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ABSTRACT
The application of resource-defined fitness sharing (RFS) to
shape nesting problems reveals a remarkable ability to dis-
cover tilings [7, 8]. These tilings represent exact covers for a
set of resources, and can be considered a maximally sized set
of cooperating (non-competing) species. A recent paper by
Horn [9] introduces the first formal analysis of this empiri-
cal phenomenon by examining a minimal case: two species
a and b “cooperate” to exactly cover the resources, while a
third species c “competes” with a and b by overlapping both
in terms of covered resources. The analysis reveals that in
cases in which a and b maximally compete with c for re-
sources, species c will become extinct, while the optimal set
of species, a and b, will survive. The current paper general-
izes this three-species result by analyzing more complex sit-
uations with four or more species. Specifically, we consider
two species cooperating against two species competing, and
finally two species cooperating against an arbitrary number
of competing species. In all cases, proofs are derived that
show exactly when the two cooperating species are guaran-
teed to win out over all competitors. The results are clearly
proven using algebra on the niching equilibrium equations
for RFS; a purely static analysis.
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1. INTRODUCTION
In the 2002 paper [7] that introduced resource-defined fit-

ness sharing (RFS)1, the niching method exhibits a remark-
able ability to converge to an optimal solution on shape
nesting problems if that optimal solution consists of a tiling.
The 2002 paper [7] provides evidence of this phenomenon for
both one and two-dimension shape nesting problems. But
since RFS operates with quantities defined by sets (e.g., set
intersections), and does not make any direct use of the ge-
ometric properties of shape nesting, it is possible that this
apparent ability to tile one arbitrary shape with another
generalizes to an ability to exactly cover a set of resources
with a set of subsets of those resources. That is, if an ex-
act cover of the resources (substrate) can be found in the
current population, then possibly RFS will always drive the
population distribution to represent the exact cover.

It therefore seems important to investigate the ability of
RFS to evolve (select) exact covers by applying a theoretical
analysis to minimal size cases of tiling (exact cover) prob-
lems. A previous paper [9] began such an analysis by exam-
ining the minimal case of “cooperation versus competition”:
the two-against-one case, in which two species cooperate to
compete against one other species. In particular, the two co-
operative species cover all of the resources, while the third
competes for coverage. In this paper we review the analysis
in [9] of the two-against-one scenario before generalizing the
analysis to cases in which two-species form an exact cover
and compete against two or more (arbitrarily many) species.

2. BACKGROUND
We briefly summarize the RFS algorithm and the prob-

lem domain of shape nesting, which is a subset of resource
covering problems in general. This summary is meant to
motivate the analysis at the heart of this paper. We note
that RFS was developed as a synthesis of fitness sharing
(FS) and resource sharing (RS). We refer the reader to [7]
for more details about the origin of RFS and comparisons
with FS and RS.

1RFS, applied to shape nesting problems, is the subject of
U.S. Patent No. 7,181,702.
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Figure 1: RFS has been shown to nest arbitrary
shapes.

2.1 RFS Applied to Shape Nesting
The problem at hand requires “nesting” (that is, placing)

shaped pieces on a finite substrate so as to maximize the
number of such pieces on the substrate. The objective is of-
ten stated, equivalently, as the minimization of “trim” (i.e.,
unused substrate) [2, 11]. No overlaps among the placed
pieces are allowed, and all such pieces must be placed com-
pletely within the boundaries of the substrate. Figure 1
illustrates a typical shape nesting problem. The layout of
pieces is the result of an actual run.

In [7, 8] the focus is on a very common sub-domain of
shape nesting problems: a finite, two-dimensional problem,
which means a flat substrate of fixed size, and flat pieces
to be nested. The author assumes identical shapes, which
means there is only one shape (or “piece”) to be nested.
The pieces do not have to be axis-aligned; they can be ro-
tated into any orientation. There are no constraints on the
separation or any other relationship between shaped pieces
or between the shaped pieces and the substrate boundaries,
other than the normal exclusion of overlap.

