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ABSTRACT
This paper explores connections between Ficici’s notion of
solution concept and order theory. Ficici postulates that
algorithms should ascend an order called weak preference;
thus, understanding this order is important to questions of
designing algorithms. We observe that the weak preference
order is closely related to the pullback of the so-called lower
ordering on subsets of an ordered set. The latter can, in
turn, be represented as the pullback of the subset order-
ing of a certain powerset. Taken together, these two ob-
servations represent the weak preference ordering in a more
simple and concrete form as a subset ordering. We utilize
this representation to show that algorithms which ascend the
weak preference ordering are vulnerable to a kind of bloating
problem. Since this kind of bloat has been observed several
times in practice, we hypothesize that ascending weak pref-
erence may be the cause. Finally, we show that monotonic
solution concepts are convex in the order-theoretic sense.
We conclude by speculating that monotonic solution con-
cepts might be derivable from non-monotonic ones by tak-
ing convex hull. Since several intuitive solution concepts like
average fitness are not monotonic, there is practical value in
creating monotonic solution concepts from non-monotonic
ones.

Categories and Subject Descriptors
G.1.6 [Mathematics of Computing]: Optimization; I.2.8
[Problem Solving, Control Methods, and Search]:
Heuristic Methods

General Terms
Algorithms,Theory

Keywords
bloat, coevolution, coevolutionary algorithms, later is bet-
ter, solution concepts, theory
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1. INTRODUCTION
The historical arc which coevolutionary algorithms re-

search has taken since the early 1990s can be said to have
passed from practice to theory. Well-cited empirical results
such as Daniel Hillis’ coevolution of sorting networks [8] or
Karl Sims’ coevolution of battling virtual creatures [14] in-
spired early work. The growing list of successful applications
of cooperative coevolutionary algorithms [11] stoked further
enthusiasm. However, equally well-known undesirable algo-
rithm behavior, ranging from cycling to overspecialization to
relative overgeneralization1 eventually caused enough confu-
sion that research attention shifted to developing theory.

The 2002 Genetic and Evolutionary Computation Con-
ference hosted a workshop entitled Understanding Coevo-

lution: Theory and Analysis of Coevolutionary Algorithms

which marked a shift from practice to theory. The descrip-
tion of this workshop put it simply that “dynamics in these
systems can be complicated and surprising” but did go on to
say that “the time has come to focus our collective attention
on analysis issues.”

Sevan Ficici’s 2004 Ph.D. dissertation grounds the analy-
sis of coevolutionary dynamics in two key ideas, the solution

concept and the weak preference order. Regarding solution
concepts, Ficici says:

We assert that pathologies in coevolutionary op-
timization arise when algorithms fail to imple-
ment the required (or desired) solution concepts.
[5]

The implication is that an algorithm which does imple-
ment a solution concept will behave. Yet there is more to
the story. [5] also introduces the notion of a non-monotonic

solution concept and argues that an algorithm which faith-
fully implements one can still exhibit pathological behavior,
namely cycling. Roughly speaking, an algorithm implement-
ing a non-monotonic solution concept can gain or lose ca-
pabilities much as a non-monotonic function can fluctuate
up or down. Ficici shows that intuitive and commonly-used
solution concepts such as “highest average fitness” are non-
monotonic when used in coevolutionary algorithms. Hence,
algorithms implementing non-monotonic solutions concepts
are predicted to produce poor algorithm dynamics, and in
particular to be vulnerable to cycling.

Weak preference is an ordering among candidate solutions
which can be derived from any solution concept, but is most
meaningful when derived from a monotonic solution con-
cept. In that case, the weak preference order is such that
1See [17] for a discussion of relative overgeneralization.
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ascending it yields a chain of candidates with increasing ca-
pability. Thus, theoretically speaking we might ground the
aim of “implementing a (monotonic) solution concept” in
terms of whether the algorithm prefers individuals which
are higher on the weak preference order.

This paper explores these ideas from a formal standpoint,
continuing along the theoretical arc of research but with
an eye towards improving and understanding algorithms.
While we do not advance a particular claim, we do make
two loosely-connected observations which have implications
for algorithm design:

1. That under certain conditions, even a supposedly well-
behaved algorithm which ascends the weak preference
order and implements a monotonic solution concept
can still exhibit a kind of pathological bloating phe-
nomenon. We have named this the later is better effect

and suggested examples where it may have arisen.

