = 1 ∧ F ′

jM (xilj) = 0 ∧ F ′
jH (xilj) = 0

LM if F ′
jL(xilj) = 1 ∧ F ′

jM (xilj) = 1 ∧ F ′
jH (xilj) = 0

M if F ′
jL(xilj) = 0 ∧ F ′

jM (xilj) = 1 ∧ F ′
jH (xilj) = 0

MH if F ′
jL(xilj) = 0 ∧ F ′

jM (xilj) = 1 ∧ F ′
jH (xilj) = 1

H if F ′
jL(xilj) = 0 ∧ F ′

jM (xilj) = 0 ∧ F ′
jH (xilj) = 1

* if F ′
jL(xilj) = 0 ∧ F ′

jM (xilj) = 0 ∧ F ′
jH (xilj) = 0

(2)

Secondly, the fuzzy pattern (corresponding to the class Ci)

is constructed from the discretized and summarized data,
selecting those labels of features which are different to the
label ”*” and have an appearance relative frequency in set
Di equal to or greater than a predefined ratio Π (0 < Π ≤
1, for example, Π = 2/3). Formally, for each feature Fj , the
appearance frequency of any label E ∈ E = {L, LM, M, MH,
H, *} in the set Di, Πij(E), can be computed according to
the expression given by:

πij(E) =

P
i1�il�im

δj(xil , E)

im
(3)

where

δj(xil , E) =

j
1 if F ′′

j (xil) = E
0 otherwise

Once, the frequency of each label is computed for every
feature, a 3-tuple of the form 〈feature, label, frequency〉 is
included in the fuzzy pattern of class Ci, only if its frequency
exceeds the predefined ratio Π. Namely, the fuzzy pattern
Pi is given by:

Pi =

8>>>>>><
>>>>>>:

V
F ′′

j
∈F ′′

D
F ′′

j , Ej , πj
E

:

Ej = arg max
E∈E

{πij(E)}∧
Ej �= ∗∧
πj = πij(E

j) � Π

9>>>>>>=
>>>>>>;

(4)

The predefined ratio Π controls the degree of exigency for
selecting a feature as a member of the pattern, since the
higher the value of Π, the fewer number of features which
make up the pattern.

The method presented here aims to construct a fuzzy pat-
tern which is representative of a collection of observations
belonging to the same decision class. The pattern’s quality
of fuzziness is given by the fact that the labels, which make
it up, come from the linguistic labels defined during the dis-
cretization stage. On the other hand, if a specific label of
one feature is very common in all the examples (belonging
to the same class), this feature is selected to be included in
the pattern and, therefore, a frequency-based criteria is used
for selecting a feature as part of the pattern.

3.1.3 Recognizing valuable genes (DFP)
The goal of gene selection is to determine a reduced set

of genes, which are useful to classify new samples given the
existing knowledge. Now, we are interested in those genes
that allow us to discriminate a given class with regard to the
others. Here, we introduce the notion of discriminant fuzzy
pattern with regard to a collection of FPs. A DFP version of
a FP only includes those genes that can serve to differentiate
it from the rest of the patterns. Therefore, the computed
DFP for a specific FP is different depending on what other
FPs are compared with it. It’s not surprising that the genes
used to discern a specific class from others (by mean of its
DFP) will be different if the set of rival classes also changes.
The pseudocode algorithm used to compute the final DFP
containing the selected genes can be consulted on [4].

3.2 Wrapper methods
A wrapper method approaches the feature selection pro-

cess by using an optimization algorithm that searches the
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space of possible subsets of attributes to find the best al-
ternative. An objective function is defined that takes into
account the accuracy of a classifier that is trained in the fea-
ture subset. This accuracy is measured by running an error
estimation procedure on the classifier, typically a cross val-
idation scheme. In addition to this accuracy measure, the
objective function can also take into account other features
of the solution that can be of interest. One example is the
introduction of the number of genes in the objective func-
tion to reward solutions with a small number of features.
As before, the aim of this system is to provide a framework
that allows the implementation of a number of alternatives
by considering distinct optimization algorithms.

In this work, Evolutionary Algorithms (EAs) [12] were de-
veloped to tackle this task. The proposed EAs use a set-
based representation scheme where the chromosome is a set
of integers that encode the indexes of the attributes (genes)
used in the classifier.