In the original RFS paper, Horn [7] applies RFS to one and
two-dimensional shape nesting problems but limits his tests
to axis-aligned squares for the shaped pieces. For exam-
ple, in the two-dimensional example, illustrated in Figure 2,
the task is to nest as many of the smaller square pieces as
possible within the larger piece. The width of the substrate
square iss exactly four times that of the piece square, so that
a single optimal solution exists, consisting of sixteen pieces
exactly covering the substrate, as shown in Figure 2, right.

In [7], the RFS algorithm is given no information about
the solution. The algorithm starts with a random popu-
lation of 16,000 square pieces (with random positions; the
orientation of all pieces are fixed so that all were parallel to
the x,y axes). There are 1600 possible piece positions (on a
discrete 40 by 40 grid). With a population size of 16,000,
the random initial generation contains about 10 copies of
each of the 1600 possible species. The GA with RFS is able
to select and promote the sixteen species corresponding to
the solution in Figure 2, right, where each of the 16 species
is represented by approximately 1000 copies (individuals) in
the final population.

Figure 2: RFS can select for tilings of a surface.

Figure 3: The basic terms used in defining RFS.

2.2 The RFS Algorithm
Under Resource-Defined Fitness Sharing (RFS), every in-

dividual of the current population is evaluated and assigned
a fitness. In [7], each individual is a chromosome that spec-
ifies a placement of a piece. Any individual that specifies a
placement that extends beyond the boundaries of the sub-
strate is assigned a fitness of 0. All “feasible” individuals
(i.e., chromosomes specifying piece placements entirely on
the substrate), receive a shared fitness greater than 0, for
use in a standard selection method (e.g., tournament selec-
tion, proportionate selection).

Under RFS, the shared fitness for each individual is a func-
tion of the resources (e.g., area) covered by the individual,
and of the extent to which the individual’s coverage overlaps
with that of other individuals in the population. The form
of the RFS shared fitness formula, fsh,i, is that of a fraction:

fsh,i =
fi

niche count(i)
=

fiP
j∈P fij

, (1)

where i is an individual in the population P , fi is the ob-
jective (unshared) fitness of i, and fij is the pairwise over-
lap in “coverage” between individuals i and j in P , and
niche count(i) measures the amount of competition for re-
sources covered by i. Under RFS, niche count is defined as
the cumulative pairwise overlap between i and other individ-
uals in P . Figure 3 illustrates fi and fij for two individuals
i and j.

For the purposes of this paper, we normalize the objective
fitness fi to 1 ∀i ∈ P . Thus 0 ≤ fij ≤ 1, ∀i, j ∈ P .

Next we define what we mean by species and how the
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term relates to individuals. We consider a species to be a
set of identical individuals (i.e., with identical coverage of
resources). Thus unique chromosomes map one-to-one with
unique species. There is complete overlap between any two
members of the same species, while there is less than com-
plete overlap between any two members of different species.

Now that we have defined “species”, we can re-write Equa-
tion 1 in terms of species:

fsh,x =
fx

niche count(x)
=

fxP
y∈S(P ) nyfxy

. (2)

Equations 2 and 1 are equivalent. Both have an objective
fitness in the numerator, and a niche count, calculated over
the entire current population, in the denominator. In Equa-
tion 1, the summation in the niche count is taken over the
population of individuals (using the variable j). In Equa-
tion 2, the population is partitioned into a set S(P ) of
species y, thus y ∈ S(P ). Each species consists of the set of
all individuals with the same chromosomes (from the cur-
rent population). Thus the shared fitness for any member of
a species x is equal to the objective fitness of that species di-
vided by the niche count for that species, which is computed
as the sum over all species of the interaction term (fxy) mul-
tiplied (weighted) by the number of members of that species
(i.e., the species count: ny) in the current population P .