2. That monotonicity of solution concepts is a kind of
convexity. We speculate that the formal convex hull
operation will yield a way to convert a non-monotonic
solution concept into a monotonic one.

We make these observations by giving solution concepts
and weak preference a concrete grounding in the theory of
ordered sets.

This paper is organized as follows. Section 2 develops the
mathematical notation and concepts used in the remainder
of the paper. Section 3 gives background on the notion
of solution concept. Section 4 defines the weak preference
relation, makes the connection between weak preference and
the lower ordering on subsets, and argues for the possibility
of the later is better effect. Finally, section 5 speculates
on the possibility of converting a non-monotonic solution
concept into a better-behaved monotonic one via the order-
theoretic equivalent of the convex hull operation.

2. MATHEMATICAL PRELIMINARIES
This section reviews some concepts from the theory of

ordered sets. For a gentle introduction to ordered sets, see
[13]. Readable treatments of more advanced concepts like
pullbacks can be found in [1] or [15]. The latter book covers
the lower/upper orders and convexity in some detail.

Definition 2.1. (Ordered Set) A set S equipped with a
binary relation ≤S is called ordered when ≤S is both reflex-
ive and transitive. That is, for all s ∈ S, s ≤S s; and, for
all s1, s2, s3 ∈ S, if s1 ≤S s2 and s2 ≤S s3, then s1 ≤S s3.
When S is an ordered set we will refer to it simply by S;
when confusion might arise, we will write (S,≤S).

Remark 2.2. An order on S is symmetric if a ≤S b and
b ≤S a together imply a = b for any a and b in S. What we
are calling an order need not be symmetric, however. Thus,
we will define a strict version of the order like so: a <S b if
a ≤S b and b 6≤S.

Definition 2.3. (Pullback Order) Let S be an ordered
set, A some other set, and f : A → S an arbitrary function
into S. Then we can make A into an ordered set by pull-

back2, as follows: define a1 ≤f a2 to hold in A whenever
f(a1) ≤S f(a2) in S.
2So-called to suggest the action of pulling the order of S
back through the function f . But the technical notion of
pullback applies here too; see, for instance, [1].

Lemma 2.4. Let S be an ordered set, f : A → S a func-

tion into S. Then (A,≤f ) really is an ordered set.

Proof. ≤S is reflexive, so that f(a) ≤S f(a) for any
a ∈ A; thus, a ≤f a, meaning ≤f is reflexive too. For
transitivity, let a1, a2, a3 ∈ A be such that a1 ≤f a2 and
a2 ≤f a3. That is, f(a1) ≤S f(a2) and f(a2) ≤S f(a3).
By transitivity of ≤S, f(a1) ≤S f(a3), meaning a1 ≤f a3.
Thus a1 ≤f a3, showing ≤f is transitive too. Thus (A,≤f )
is indeed an ordered set.

Remark 2.5. One reason to labor over the proof that pull-
back preserves reflexivity and transitivity is that it does
not preserve symmetry: if ≤S is symmetric, ≤f will not
be whenever f is not injective.

Definition 2.6. (Lower Ordering) Let S be an ordered
set,

�
(S) the power set of S. The lower ordering of

�
(S),

written ≤[, is defined as follows: for any S1, S2 ⊂ S, S1 ≤[

S2 holds if, for all s1 ∈ S1, there is some s2 ∈ S2 such that
s1 ≤S s2.

Definition 2.7. (Downward Closure) Let S be an or-
dered set, U ⊂ S some subset of S. The downward closure of
U , written ↓U , is the set {s ∈ S | s ≤S u for some u ∈ U}.

Remark 2.8. There is a dually-defined upward closure of
U , written ↑U .

Lemma 2.9. Let S be an ordered set, U,V ⊂ S. Then

U ≤[ V if and only if ↓U ⊂↓V .

Proof. (⇒): Assume U ≤[ V . Let x ∈↓U ; we must show
x ∈↓V also to prove ↓U ⊂↓V . x ∈↓U means there is a u ∈ U

such that x ≤S u. Since U ≤[ V , there is some v ∈ V such
that u ≤S v. ≤S is transitive, so x ≤ v. Thus, x ∈↓V . This
fact holds for any x ∈↓U , implying ↓U ⊂↓V .

