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ABSTRACT
This paper introduces the Objective Fitness Correlation, a
new tool to analyze the evaluation accuracy of coevolution-
ary algorithms. Accurate evaluation is an essential ingre-
dient in creating adequate coevolutionary dynamics. Based
on the notion of a solution concept, a new definition for ob-
jective fitness in coevolution is provided. The correlation
between the objective fitness and the subjective fitness used
in a coevolutionary algorithm yields the Objective Fitness
Correlation. The OFC measure is applied to three coevolu-
tionary evaluation methods. It is found that the Objective
Fitness Correlation varies substantially over time. More-
over, a high OFC is found to correspond to periods where
the algorithm is able to increase the objective quality of indi-
viduals. This is evidence of the utility of OFC as a measure
to evaluate and compare coevolutionary evaluation mecha-
nisms. The Objective Fitness Correlation (OFC) provides a
precise analytical tool to measure the accuracy of evaluation
in coevolutionary algorithms.

Categories and Subject Descriptors
F.0 [General]

General Terms
Algorithms, Experimentation, Performance

Keywords
Coevolution, objective fitness, subjective fitness, objective
fitness correlation, OFC

1. INTRODUCTION
In this paper, a new tool for analyzing the accuracy of

evaluation in coevolutionary algorithms is introduced.
Within evolutionary computation, coevolution is of inter-

est in that it provides a potential to evaluate individuals
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using a limited, adaptive set of interaction partners. Interac-
tion partners will be called tests here. In problems where the
quality of individuals is determined by the outcome of tests,
i.e. test-based problems [1], applying a standard genetic al-
gorithm would require either testing individuals against all
possible tests, which is typically infeasible; testing against
a fixed set of tests, which biases the search towards a par-
ticular set of tests; or testing against a random sample of
tests, which may not include the high-quality tests required
to evaluate high-quality solutions. By letting the test set
adapt over time to the evolving set of candidate solutions,
coevolution may in principle provide limited size test sets
that provide adequate evaluation for the evolving set of can-
didate solutions at each point in time.

While coevolution may in principle provide efficient and
accurate evaluation, it is rather easy to devise coevolution-
ary setups that do not achieve this goal. In particular, the
dynamic evaluation that is provided by adaptive coevolu-
tionary test sets can lead to a diverse set of pathologies in-
cluding disengagement, over-specialization, and cycling; see
e.g. [2].

A recent insight in coevolution research is that the design
of a coevolutionary setup should begin with a consideration
of the desired solution concept [3]. A solution concept spec-
ifies which elements of the search space qualify as solutions
and which do not. Examples of solution concepts include:
maximizing the sum of outcomes against all possible oppo-
nents, the Pareto-optimal set, and Nash-equilibria.

Given a choice of the desired solution concept, a next
question is how a coevolutionary algorithm may be set up
such that it is likely to converge towards a solution. Cur-
rently, for each of the coevolutionary solution concepts that
have so far been described in the literature, archive methods
exist that provide a guarantee of monotonic progress given
a generator of individuals. By coupling such an archive to a
coevolutionary algorithm that provides new candidate solu-
tions, or even to a random generator of candidate solutions,
it can be guaranteed that a correct solution will eventually
be found, given sufficient exploration.

While such theoretical guarantees are important in pro-
viding examples of robust coevolution algorithms that can
overcome coevolutionary pathologies, the practical value of
such guarantees remains limited as long as bounds on the
computational expenses required to reach a solution are un-
available. For the practical purpose of developing efficient
robust coevolutionary algorithms, an essential open problem

440



now is how the dynamics of a coevolutionary algorithm can
be set up such that the generated individuals improve the
algorithm’s approximation of the solution concept.

An essential ingredient in creating adequate coevolution-
ary dynamics is accurate evaluation; if an accurate estimate
of the absolute, objective quality of individuals would be
available, then the coevolutionary algorithm would become
equivalent to a standard genetic algorithm, and be able to
guarantee monotonic progress simply by performing elitist
selection; see also [4].