2.3 A Static Analysis of Three Species
Horn [9] considers exactly three species, a, b, and c. Their

objective (unshared) fitnesses are fa, fb, and fc, representing
the amount of resource(s) they cover. There are no other
species in the population P . The entire finite population P
is divided up among these three species: S(P ) = {a, b, c}.
That is, every individual in P is a member of a, b, or c, and
all individuals of a species are considered to be identical
(at least for the sake of selection). If pa, pb, and pc are
the proportions of the population for species a, b, and c
respectively, then 0 ≤ px ≤ 1, ∀x ∈ S(P ), and pa +pb +pc =
1. Since we are dealing with proportions, we do not need to
name or manipulate an explicit population size N = |P |.
2.3.1 RFS Equilibrium

A population distribution is said to be at evolutionary
equilibrium if it is equal to the expected distribution of the
population after application of the selection operator [12]:

E[px(t + 1)] = px(t), (3)

where px(t) is the proportion of species x in the population
at time t, and E[px(t + 1)] is the expected proportion of x
at time t + 1 (e.g., the subsequent generation). Under RFS
and proportionate selection, the expected proportion px(t)
of species x at time t + 1 is a function of its proportion
px(t) at time t and of its shared fitness fsh,x(t) and the
population’s average fitness f(t) at time t:

E[px(t + 1)] = px(t)
fsh,x(t)

f(t)
(4)

= px(t)
fsh,x(t)P

y∈S(P ) py(t)fsh,y(t)
. (5)

Substituting the above expression into Equation 3 and can-
celling px(t), we find that at equilibrium (here we drop the
notation for a specific time step t) the shared fitness fsh,x

of all species must be equal to the average fitness,

∀(x ∈ S(P )) : fsh,x =
X

y∈S(P )

pyfsh,y ,

and therefore must be equal to each other:

∀(x, y ∈ S(P )) : fsh,x = fsh,y .

2.3.2 The General Case
For three species, the most general situation (i.e., arbi-

trary pair-wise overlaps; no assumptions) has the following
equilibrium equations:

fsh,a = fsh,c

fsh,c = fsh,b

pa + pb + pc = 1.

That is, all of the shared fitnesses are the same, so that no
individual (a member of a species) and hence no species,
receives any preference during selection. Under RFS (as
well as under Goldberg and Richardson’s [5] original fitness
sharing, FS), the shared fitness of an individual member of
species x is simply the share of its objective (static) fitness
fx when divided by the current (dynamic) niche count for
x:

fa

niche count(a)
=

fc

niche count(c)
,

fc

niche count(c)
=

fb

niche count(b)
,

pa + pb + pc = 1.

Assuming that all objective fitnesses are equal, then without
loss of generality we can normalize them to one, so that
∀xfx = 1. Making this normalization and cross multiplying
fractions yields

niche count(c) = niche count(a),

niche count(b) = niche count(c),

pa + pb + pc = 1.

Basically, we are setting all niche counts, shown in Equa-
tion 2, equal to each other. Next we can substitute the
formula for niche count, yieldingX

x∈S(P )

(pxfcx) =
X

x∈S(P )

(pxfax),X
x∈S(P )

(pxfbx) =
X

x∈S(P )

(pxfcx),

pa + pb + pc = 1.

Expanding the above, we find

pafac + pbfbc + pcfcc = pafaa + pbfab + pcfac,

pafab + pbfbb + pcfbc = pafac + pbfbc + pcfcc,

pa + pb + pc = 1.

Noting that ∀xfxx = 1,

pafac + pbfbc + pc = pa + pbfab + pcfac, (6)

pafab + pb + pcfbc = pafac + pbfbc + pc, (7)

pa + pb + pc = 1. (8)

These niching equilibrium equations correspond to the most
general situation with three niches/species.
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Horn [9] considers several ways to specialize the general
situation (e.g., species a and b form a cover, but not an exact
one). For this paper, we focus on the particular special case
summarized below.

2.3.3 Properties I and II: a and b Form an Exact
Cover

Horn [9] specializes Equations 6, 7, and 8 to deal with the
“exact cover” by two out of three species. An example of
this situation is shown in Figure 4.