(⇐): Conversely, assume ↓U ⊂↓V and let u ∈ U . By
assumption, u ∈↓V . By the definition of ↓V , there is some
v ∈ V such that u ≤S v. This holds for any u ∈ U , which
means we have shown that for any u ∈ U , there is some
v ∈ V with u ≤S v, or equivalently that U ≤[ V .

Lemma 2.10. Let S be an ordered set. Then (
�

(S),≤[)
is an ordered set which differs, in general, from (

�
(S),⊂).

Proof. Note that the mapping U 7→↓ U is a function
↓(−) :

�
(S) →

�
(S). Lemma 2.9 says exactly that ≤[ is

the pullback of ⊂ through ↓(−). Hence, by Lemma 2.4, ≤[

really is an order on
�

(S). If a 6= b are two distinct elements

of S such that a ≤ b, then {a} 6⊂ {b}, but {a} ≤[ {b},

meaning in general ⊂6=≤[ as orders on
�

(S).

Definition 2.11. (Convex Subset) Let S be an ordered
set, U ⊂ S some subset. U is convex if, whenever s1 ≤S

s ≤S s2 with s1, s2 ∈ R, then s ∈ U also. That is, all
elements of S which lie between elements of U are also in
U .

Example 2.12. The set of even numbers is not a convex
subset of ( � , ≤) because, for instance, 2 ≤ 3 ≤ 4 but 3 is not
even. On the other hand, an interval like [2, 10] is convex.

Definition 2.13. (Convex Hull) Let S be an ordered set,

U ⊂ S. The convex hull of U in S, written
�
U , is defined

�
U =

{s ∈ S | there are u1, u2 ∈ U such that u1 ≤S s ≤S u2}.
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Example 2.14. The convex hull of the set of even numbers
in � is � itself. The convex hull of the interval [2, 10] is
[2, 10] itself. Likewise, the convex hull of {2, 4, 6, 8, 10} is
also [2, 10].

Lemma 2.15. Let S be an ordered set, U ⊂ S. Then�
U =↓U∩ ↑U .

Proof. (⊂): Let u ∈
�
U . Then there are u1, u2 ∈ U

such that u1 ≤S u ≤S u2. Thus u ∈↑U (as a result of
u1 ≤S u), and u ∈↓U (as a result of u ≤S u2). In other

words, u ∈↓U∩ ↑U . This fact holds for all u ∈
�
U , showing�

U ⊂↓U∩ ↑U .
(⊃): Let u ∈↓U∩ ↑U . u ∈↓U implies there is a u2 ∈ U

such that u ≤S u2. Similarly, u ∈↑U implies there is a
u1 ∈ U such that u1 ≤S u. Thus, u1 ≤S u ≤S u2, meaning

u ∈
�
U . This holds for all u ∈↓U∩ ↑U , so ↓U∩ ↑U ⊂

�
U .

3. SOLUTION CONCEPTS
As originally defined in [5], a solution concept is a binary

predicate on the collection of candidate solutions buildable
from any population. It specifies which of the available can-
didate solutions is to be regarded as an actual solution at
that point in evolutionary time.

As a simple example from evolutionary algorithms, con-
sider an objective function f : G → � from some set of
genotypes G to the real numbers. If Gt ⊂ G is considered
to be the population at time t we might take the set

∂Gt = arg max
g∈Gt

f(g) (1)

as the subset of Gt which we regard as (provisional) so-
lutions at this point in evolutionary time. The boundary
operator ∂X denotes “set of solutions in context X.” Equa-
tion 1 is the mathematical expression of a common solution
concept, the “best so far” or “maximum fitness” concept.
Notice that an optimization problem is ill-defined without
some solution concept; stating “solve f : G → � ” has no
meaning until we know we are to find the maxima, and more
specifically know that we seek, in this case, all of ∂G. The
fundamental hope behind local search in general and evolu-
tionary algorithms in particular is that knowledge of local
solutions ∂Gt can direct an algorithm towards the global
solutions in ∂G.

Ficici’s notion of solution concept is a generalization of
this idea to coevolutionary algorithms. The interactive na-
ture of the problem domains explored by coevolutionary al-
gorithms adds a level of complication to the definition of so-
lution which is not often encountered in more conventional
optimization problems. In this section we will review solu-
tion concepts, simultaneously developing a notation which
we feel simplifies and clarifies that used in [5].