An objective fitness measure is defined here as a static
function that accepts an approximation to the solution con-
cept, and returns a value that is maximal if and only if the
approximation is a member of the solution concept. In ad-
dition to this formal requirement, it is desirable that the
objective fitness measure express the degree to which the
approximation approaches the solution concept. Clearly,
the availability of an objective fitness measure would greatly
simplify any coevolutionary search problem; it would reduce
the coevolutionary problem to a standard genetic algorithm
problem.

In test-based problems of practical interest, objective mea-
sures of quality are unavailable, as evaluating a candidate
solution against all possible tests is typically computation-
ally infeasible. There are two classes of problems however
for which objective measures of quality can be obtained:

• Test problems for which the set of all possible tests is
small. For board and other games, such as Nim for
example, small variants can often be defined for which
the set of all possible opponent strategies is sufficiently
small to evaluate candidate solutions against all tests.

• For abstract test problems such as certain Numbers
games [2], the objective quality of individuals can be
derived analytically. If this can be done, an objective
quality measure can be provided without performing
tests.

We propose to analyze algorithms for coevolutionary eval-
uation by comparing the subjective coevolutionary evalua-
tion they provide with the objective evaluation that is avail-
able in certain test problems. The Objective Fitness Cor-
relation is defined as the correlation between the subjective
fitness values calculated by a coevolutionary algorithm and
the objective fitness that can be calculated for certain test
problems. By measuring the Objective Fitness Correlation
(OFC), an accurate analytical tool is obtained to evaluate
and compare the accuracy of different coevolutionary eval-
uation mechanisms.

In this paper, the Objective Fitness Correlation is intro-
duced and described. As a demonstration of the proposed
approach for evaluating coevolutionary evaluation methods,
the measure is applied to three of the evaluation methods
used in coevolution work: the average outcome against cur-
rent opponents; an informative method based on distinc-
tions; and an archive-based approach. It is found that the
Objective Fitness Correlation varies substantially over time.
Moreover, a high OFC is found to correspond to periods
where the algorithm is able to increase the objective quality
of individuals. This is evidence of the utility of OFC as a
measure to evaluate and compare coevolutionary evaluation
mechanisms.

The remainder of the paper is structured as follows. After
the introduction, related work is discussed. Next, Section 3

describes the main solution concepts used in current coevo-
lution research. Section 4 introduces the Objective Fitness
Correlation. Section 5 describes the LINT problem. The fol-
lowing section describes the algorithms. Section 7 reports
the experiments, Section 8 describes the results, Section 9
provides a discussion, and Section 10 concludes.

2. RELATED WORK
The accuracy of evaluation in coevolution is a longstand-

ing theme; see e.g. [5, 6, 1, 7]. A strong connection exists
with the Numbers Game work by Richard Watson [2]; this
work shares with it not only the structure of the test prob-
lem, but more importantly the aim to focus on and isolate
certain aspects of coevolution while ruling out the influence
of others.

The most closely related work of which we are aware is
by Popovici and De Jong [8]. There, the internal and ex-
ternal landscapes of individuals in a coevolutionary setup
are analyzed. These notions provide a valuable contribution
to the understanding of evaluation in coevolution. A cru-
cial property of coevolutionary algorithms however is that
evaluation typically depends on a whole population of in-
dividuals rather than a single one. The approach that will
be proposed here takes into account the influence of entire
populations, by considering the subjective fitness resulting
from evaluation against a population.

As noted in [8], with the exception of [2] surprisingly lit-
tle earlier work has explored these notions, though several
researchers have studied measuring progress in coevolution-
ary algorithms, e.g. [9, 10, 11]. A possible explanation is
that the notion that objective evaluation measures exist for
coevolutionary algorithms has only recently been clarified
substantially, as a result of among others the development
of Pareto-coevolution [12, 13] and the idea of solution con-
cepts [3]. It is furthermore used in [14], which employs a
population-based fitness approximation to monitor progress.