A crossover operator is used, that is inspired on uniform
crossover and works as follows: the genes that are present
in both parent sets are kept in both offspring; the genes
that are present in only one of the parents are sent to one
of the offspring, selected randomly with equal probabilities.
The mutation operator is a random mutation, that replaces
a gene by a random value in the allowed range.

In this EA, variable-sized sets can be encoded and com-
pete within the same population. Two additional mutation
operators are defined in order to be able to create solutions
with a distinct size:

• Grow: consists in the introduction of a new gene into
the chromosome, whose value is randomly generated
in the available range.

• Shrink: a randomly selected gene is removed from the
genome.

All reproduction operators are used with equal probabili-
ties to create new solutions. The operators are implemented
taking into consideration the need to comply to the con-
straints imposed by the minimum and maximum set size
and also to avoid repeated elements in the sets. In the ex-
periments reported in this work, the minimum size is always
set to 1.

It is important to mention that both the proposed repre-
sentation is mathematically equivalent to a binary represen-
tation, since there is a one-to-one correspondence between
the solutions. This means that the underlying search space
is the same. However, the reproduction operator and ini-
tialization schemes create differences in the way the search
space is explored, that can result in distinct outcomes in
the end of the optimization process. The reason to use this
representation is the fact that it is more compact and that
allows a better control of the size of the encoded sets, using
the aforementioned operators.

The selection procedure consists in converting the fitness
value into a linear ranking in the population, and then apply-
ing a roulette wheel scheme. In each generation, 50% of the
individuals are kept from the previous generation, and 50%
are bred by the application of the reproduction operators.
An elitism value of 1 is used, allowing the best individual of
the population to be always kept.

An initial population is randomly created, taking into ac-
count the fact that the sets do not allow repetitions. The

size of the individuals is randomly generated in the range
[L, U ], where U is also defined as the maximum size of the
individuals during evolution. The termination criterion is
based on a fixed number of generations G.

3.3 Classifiers
The flexibility of the framework was achieved, in the case

of the classification components, by making use of the WEKA
open source data mining software [17]. Indeed, the system
allows the user to choose any of the classifiers and algorithms
that are available in WEKA, providing a wide range of al-
ternatives that include, among others, decision trees, classi-
fication rules, neural networks, support vector machines or
instance-based learning.

In the experiments conducted during this work, the fol-
lowing classifiers/ algorithms were used:

• J48 – a classification decision tree based on the C4.5
algorithm;

• IB1 – a 1-Nearest Neighbor;

• SMO – a Support Vector Machine, using the Sequential
Minimal Optimization training algorithm.

The use of the WEKA software is not confined to the
classifiers, but is also useful in the definition of error esti-
mation methods. The proposed system allows the user to
select which method is used to estimate the error, e.g., k-fold
cross-validation, holdout or leave one out.

4. EXPERIMENTS

4.1 Datasets
The Lung dataset [2] consists of 254 human microarray

samples with 12625 genes. There are 5 distinct classes, 186
of these are adenocarcinoma samples, 20 are pulmonary car-
cinoids, 17 normal lung specimens, 21 squamous cell lung
carcinomas and 6 small-cell lung carcinomas.

Acute Myeloid Leukemia (AML) is not a single disease
but a group of neoplasms with diverse genetic abnormalities
and variable responses to treatment [16]. The New England
dataset used is a 105 samples subset of the original dataset
described in the afore cited article. It consists of 4 classes
and 22283 genes. Blasts and mononuclear cells were purified
from bone marrow or peripheral blood aspirates of acute
myeloid patients. Samples contained 80-100 percent blast
cells after thawing, regardless of the blast count at diagnosis.
Patients were classified into 4 subgroups: (i) 19 APL, (ii) 64
M5, (iii) 14 AML with inv(16) plus a group of 8 healthy
donors.

4.2 Methodology and implementation
The system was implemented in the Java programming

language using AIBench (http://www.aibench.org), a MVC-
based Java application framework that eases the connection,
execution and integration of operations with well defined
input/output. The code of the application is freely available
in the AIBench web site.

Regarding the EA’s setup, the population size was set to
100 individuals and the process is stopped after 200 gen-
erations. The fitness function was computed by using the
accuracy of a 5-fold cross-validation scheme.