Throughout this section, we assume that the interactive
domain under scrutiny is expressed by two functions p

S
:

S × T → RS and p
T

: S × T → RT . We interpret the sets S

and T to be two different roles which entities can play. RS

and RT are two ordered sets. p
S
(s, t) is interpreted as the

value from RS which is assigned to the element playing role
S, namely s3, after it interacts with t.4 Similar statements

3Which Ficici would call a behavior chosen for that role.
4In the event (s, t).

apply to p
T
.5 Sometimes it will be convenient to ignore the

distinction between S and T . Note, for instance, that when
we discuss populations we can consider collections formed
from S + T , the disjoint union of S and T . For the sake
of notational brevity we will therefore sometimes write X

instead of S + T .

3.1 Entities and Configurations
The sets S and T contain what might be thought of as

atomic entities. Populations are collections, be they sets,
multisets, or distributions, drawn from S+T . Consequently,
the elements of S and T are the units of search. It often hap-
pens that the domain does not have its best solutions among
the S or T , though, so that algorithms form configurations

of these as candidate solutions. We will write C(X) for the
set of configurations built from a set X. C(X) can be in-
terpreted as a kind of free structure, containing all possible
combinations of objects drawn from X. For example:

Cooperative Coevolution.
Cooperative coevolutionary algorithms [12] might main-

tain two populations, one drawn from S and one drawn from
T . The aim is usually to find a pair (s, t) which maximizes
a given objective function f : S × T → � . Here, then,
C(X) = C(S + T ) = S × T .

Nash Memory.
[5], for example, discusses algorithms which attempt to

find mixtures of entities, one mixture for each role. If we use
the simplex notation ΛS to represent the set of all mixtures
over S (as in [16]), then C(X) = C(S + T ) = ΛS × ΛT .

Pareto Coevolution.
Pareto coevolutionary algorithms [6, 10] seek the non-

dominated front of a set of entities S taken over a set of
objectives T . Given a function like p : S × T → R, R being
ordered, we can treat each t ∈ T as if it were a function
S → R by currying: t(s) = p(s, t) (see [2] for details on this
point of view). Thus, our solutions are C(X) = C(S +T ) =�

(S). If we also seek a subset of T , such as the maximally-
informative tests [2] or a complete evaluation set [4], then
we might instead use C(X) =

�
(S) ×

�
(T ).

3.2 Solutions
A solution concept designates a subset of the set of config-

urations as solutions. The concept should specify a subset
for all possible sets of configurations. If St ⊂ S and Tt ⊂ T

are the population(s)6 at time t, then C(St + Tt) is the set
of configurations at time t; a solution concept must specify
a subset for all possible St and Tt.

7

We will write ∂Xt to designate the solution set of Xt.

5One or more of these objects may be identical; for instance,
we might have S = T . We wish to avoid results which are
contingent on assumptions like that, however, which is why
we adopt this general formulation.
6To be more precise, we should say that St and Tt are the
supports of the populations, as populations can be multisets.
7Observe that the concept need not specify solutions for ar-
bitrary subsets of C(S + T ), only for those expressible as
C(St + Tt). The distinction is acute in the case of sim-
plices, where if Xt ⊂ X, then C(Xt) ⊂ C(X) can only be
an |Xt|-dimensional face of the |X|-dimensional simplex of
configurations. Most subsets of C(X) are not of this form.
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We omit the C(−) for brevity, so that ∂Xt ⊂ C(Xt) is
the set of provisional solutions at time t.8 Thus, ∂ itself is
the solution concept. We use the boundary operator ∂ to
suggest that a solution concept is giving a frontier or edge
to the population.

4. PREFERENCE AND BLOAT
A population can be viewed as a context within which con-

figurations are compared. However, the context is local in
the sense that only the configurations which appear together
(that is, are buildable from that population’s support) can
be compared. The weak preference relation is meant to con-
vert these local comparisons into a global one. That is, weak
preference allows one to compare two configurations which
may not appear in the same contexts together.

Simply put, a configuration β is preferred to α if, when-
ever α appears to be a solution in one context, there is a
larger context in which β appears as a solution also. In this
section we will give the formal definition of weak preference
and show that it is closely related to the lower ordering on
the powerset of the set of all possible populations. This ob-
servation will allow us to represent weak preference as the
subset ordering on that powerset, via lemma 2.9 and pull-
back through the mapping of configurations to the set of
populations in which they appear optimal.