3. SOLUTION CONCEPTS
A central question in any coevolutionary setup is what

the desired solution concept is: what is the intended goal of
applying the coevolution algorithm, or equivalently, which
elements of the search space count as solutions? The im-
portance of this question has only recently been pointed out
clearly [3].

A solution concept is a set that specifies the elements of
the search space that qualify as solutions. A solution con-
cept is algorithm-independent, and does not change over
time; it specifies a static division of the search space into
two subsets: solutions and non-solutions.

Some main solution concepts that have been used so far
in coevolution are:

• S0: Simultaneous Maximization of All Outcomes. The
first concept concept requires an optimal solution C to
maximize the outcome over all possible tests simulta-
neously. This solution concept has a limited applica-
tion scope, as for many problems there does not exist
a single solution that simultaneously maximizes the
outcome of all possible tests.

• S1: Maximization of Expected Utility. The second so-
lution concept, which will be employed in this paper, is
Maximization of Expected Utility (MEU). The MEU

441



solution concept specifies as solutions all individuals
that maximize the expected score against a randomly
selected opponent. This intuitive criterion is widely
used, and is appropriate for many problems. It will be
assumed here that every possible test is encountered
with the same probability, although this can easily be
generalized to non-uniform distributions. The MEU
solution concept thus is equivalent to maximization of
the average outcome of individuals against all possi-
ble opponents or tests. The MaxSolve algorithm [15]
guarantees monotonic progress for this solution con-
cept; when a generator of individuals such as a coevo-
lutionary algorithm is coupled to the archive method,
the archive under given conditions monotonically ap-
proaches the solution concept.

• S2: Nash Equilibrium. Game theory provides the so-
lution concept of the Nash equilibrium. A Nash equi-
librium specifies a strategy for each player such that
no player can profitably deviate given the strategies of
the other players. Individuals are viewed as strategies.
In the mixed-strategy Nash equilibrium, strategies do
not represent single individuals but probability distri-
butions over the space of individuals.

• S3: Pareto-Optimal Set. Pareto-Coevolution [12, 13]
views every possible test as an objective in the sense of
Evolutionary Multi-Objective Optimization (EMOO).
A candidate solution is said to dominate, another can-
didate solution if its outcomes against the tests are
all at least as high, and its outcome on at least one
test is strictly higher. The set of all individuals that
are non-dominated trade off the different capabilities
of candidate solutions in different ways.

• S4: Pareto-Optimal Equivalence Set. The Pareto Op-
timal set may contain many equivalent candidates that
each solve the same combination of tests, where solv-
ing means obtaining a positive outcome. To address
this redundancy, the Pareto-Optimal Equivalence Set
is defined by the requirement that for each combina-
tion of tests that can be solved, it contains at least one
candidate solution that solves it. Since multiple such
sets may exist, solution concept S4 is defined as the
collection of all such sets.

4. OBJECTIVE FITNESS CORRELATION
In this section the Objective Fitness Correlation (OFC) is

defined. To this end, we first define the notions of objective
and subjective fitness on which it is based.

4.1 Objective fitness measures
An objective fitness measure is defined here as a static

function that accepts an approximation to the solution con-
cept, and returns a value that is maximal if and only if the
approximation is a member of the solution concept. A bi-
nary indicator function that returns 1 for solutions and 0
otherwise satisfies this definition, but is clearly unhelpful as
a means to guide an evolutionary algorithm. To be useful
in guiding an evolutionary algorithm, an objective fitness
measure should furthermore provide a gradient towards the
solution concept. It may do so by providing an estimate of
the distance to the solution concept.

4.1.1 An objective fitness measure for the MEU
solution concept

The MEU solution concept specifies that individuals whose
average outcome against all possible tests is maximal are
solutions. Thus, a straightforward choice of an objective fit-
ness measure for the MEU solution concept is an individual’s
average outcome against all possible tests:

fMEU
o (C) =

P
T∈T

G(C, T )

|T| (1)

where T is the set of all tests and G(C, T ) denotes the out-
come of the interaction between candidate solution C and
test T . This measure clearly satisfies the formal require-
ment that individuals that maximize the objective fitness
measure should be solutions according to the solution con-
cept and vice versa. Furthermore, by measuring the fraction
of tests solved by an individual a clear gradient is obtained
expressing the degree to which an individual approximates
the solution concept.