The proposed approach was tested in the two datasets,
with the three classifiers identified in the previous section.
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Two variants were considered for the upper bound to the
number of genes(U): 20 and 50 genes. Thus, each test com-
bination is one dataset, one maximum number of genes and
one algorithm.

Due to CPU time constraints, a 5 times 10-fold cross-
validation over the all dataset was performed for each com-
bination. In each iteration of this process, the test fold is not
used in any way by the classifier nor the EA that performs
feature selection.

4.3 Results
The first step in each run is the pre-processing stage, i.e.

the application of the DFP filter method. After this process,
the datasets are reduced to a mean of 796 and 402 genes,
for the Lung and New England datasets respectively.

The results of the EA are presented in Tables 1 and 2, in
terms of the accuracy of the final classifier obtained in each
run. The tables show the classifier, the maximum number of
genes allowed, the number of genes selected by the EA, the
validation accuracy (obtained by the cross-validation used
in fitness evaluation) and the test accuracy of the final clas-
sifier. The last three are shown in terms of the mean and
95% confidence intervals. In Figures 3 and 4, two boxplots
with the test accuracies grouped by classifier and maximum
number of genes are shown, for both datasets.

Classifier Max
Genes

Genes Validation
Accuracy

Test Accu-
racy

IB1 20 15.22 ± 0.67 99.71±0.18 94.11±1.14
J48 20 11.61 ± 1.63 97.58±0.33 87.9 ± 1.35

SMO 20 16.2 ± 0.67 99.29±0.33 94.29±0.76
IB1 50 33.39 ± 3.92 99.67±0.15 95.3 ± 1.04
J48 50 29.22 ± 3.41 97.52±0.24 88.89±1.61

SMO 50 34.62 ± 4.28 99.63±0.37 94.35±1.66

Table 1: Results obtained by the EA on the Lung
dataset.

Classifier Max
Genes

Genes Validation
Accuracy

Test Accu-
racy

IB1 20 12.61 ± 1.15 98.89±0.46 87.14±2.68
J48 20 10.33 ± 1.58 95.87±0.54 78.89±2.39

SMO 20 12.94 ± 0.86 99.05±0.49 88.1 ± 3.17
IB1 50 27.22 ± 2.45 98.49±0.57 91.43±3.08
J48 50 24.17 ± 3.19 95.24±0.64 77.94±2.11

SMO 50 26.83 ± 2.92 98.17±0.59 92.06±2.26

Table 2: Results obtained by the EA on the New
England dataset.

Examining the results, it is clear that good results (above
90% accuracy) can be obtained using a small number of
genes (around 15 in the Lung and 27 in the New England
dataset). This shows the good performance of the EA in
the process of gene selection. It is interesting to notice that
the results obtained on the cross validation used in fitness
evaluation (a value reported by some authors as the final
performance measure) is very high (typically around 98% or
99% in several cases).

A comparison of the results obtained by the classifiers
shows that J48 seems inadequate to this task, showing some
problems in generalization (the difference between validation

Figure 3: Boxplot for the Lung dataset.

and test accuracies is very large). The IB1 and SVM are in
similar levels of accuracy and it is not possible to prove
any statistical difference between the two. The increase in
the number of genes is, in most cases, reward by a small
improvement in the results, although this is not significant
in some cases and there is even a decrease in two of the
setups.

5. CONCLUSIONS AND FURTHER WORK
In this work, a flexible computational framework was pro-

posed to the task of gene selection in classification of DNA
microarray data. The approach is to consider an optimiza-
tion engine based on an Evolutionary Algorithm, that en-
codes solutions using a set-based representation with vari-
able sized chromosomes. This EA works as a wrapper layer
over a classifier, evaluating each solution (subset of genes)
by considering its estimated accuracy.

The proposed system is quite flexible allowing the use of a
number of distinct classifiers, by interacting with the WEKA
software and making use of all the alternatives it provides.
Furthermore, a number of filter methods can be used in the
pre-processing stage and the fitness function can be molded
to integrate other features (e.g. the number of genes).

The work reported here is still ongoing, and a number of
new features are expected to be integrated, such as new filter
methods and the possibility of defining classifiers that are
not included in WEKA. Additionally, more tests on different
datasets will be conducted in the near future to validate the
approach.
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Figure 4: Boxplot for the New England dataset.
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