Next we observe that weak preference is vulnerable to
a kind of bloating problem. We show that it is possible
to weakly prefer β to α even when β never shows up as a
solution where α does not. This result highlights that weak
preference tends to prefer configurations which appear in
larger populations. Larger populations, which have larger
support sets, give rise to configurations over larger support
sets9, which in turn means that configurations which appear
in these larger populations but not in smaller ones will have
larger support. They will be preferred by weak preference,
meaning an algorithm which ascends weak preference will
replace smaller-support configurations with larger-support
configurations even when the latter do not perform better.
Finally, we give three examples where a kind of bloat has
occurred and suggest these may all be consequences of the
bloat phenomenon predicted by this theory.

4.1 Weak Preference
Section 2.6.4 of [5] defines weak preference as follows:

Definition 4.1. (Weak Preference) Let α and β be con-
figurations, and let X = S + T be the set of all possible en-
tities. β is weakly preferred to α, which we will write α ≺ β

if, for any context Xα ⊂ X such that α ∈ ∂Xα, there is a
strictly larger Xβ (meaning Xα ⊂ Xβ and Xα 6⊂ Xβ) such
that β ∈ ∂Xβ .

Remark 4.2. Note that there is no condition saying that
when β ∈ ∂Xβ that α 6∈ ∂Xβ. In other words, it is possible
in principle that in every population Xβ in definition 4.1, α

also appears.
For any configuration α, let Uα be the set of all popula-

tions in which α appears as a solution. Symbolically,

8Recall that this is written S
∗(T,O) in [5], where T, a mea-

surement table, corresponds to our St, Tt and the associated
subfunctions of p

S
and p

T
, O represents the optimality con-

cept, and S
∗ simply means to apply the concept to the table.

9For instance, when configurations are mixtures.

Uα = {X ′ ⊂ X | α ∈ ∂X
′} (2)

For any α, Uα consists of those contexts (X ′ ⊂ X) in
which α appears as a solution, so that Uα is a set of subsets of
X (the set of all possible entities). In symbols, Uα ⊂

�
(X)

or, equivalently, Uα ∈
�

(
�

(X)).
�

(X) is ordered by in-
clusion so that, by definition 2.6, we can order

�
(

�
(X))

by the lower ordering ≤[.
In particular, we can compare any two Uα and Uβ via the

lower order on
�

(
�

(X)). Uα ≤[ Uβ if, for any context
Xα ∈ Uα, there is a context Xβ ∈ Uβ such that Xα ⊂ Xβ .
This observation is essentially the content of:

Definition 4.3. (Configuration Order) Let α and β be
two configurations. Define a relation on configurations, which
we will write �[, as follows: α �[ β when Uα ≤[ Uβ as ele-
ments of

�
(

�
(X)).

Postulate 4.4. As a relation on configurations, �[ re-

ally is an order.

Proof. �[ is the pullback of the lower order on
�

(
�

(X))
through the mapping α 7→ Uα. The lower order is an order,
by lemma 2.10, and the pullback of an order is also an order
by lemma 2.4. Thus �[ is an order.

We have purposely used the symbol �[ to suggest the
weak preference order ≺, because:

Theorem 4.5. Assume the problem domain is such that

for all configurations α, Uα is bounded in the sense that for

any Xα ∈ Uα and any chain of inclusions Xα = X0 ⊂
X1 ⊂ X2 ⊂ . . . , there is an N such that for all k ≥ N ,

Xk = Xk+1. Assume also that whenever a configuration α

is in both ∂X1 and ∂X2, it is also in ∂(X1 ∪ X2). Then

α ≺ β if and only if α ≺[ β.