4.2 Subjective fitness measures
A subjective fitness measure is an evaluation function

used by a coevolutionary algorithm. Coevolutionary algo-
rithms may employ a wide variety of evaluation methods;
any of these qualify as subjective fitness measures. A typ-
ical example of a coevolutionary evaluation measure is the
average outcome of an individual against a current popula-
tion of opponents or tests. However, many other criteria can
be used; for example, for any algorithm that ranks individu-
als in order to perform selection, the ranks of the individuals
can be used as a subjective fitness measure. Whatever crite-
rion is used for selection by a given coevolutionary algorithm
is the subjective fitness measure of that algorithm.

4.3 Objective Fitness Correlation
The Objective Fitness Correlation (OFC) of a population

in a coevolutionary algorithm is defined as the correlation
between the objective fitness and the subjective fitness of
the individuals in the population:

Definition 1. [Objective Fitness Correlation] Let
fo(x) be an objective fitness measure for a solution concept
S, and let fs(x) be the subjective fitness measure employed
by an algorithm A, as defined above. Then the Objective
Fitness Correlation OFC(P ) of algorithm A with respect
to fo(x) for a given list P of individuals, such as a popu-
lation, is defined as the correlation coefficient between the
outcomes of the objective and subjective fitness measures for
the individuals in P:

OFC(P ) = r(fo(P ), fs(P ))

where fo(P ) and fs(P ) are vectors whose ith element con-
tain the result of applying the indicated function to the ith

element of P , and r denotes the correlation coefficient, also
known as Pearson’s correlation or the product-moment coef-
ficient, which is obtained by dividing the covariance between
the two measures by the product of their standard deviations.
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5. TEST PROBLEM: LINT
To test the notion of Objective Fitness Correlation, we

compare the behavior of three different algorithms on an
abstract test problem for which objective fitness measures
can be calculated. First we discuss the requirements that
motivate the choice of the test problem.

We are interested in the ability of coevolutionary algo-
rithms to produce accurate estimates of the objective fitness
of individuals. To study this ability, giving accurate esti-
mates of this objective quality should not be trivial. Thus,
depending on the current population, it must be possible for
the subjective coevolutionary fitness to give misleading in-
formation about the global objective quality of individuals.
A further requirement is that influences of further compli-
cating factors, other than the property that the subjective
fitness can be misleading, should be ruled out as much as
possible.
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Figure 1: Diagrammatic illustration of the LINT
(Locally INTransitive) problem. Plus/minus sym-
bols (’+/-’) indicate tests passed/not passed by can-
didate C. Given individual C, a value of ΔCi is added
in every dimension to obtain point C+, or subtracted
to obtain C−. The basic principle of the game is that
the candidate passes all tests except those that are
greater or equal in all dimensions, i.e. on upper-
righthand side of C. Between the points C− and C+

however, the outcome of this basic rule is reversed.
Due to this reversal, the game is misleading on a lo-
cal scale; while on a global scale the objective fitness
increases by moving higher up along any of the di-
mensions, on a local scale the candidate may have to
decrease its values to increase its subjective fitness
by winning against local tests.

A test problem that satisfies both requirements is the
LINT (Locally INTransitive) problem. LINT is a Numbers
Game [2] that was introduced by Richard Watson [16], and
has been previously used in coevolution [17]. Individuals in
LINT are points in an n-dimensional space. Higher values
in each dimension correspond to better performance. How-
ever, for opponents within a certain neighborhood of the
individual, outcomes are reversed: lower values yield higher
outcomes. Thus, while on a global scale higher values are
preferable, on a local scale lower values can lead to higher
performance. This misleading aspect may drive individuals
towards the origin of the space.