Property I: Minimum a ↔ b Competition

fab = 0

Now we assume Property I, which is the special case in
which species a and b do not overlap, so that fab = 0:

pafac + pbfbc + pc = pa + pcfac (9)

pafac + pbfbc + pc = pb + pcfbc (10)

pa + pb + pc = 1 (11)

Re-arranging Equation 9 above,

(fac − 1)pa + fbcpb + (1− fac)pc = 0. (12)

Horn [9] next makes the key assumption of Property II.

Property II: Maximum (a, b) ↔ c Competition

fac + fbc = fc

Under Property II species c is completely covered by a
and b, which means (assuming Property I holds as well)
that fc = fac + fbc = 1 and therefore fac = 1− fbc.

Substituting 1− fbc for fac in Equation 12 above gives

−fbcpa + fbcpb + fbcpc = 0 (13)

⇒ pa − pb − pc = 0. (14)

Similarly we re-arrange Equation 10,

facpa + (fbc − 1)pb + (1− fbc)pc = 0.

And substituting 1− fac for fbc,

facpa − facpb + facpc = 0 (15)

⇒ pa − pb + pc = 0. (16)

From Equations 14, 16, and Equation 11, we conclude that

(pa, pb, pc) = (
1

2
,
1

2
, 0)

Thus Horn shows that if an exact cover of resources exists
in a population, then under RFS selection only the species
representing the exact cover can be expected to resist in-
vasion by other species at niching equilibrium (with other
species being driven to extinction), at least for the case of
two-niche exact covers and a single (third) species not part
of the exact cover.

We next examine how we can generalize these results. We
look at more complex situations with more species.

Figure 4: A situation in which Properties I and II
hold.

Figure 5: Example of two-against-two, with Proper-
ties I and II holding.

3. ANALYSIS: BEYOND THREE SPECIES
Horn [9] covers nearly every niching situation for three

niches. We begin our new analysis with four species. We
limit our consideration, however, to situations in which two
species a and b form the one and only exact cover. Similarly,
when we generalize to more than four species, we continue
to assume a single exact cover (a and b) only.

3.1 Four Species: Two Against Two
In this situation, we add a fourth species, d, which, like c,

is completely covered by a, and b, who together still form an
exact cover of all resources. Figure 5 provides an example
of this four-species case.

We assume that Property II holds for d as well as for c.

Property II: Maximum (a, b) ↔ d Competition

fad + fbd = fd

In this situation, with Properties I and II holding, the only
pairwise overlap that is empty is fab. The other overlaps are
between 0 and 1, exclusive: 0 < fac, fad, fbc, fbd < 1.

Since every species is distinct, if fxy = 1 then x = y.

3.1.1 At Equilibrium
The niching equilibrium equations for the four species case

look like

pa + pb + pc + pd = 1,

fa

niche count(a)
=

fb

niche count(b)
,

fa

niche count(a)
=

fc

niche count(c)
,

fa

niche count(a)
=

fd

niche count(d)
,

451



and after cross-multiplying the fractions and substituting
fx = 1:

pa + pb + pc + pd = 1,

niche count(a) = niche count(b),

niche count(a) = niche count(c),

niche count(a) = niche count(d).

Next we substitute the formula for niche count computation:

pa + pb + pc + pd = 1,X
x∈S(P )

(pxfax) =
X

x∈S(P )

(pxfbx),X
x∈S(P )

(pxfax) =
X

x∈S(P )

(pxfcx),X
x∈S(P )

(pxfax) =
X

x∈S(P )

(pxfdx),

then expand,

pa + pb + pc + pd = 1,

pafaa + pbfab + pcfac + pdfad = pafab + pbfbb + pcfbc + pdfbd,

pafaa + pbfab + pcfac + pdfad = pafac + pbfbc + pcfcc + pdfcd,

pafaa + pbfab + pcfac + pdfad = pafad + pbfbd + pcfcd + pdfdd.