Proof. (⇒): α ≺ β immediately implies α �[ β. Ac-

cording to remark 2.2, we must show it also implies β 6�[ α.
Imagine that Xα ∈ Uα and Xβ ∈ Uβ are such that Xα ⊂ Xβ

strictly (meaning Xα 6= Xβ), as required by the assumption

that α ≺ β. If it were the case that β �[ α, there would in
turn be a X ′

α ∈ Uα such that Xβ ⊂ X1
α. Xα ⊂ Xβ strictly,

implying Xα ⊂ X1
α strictly also. By repeating this argu-

ment, we can produce an infinite, strictly-increasing chain
of subsets Xα ⊂ X1

α ⊂ X2
α ⊂ . . . , contradicting the assump-

tion that the domain has no such chains. By this contradic-
tion, we cannot have β �[ α, and we have shown that α ≺ β

implies α ≺[ β.
(⇐): Imagine α ≺[ β, meaning α �[ β and β 6�[ α. We

wish to show α ≺ β. Firstly, β 6�[ α implies that there is
at least one X∗

α ∈ Uα such that there is a X∗

β ∈ Uβ with
X∗

α ⊂ X∗

β and such that there is no other X̄α ∈ Uα with

X∗

β ⊂ X̄α. Now imagine Xα ∈ Uα. Since α �[ β, there
is a Xβ ∈ Uβ with Xα ⊂ Xβ . Either this relationship is
strict, or Xα = Xβ . But in the latter case, it must be that
Xα ⊂ Xβ ∪X∗

β strictly; otherwise, we would have Xα = X∗

β ,
contradicting the assumption that there is no such Xα. By
assumption, Xβ ∪X∗

β ∈ Uβ , which means that for any Xα ∈
Uα there is always a strictly larger context in Uβ. Thus we
have that α ≺ β, as we set out to show.

Remark 4.6. In particular, the theorem holds when the
global set of entities X is finite, because any chain of subsets
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Xi ⊂ Xi+1 ⊂ . . . will, at worst, top out at X. The condition
that if β is a solution in two populations, then it is also a
solution in their union, appears to hold in common solution
concepts. This theorem says that in such instances, the
strict version of configuration ordering (definition 4.3; see
remark 2.2 for discussion of strictness) corresponds exactly
to the weak preference ordering (definition 4.1). In short,
for all practical purposes these two are the same order.

4.2 The Potential for Bloat
Remark 4.2 suggested that we could have α ≺ β, β weakly

preferred to α, even if it is never the case that when Xα ∈ Uα

and Xβ ∈ Uβ are such that Xα ⊂ Xβ , that α 6∈ ∂Xβ . In
fact, it may be that all such ways of enlarging a context in
which α is a solution to produce a context in which β is a
solution always leave α as a solution as well. Nevertheless,
we would prefer β to α in an instance like this. We could
sum up this effect with the maxim “later is better” according
to weak preference.

While it remains to be seen whether there are non-trivial
examples of this later is better effect, we feel it is worth
looking at more closely because:

• In common cases, we would expect later is better to
produce configurations which are bloated, in a sense;

• This kind of bloat has been observed at least once in
practice.

Later Is Better Can Lead to Bloat.
Imagine α ≺ β is an instance of the later is better effect.

Firstly, note that β appears as a solution strictly after α.
In particular, there are populations in which α appears as a
solution but β does not. One example where this may occur,
in the case of mixture configurations, is when β is a mixture
with the same support as α but including more atomic en-
tities. β would appear later because the extra members of
its support would have to be discovered. If, then α and β

both appear as solutions, β would be preferred. While this
may be precisely what we want in some cases10 , it may be
exactly what we do not want in other cases. For instance,
if an algorithm is continually generating new entities which
are different from existing ones but do not improve per-
formance, mixing solution configurations α with these can
produce configurations β which have strictly larger support
but are no better in any other sense.

Possible Observations of Bloat.

• Anecdotally, coevolution of Tic Tac Toe strategies seems
to show this effect. Algorithms have a tendency to pro-
duce strategies which can draw existing strategies, but
not win. Thus, over time, large numbers of drawing
strategies are found and collected into configurations
which grow in size but do not improve performance-
wise.11

• In evolutionary approaches to multi-objective optimiza-
tion [7], one finds that as the number of objectives

10For instance, in rock-scissors-paper, the atomic strategy
“always play rock” would appear before the mixture “play
rock, scissors or paper each with probability 1

3
.”

11Sevan Ficici, personal communication.

grows, finding candidate solutions which dominate ex-
isting solutions becomes increasingly difficult. In Pareto
coevolution, therefore, one would expect that if an al-
gorithm begins accumulating different tests12, the non-
dominated front would begin to grow out of control.
However, the front is not necessarily gaining any per-
formance advantanges in this case, and therefore might
be bloating.