We use a variant of the LINT problem where the size of
the neighborhood is dependent on the location of the indi-
vidual: for higher values, the size of the neighborhood within
which the outcomes of opponents are reversed grows. This
variant of LINT can be defined as follows; see Figure 1 for an
illustration. Given a candidate solution C with coordinates
Ci, the neighborhood of C for which outcomes are reversed
is defined by two points C+ and C− that are obtained by
adding or subtracting a factor ΔCi in each dimension i, with
Δ < 1:

C+
i = Ci + ΔCi

C−
i = Ci − ΔCi

Given these points, the LINT problem can be defined as
follows:

Definition 2 (LINT).

LINT (C, T ) =

8<
:

1 if ∀i Ti ≥ Ci ∧ ¬ (∀i T i ≥ C+
i )

or ¬ (∀i Ti ≥ C−
i )

0 otherwise
(2)

A number of phenomena exist that can cause failure in
coevolutionary algorithms. These phenomena include over-
specialization (the tendency to focus on a subset of the un-
derlying objectives) and disengagement (the tendency for
individuals to become too far separated in competence, re-
sulting in a loss of gradient); see e.g. [2, 1, 3, 18] for a
discussion of these phenomena. To avoid possibly compli-
cating effects other than inaccurate evaluation, on which we
want to focus here, a one-dimensional version of the LINT
game is used. Furthermore, to avoid disengagement, a single
population setup is used.

5.1 Analytical determination of objective
fitness for the LINT problem

For the LINT test problem, the objective fitness measure
can be determined analytically, thus obviating the need to
play against all tests in the domain. The objective fitness
function for the MEU solution concept, see Eq. 1, specified
the objective fitness of an individual C as the average out-
come over all possible tests. Since the outcome against a
test is either 1 (win) or 0 (lose), this figure is equal to the
fraction of tests against which C wins. This in turn is equal
to the fraction or volume of the search space containing tests
against which C wins. A general analytical expression for
the objective fitness of a LINT candidate solution C can
be obtained by calculating the differences in volume of the
nested hyper-rectangles spanned by on the lower-lefthand
side respectively the origin and the points C−, C and C+,
and on the upper-righthand side the upper-right hand point
of the space:

fMEU
o,LINT (C) =

1

Πi maxi
(Πi maxi − Πi (maxi − C−

i ) +

Πi (maxi − Ci) − Πi (maxi − C+
i ))

where maxi is the maximum coordinate in dimension i and
Π denotes the product operator. For the 1-dimensional ver-
sion of LINT, this amounts to C1

max1
, as can be seen directly

from the diagram. For the 2-dimensional version, assuming
identical horizontal and vertical limits maxi = max of the
space, this works out to

m(C1 + C2) − (1 + 2Δ2)C1C2

max2
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1. pop := initialize random();
2. for gen = 1 : generations {
3. pop := pop ∪ mutate(pop);
4. for i = 1 : |pop| {
5. solution scorei :=

P|pop|
j=1 (G(popi, popj);

6. test scorei := informativeness(pop, popi) −P
C∈pop G(C, popi);

7. SFi := α solution scorei + (1 − α) test scorei

8. }
9. pop := select(pop, SF );

10. }

Figure 2: Pseudo-code for the Informative algo-
rithm.

1. archive := initialize random();
2. pop := initialize random();
3. for genno = 1 : generations {
4. pop := pop ∪ mutate(pop, archive);
5. updateArchive();
7. for i = 1 : |pop| {
8. solution scorei :=P|archive|

j=1 (G(popi, archivej);

9. test scorei := informativeness(archive ∪
pop, popi) − P

C∈archive∪pop G(C, popi)

10. SFi := α solution score + (1 − α) test score
11. }
12. pop := select(pop, SF );
13. }

Figure 3: Pseudo-code for the Archive algorithm.

6. ALGORITHMS
The algorithms used in this comparison are as follows.

Basic is a basic coevolution method using the average out-
come against all population members. Informative takes
the informativeness of tests into account. Archive cou-
ples coevolution to a simple archive. The algorithms are
described in detail in the pseudocode of Figures 2 and 3,
which is explained below.