3.1.2 Linear Equations
These equations can be re-written as a system of linear

equations:

pa + pb + pc + pd = 1
(faa − fab)pa + (fab − fbb)pb + (fac − fbc)pc + (fad − fbd)pd = 0
(fab − fac)pa + (fbb − fbc)pb + (fbc − fcc)pc + (fbd − fcd)pd = 0
(fac − fad)pa + (fbc − fbd)pb + (fcc − fcd)pc + (fcd − fdd)pd = 0,

which can be represented in matrix form:2664 1 1 1 1
(faa − fab) (fab − fbb) (fac − fbc) (fad − fbd)
(fab − fac) (fbb − fbc) (fbc − fcc) (fbd − fcd)
(fac − fad) (fbc − fbd) (fcc − fcd) (fcd − fdd)

37752664 pa

pb

pc

pd

3775 =

26664
1
0
0
0
0

37775 .

(17)
This is a system of four linear equations in four unknowns
(pa, pb, pc, pd), which can be solved for a unique solution:

(pa, pb, pc, pd) = (
1

2
,
1

2
, 0, 0).

As in the three-species scenario, a and b, forming an exact
cover, are the only expected survivors at niching equilib-
rium. If the team of a and b can persevere against one com-
petitor, and against two competitors, perhaps it can“defeat”
any number of competitors.

3.2 Many Species: Two Against k

We now try to generalize our previous results to niching
scenarios in which the exact cover team of species a and b
compete against an arbitrary number, k > 0, of competing
(i.e., overlapping) species.

To handle an arbitrary number of competitors, we aug-
ment our notation by dropping the use of letters for the
competing species (i.e., no species c or d) and instead num-
ber the k competing species 1..k. The “exact-cover species”
will still be labeled a and b. Thus there are now k + 2 dis-
tinct species in total, and the non-zero pairwise overlaps are
now denoted fa1, fa2, ..., fak and fb1, fb2, ..., fbk.

As before, fab = 0 (from Property I), while Property II
now implies ∀i ∈ 1, ..., k : fai + fbi = 1. As always, fii = 1.

Before proceding to the equilibrium equations, we orga-
nize our algebra by using matrices to represent our system
of equations.

3.2.1 Interaction Matrices
First we note that we can organize the pairwise overlaps

into a species interaction matrix, common in the field of
theoretical ecology [13], and similar to (although not the
same as) the payoff matrices in game theory [12].

MRFS =

266666664
faa fab fa1 fa2 . . . fak

fab fbb fb1 fb2 . . . fbk

fa1 fb1 f11 f12 . . . f1k

fa2 fb2 f12 f22 . . . f2k

...
...

...
...

. . .
...

fak fbk f1k f2k . . . fkk

377777775
We note that this square matrix is symmetric about the

main diagonal, since niche overlap is a symmetric relation-
ship: fij = fji. We therefore choose to always write the
species subscripts in increasing alphanumeric order, below.
We further note that the entries on the main diagonal are all
1, since ∀i : fii = 1. And we recall Property I: fab = fba = 0.
Thus our matrix MRFS can be re-written:

MRFS =

266666664
1 0 fa1 fa2 . . . fak

0 1 fb1 fb2 . . . fbk

fa1 fb1 1 f12 . . . f1k

fa2 fb2 f12 1 . . . f2k

...
...

...
...

. . .
...

fak fbk f1k f2k . . . 1

377777775 .

It is interesting to consider a partition of this matrix:

MRFS =

266666664
1 0 fa1 fa2 . . . fak

0 1 fb1 fb2 . . . fbk

fa1 fb1 1 f12 . . . f1k

fa2 fb2 f12 1 . . . f2k

...
...

...
...

. . .
...

fak fbk f1k f2k . . . 1

377777775 .

The upper left submatrix consists of all interactions solely
among the exact-cover species (a and b). This sub-matrix is
an identity matrix, thanks to Property I.

The upper right and lower left sub-matrices represent all
interactions solely between the exact-cover species a and b
and the competing species (1..k). They are transposes of
each other. Furthermore, because of Property II, the sum of
each column (row) in the upper right (lower left) submatrix
is equal to one (that is, ∀i∈(1..k)fai + fbi = 1).