• The LAPCA algorithm has been proposed as a solu-
tion concept for Pareto coevolution [3]. Recent work
with this algorithm coevolving players for a modified
version of Pong [9] suggests a bloating phenomenon.
While that work did not directly test for bloat the re-
sults in Table 3 reporting the number of evaluations
used seem to suggest an increase in the size of the
layered archive beyond what might be reasonably ex-
pected.13 The extra evaluations suggest more individ-
uals than necessary were stored in the layered archive.
This same work argues more definitely that a bloating
phenomenon occurs with best of generation methods.

It is worth emphasizing that the later is better effect may
plague even monotonic solution concepts. Definition 5.1
gives the formal definition of these, but note:

1. None of the preceding relied on the solution concept
being non-monotonic.

2. Pareto coevolution implements a monotonic solution
concept [5], and LAPCA has been argued to approxi-
mate one as well [3].

5. DISCUSSION
Thus far we have detailed a representation of Ficici’s weak

preference order as a subset relation in a certain powerset.
The concreteness of the subset relation led to several obser-
vations about weak preference which might not have been
easily elucidated otherwise. We feel that with further work,
deeper predictive applications of this representation might
be developed. Here we hint at one such possibility regarding
the convex hull of a solution concept. First we observe that
a monotonic solution concept has a certain convexity prop-
erty. Next, we observe that any solution concept at all will
involve sets which have a convex hull. Finally, we speculate
that it might be possible to close even an ill-behaved, non-
monotonic solution concept into a corresponding monotonic
one which, according to [5], would be expected to have bet-
ter dynamic properties. Such a result would have practical
significance, as algorithm designers would not need to worry
over theoretical details like monotonicity.

To begin, note that as defined in section 9.2.2 of [5], a
monotonic solution concept is as follows:

Definition 5.1. (Monotonic Solution Concept) Let α

be a configuration. Whenever α ∈ ∂X1, α 6∈ ∂X2 and α ∈
∂X3, where X1 ⊂ X2 ⊂ X3, ∂ is said to be non-monotonic.
Otherwise, ∂ is monotonic.

In words, this definition says that whenever α appears as a
solution in two contexts where one includes the other, then

12Tests as in coevolving individuals which are treated as ob-
jectives; see, for instance, [6, 10].

13LAPCA uses significantly more evaluations than a BOG
(best of generation) method.
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α must also appear as a solution in all contexts included
between them. In short, ∂ is convex in the following sense:

Theorem 5.2. Let ∂ be a solution concept. Then ∂ is

monotonic if and only if Uα is convex in (
�

(
�

(X)),⊂) for

all configurations α.

Proof. ∂ is monotonic if and only if for all α, whenever
X1, X3 ∈ Uα and X1 ⊂ X3, then any X2 with X1 ⊂ X2 ⊂
X3 must also be in Uα. This equivalence is really a formal
restatement of definition 5.1. But this condition is also ex-
actly that for all α, the set Uα is convex, in the sense of
definition 2.11, with respect to ⊂. Uα lives in

�
(

�
(X));

thus, ∂ is monotonic if and only if Uα is convex for all con-
figurations α.

Now imagine that ∂ is not monotonic. Then for at least
one configuration α, Uα is not a convex set.14 However, the
convex hull construction defined in definition 2.13 can be
applied to yield

�

Uα for this α.
Naturally this is only a theoretical construction, but in our

opinion the question of whether it can be made practical is

worth exploring. The change from Uα to
�

Uα explicitly adds
to Uα all the contexts in which α “should be” a solution,
but according to ∂ is not. There may be intractably many
contexts with that quality, and it may be infeasible to dis-
cover what those are. However, by studying small domains
we hope to elucidate principles which allow us to systemati-
cally produce the convex hull of any given solution concept.
It may be that a known change, for instance from average
fitness to Pareto dominance, already implements this con-
vex hull operation. Would an algorithm which implemented
this new monotonic solution concept be solving the original
problem, or would it be exploring an essentially different
domain?

Regarding bloat, is there any hope of avoiding the later
is better effect? An obvious ploy is to prefer parsimonious
solutions. However, doing so changes the preference order
among candidates and thus implicitly changes the solution
concept implemented by the algorithm. What other impli-
cations does such a change have?

Further study is necessary to clarify these questions. In
future work we hope to provide principled and theoretically-
grounded answers to the questions of how to avoid bloat and
how to take the convex hull of a given solution concept.
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