The Basic method is identical to the Informative algo-
rithm except for line 7, which for the Basic method reads:

test − scorei = −
X

C∈pop

G(C, popi);

The functions used in the algorithm are now described.

initialize random() generates n individuals. In each di-
mension, values are uniformly distributed between 0 and 0.2.

mutate(pop) generates a new set of individuals based
on the current population using mutation. n individuals
are drawn randomly with replacement and mutated in all
dimensions by adding a normally distributed random value
with mean mutation bias =-0.005 and standard deviation
mutation distance =0.02. Thus, mutation has a bias to-
wards decreasing the current value in each dimension rather
than increasing it. This choice is made to model the prop-
erty of realistic problems that generating a mutant is more
likely to decrease the objective fitness of an individual than

to increase it. For the Archive method, the mutate func-
tion includes the n

2
individuals most recently added to the

archive to the set of individuals to which mutation is applied.

evaluate(): All individuals in the population are played
either against the population (basic and informative method)
or, for the archive method, against the archive. The subjec-
tive fitness consists of two components: the solution-score
and the test-score, reflecting two related roles of individu-
als in a coevolutionary algorithm: improving performance
(reflected by the outcomes of individuals against tests), and
providing an informative opponents for the evaluation of
other individuals. Since a single population setup is used,
individuals are evaluated on both roles.

For the non-archive methods, the solution score is cal-
culated as the average outcome against all individuals the
population. For the archive method, the solution score is
the average outcome against all individuals in the archive
alone; one of the goals of an archive is to provide a more
stable basis for evaluation than the population.

The test-score is calculated by playing the population
against either the population or, for the archive method,
the population and the archive. Since this score evaluates
individuals on their value as a test, the individual is used
as the second player (T, in equation 2) in the interaction.
Since G gives the outcome of the first player, outcomes are
negated when individuals are evaluated as tests.

To measure the informativeness of an individual when
viewed as a test, the distinctions made by each test are deter-
mined. A test T makes a distinction between two candidate
solutions C1 and C2 if it assigns a higher outcome to one
than to the other, for more information see [19, 1]:

dist(T, C1, C2) ⇐⇒ G(C1, T ) > G(C2, T )

Measuring the number of distinctions made by a test dis-
cards much information about which distinctions are made.
To promote diversity, Competitive Fitness Sharing [20] is
used: each distinction is assigned a weight of 1 over the
number of tests that make the distinction. The informa-
tiveness of a test is the weighted sum of the distinctions it
makes. For the informative and archive methods, the sum
of the outcomes obtained as a test or second player is added
to the informativeness to yield the test-score. For the ba-
sic method, informativeness is not used, and the sum of
outcomes is used by itself as the test-score. For all meth-
ods, the subjective fitness of an individual is calculated as
α solution-score + (1 − α) test-score.

Select() sorts individuals based on their subjective fitness
SFi, and randomly selects n individuals with replacement
using the sorting rank as the relative probability of selection.

updateArchive() randomly select a candidate solution
C from the population. The outcomes of C against the
archive and against the current population are determined.
If no existing individual in the archive has the outcome vec-
tor, the individual is added to the archive. If the archive
exceeds its maximum size max-archive-size, only the most
recent max-archive-size individuals are retained.

7. EXPERIMENTS
The three algorithms described in the previous section are

applied to the LINT test problem. The parameters of the
experiments are as follows. A 1-dimensional version of the
LINT game with parameters maxi = 10 and Δ = 0.05 is
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used. The population size n = 20. The relative weight of
the solution-score versus the test score α = 0.9. The number
of generations generations=500. For the archive method,
max-archive-size=50. For each of the three experiments
50 runs are performed.

8. RESULTS

8.1 OFC of unbiased populations
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Figure 4: Scatter plot of objective versus subjective
fitness.

A first observation is that for a random sample of indi-
viduals, such as the initial populations of a coevolutionary
algorithm, the subjective fitness measure SF1 should pro-
vide an unbiased estimate of the objective fitness OF; this
is because the average outcome against a uniform random
sample of the search space provides an unbiased estimate of
the average outcome against the whole search space.

To test this prediction, we generated two sets of n = 100
individuals, each selected uniformly randomly from the com-
plete search space. All individuals in the first set were played
against all individuals in the second set, resulting in an n×n
outcome matrix. For each individual in the first set, the sub-
jective fitness SF1 was calculated as the average of its 100
outcomes against individuals in the second set, and further-
more the objective fitness OF of all individuals in the first
set was calculated. A scatter plot of the resulting relation
between objective and subjective fitness is shown in Figure
4. The correlation is very high, as predicted; the correla-
tion coefficient has a value of .9979, and thereby empirically
confirms the prediction.

8.2 Objective fitness
Figure 5 shows the objective fitness over evolutionary time,

averaged over 50 runs, with error bars showing the stan-
dard deviation. From the figure, it is seen that the Basic
method peters out relatively early, after which the objective
no longer increases, and even begins to slope down towards
the end of the runs.

The Informative method performs slightly better; it con-
tinues to increase over a longer time-span, and achieves a
higher final performance. However, at the end of the runs,
progress has also almost completely come to a halt.

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

Generation

A
ve

ra
ge

 O
bj

ec
tiv

e 
F

itn
es

s

Average objective fitness for the three algorithms

Basic
Informative
Archive

Figure 5: Objective fitness of the three methods
over time.

While the addition of informativeness does improve the
performance compared to the Basic algorithm, both meth-
ods are unable to achieve sustained progress. We explain
this by the nature of the test problem; since the size of the
neighborhood within which outcomes are reversed grows as
individuals move higher on the axis, it becomes increasingly
difficult to maintain a population that extends beyond this
growing neighborhood. Thus, the locally intransitive nature
of the problem plays an increasingly disruptive role, thereby
taking away the potential for further improvement.

The curve for the Archive method displays a strikingly dif-
ferent behavior. While the rate of progress is lower than for
the other two methods, progress is more stable and persis-
tent. This results in a significantly higher final performance.

To test the statistical significance of the results, a Wilcoxon
rank sum test was performed comparing the distribution of
the 50 end-of-run values for the objective fitness of each of
the three methods. It is found that the Archive method
outperforms the Informative method, and the Informative
method outperforms the Basic method. Both results are
highly significant, with p < 0.001.

8.3 OFC
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Figure 6: OFC of the methods as a function of time.
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Since our aim is to study the accuracy of evaluation and its
relation to performance, the OFC of the different methods
has been measured over time. Figure 6 shows the result.

All methods start out with a high OFC. This is to be
expected, as randomly initialized initial populations have
an expected OFC of 1, as discussed in Section 8.1. Due
to the biasing effect of coevolutionary selection, these high
initial OFC values decrease at the beginning of a run.

Observing the OFC directly provides an explanation of
the different behavior of the three methods. First, the In-
formative method has a slightly higher OFC, and thus a
slightly more accurate evaluation, than the Basic method;
this difference is reflected in the correspondingly slight per-
formance difference.

A more striking observation is that the archive method
maintains much higher OFC values than the remaining two
methods, even though this value also decreases over time;
the latter observation is unavoidable, as the archive is of
limited size, and thus only provides a limited ability to over-
come the misleading local information characterizing LINT.

A further observation to be explained is why the Archive
method improves slower than the other two methods, es-
pecially given that it achieves more accurate evaluation.
Since the solution score is based on the archive, the method
strongly depends on inclusion of newly generated test into
the archive to detect that newly generated candidate solu-
tion achieve a higher performance. While evaluating individ-
uals against the population results in increasingly inaccurate
information, differences in the performance of individuals
can be detected more frequently as the population typically
contains more opponents near newly generated individuals
that are to be compared than the archive.

The above results demonstrate that the OFC can provide
valuable information about coevolution methods that can
be used to develop our understanding of the behavior of
this intriguing family of algorithms. Furthermore, it has
been seen that for the problem at hand, differences in the
OFC correspond closely to differences in performance; this
indicates that the differences in evaluation accuracy impact
the performance of the algorithms.
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Figure 7: Relation between differences in aver-
age fitness between successive generations and the
OFC: a clear relation exists, indicating the ability to
achieve progress is strongly connected to the accu-
racy of evaluation.

To study the relation between evaluation accuracy and
progress more closely, we calculate the difference in average
objective fitness between each pair of successive generations.
A positive difference indicates an increase in objective fitness
from one generation to the next.

Figure 7 shows the result for the Informative method. Re-
sults are plotted for a single run, so that changes in perfor-
mance can be seen in detail without the smoothing effect of
aggregation. The graph provides clear evidence that changes
in performance are related to the accuracy of evaluation;
during periods where the OFC is high, fitness changes are
almost consistently positive, and the height of the positive
fitness change tends to increase. Periods with a low OFC
are consistently accompanied by negative fitness changes.

9. DISCUSSION
The results in the paper may give the reader the impres-

sion that the OFC is necessarily closely tied to the objec-
tive performance of an algorithm, which might diminish its
value as a new analytical tool. This impression is incorrect
however; there are numerous factors that determine or in-
fluence the behavior of a coevolutionary algorithm. These
include not only coevolutionary pathologies such as over-
specialization and disengagement, but also different algo-
rithmic choices such as which selection technique is used.

In the experiments, particular care has been taken to rule
out the influence of factors other than the accuracy of eval-
uation. As a result, it has been possible to demonstrate
A) that the accuracy of evaluation can indeed be measured
online for actual coevolutionary algorithms, and B) that
this accuracy, expressed by the OFC measure, can strongly
impact the performance of the algorithm, both on a local
timescale, as seen by the relation between the OFC and fit-
ness differences, and on a global timescale, as seen by the
comparison between the different algorithms. In summary,
we believe the OFC is a highly useful new analytical tool for
the study of coevolutionary algorithms.

The current work is restricted to abstract test problems,
and calculation of the exact objective fitness is possible for a
limited set of test problems only. However, as has been ob-
served empirically, the subjective fitness of a random popu-
lation corresponds almost perfectly to the objective fitness of
that population. This implies that the evaluation accuracy
afforded by a coevolutionary population can be estimated by
playing it against a randomly generated sample of individ-
uals; this provides a way to estimate the OFC in problems
of practical interest, and may provide a useful monitoring
tool.

10. CONCLUSIONS
A central question in current coevolution research is how

the accuracy of coevolutionary evaluation may be improved
in order to improve the efficiency and performance of this
interesting class of algorithms.

Starting from the general notion of a solution concept,
a new definition for the objective fitness in coevolution has
been provided. For the particular solution concept of Maxi-
mum Expected Utility, of which maximizing the average out-
comes against opponents is an example, an objective fitness
function has been described. For certain problems, the ob-
jective fitness can be determined analytically, as was shown.
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The main contribution is the introduction of a new ana-
lytical tool for the study of coevolution named the Objective
Fitness Correlation (OFC). The OFC measure is defined as
the correlation between the objective and subjective fitness
of a set of individuals, such as a population. The OFC
provides a precise and theoretically justified measure of the
accuracy of coevolutionary evaluation.

The practical value of the OFC in analyzing coevolution
algorithms has been demonstrated in experiments. Differ-
ences in evaluation accuracy exist and can actually be mea-
sured for different algorithms. Overall differences in the
OFC between three algorithms corresponded to differences
in objective performance. Moreover, fluctuations in the av-
erage fitness from one generation to the next were found
to be strongly connected to OFC levels. This sheds new
light on the dynamics of coevolutionary runs; differences
that would otherwise be viewed as mere random changes
are now seen to have their origin in changing levels of eval-
uation accuracy.

We suggest that the OFC of existing and new coevolu-
tionary algorithms should be analyzed on test problems for
which objective fitness measures are available. This ap-
proach can provide valuable information about the behavior
of algorithms, and may serve to improve existing algorithms
and lead to the development of new methods.
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