The lower right submatrix contains all interactions solely
among the competing species (1..k). There are no apparent
implications of Properties I or II on this submatrix, because
the interactions there are independent of a and b.
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3.2.2 Niching Equilibrium Matrix
We can derive a single matrix representing the niching

equilibrium equations through matrix operations on MRFS .
(Under RFS, the matrix MRFS essentially “defines” the
niche counts.)

First we note that at niching equilibrium,

266666664
1 0 fa1 fa2 . . . fak

0 1 fb1 fb2 . . . fbk

fa1 fb1 1 f12 . . . f1k

fa2 fb2 f12 1 . . . f2k

...
...

...
...

. . .
...

fak fbk f1k f2k . . . 1

377777775
266666664

pa

pb

p1

p2

...
pk

377777775 =

266666664
C
C
C
C
...
C

377777775 ,

where C is some constant. That is, at niching equilibrium,
the niche count for every species is the same (= C).

To subtract one niche count from another, we can subtract
each row in MRFS from the row above it. We can do this
by pre-multiplying MRFS by the following matrix Mpre:

Mpre =

266666664
0 0 0 0 . . . 0
1 −1 0 0 . . . 0
1 0 −1 0 . . . 0
1 0 0 −1 . . . 0
...

...
...

...
. . .

...
1 0 0 0 . . . −1

377777775 (18)

to get the following matrix:

266666664
0 0 0 0 . . . 0
1 −1 fa1 − fb1 fa2 − fb2 . . . fak − fbk

1− fa1 −fb1 fa1 − 1 fa2 − f12 . . . fak − f1k

1− fa2 −fb2 fa1 − f12 fa2 − 1 . . . fak − f2k

...
...

...
...

. . .
...

1− fak −fbk fa1 − f1k fa2 − f2k . . . fak − 1

377777775 .

We note that the top row has been replaced by all zeros.
This is because the niching equilibrium equations that set
each one of the k + 2 species’ niche counts equal to another
yields only k + 1 independent equations. We therefore need
to add the single population equation:

P
x px = 1. We can

now add that to the top row of the matrix above by adding
the following matrix Msum:

Msum =

266666664
1 1 1 1 . . . 1
0 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 0

377777775 (19)

to get the niching equilibrium matrix Meq:

Mpre ·MRFS + Msum = Meq =

266666664
1 1 1 1 . . . 1
1 −1 fa1 − fb1 fa2 − fb2 . . . fak − fbk

1− fa1 −fb1 fa1 − 1 fa2 − f12 . . . fak − f1k

1− fa2 −fb2 fa1 − f12 fa2 − 1 . . . fak − f2k

...
...

...
...

. . .
...

1− fak −fbk fa1 − f1k fa2 − f2k . . . fak − 1

377777775 .

The complete system of k+2 equations in k+2 unknowns
can then be written:

266666664
1 1 1 1 . . . 1
1 −1 fa1 − fb1 fa2 − fb2 . . . fak − fbk

1− fa1 −fb1 fa1 − 1 fa2 − f12 . . . fak − f1k

1− fa2 −fb2 fa1 − f12 fa2 − 1 . . . fak − f2k

...
...

...
...

. . .
...

1− fak −fbk fa1 − f1k fa2 − f2k . . . fak − 1

377777775266666664
pa

pb

p1

p2

...
pk

377777775 =

266666664
1
0
0
0
...
0

377777775 .

3.2.3 Solving the Niching Equilibrium Equations
We proceed to solve the above system of linear equations

for the general case of k competitors, using Gauss-Jordan
elimination.

First we note that by Property II, fax + fbx = 1 for x =
1..k. So we substitute 1−fbx for fax where helpful for brevity
in Meq:

266666664
1 1 1 1 . . . 1
1 −1 1− 2fb1 1− 2fb2 . . . 1− 2fbk

fb1 −fb1 −fb1 fa2 − f12 . . . fak − f1k

fb2 −fb2 fa1 − f12 fa2 − 1 . . . fak − f2k

...
...

...
...

. . .
...

fbk −fbk fa1 − f1k fa2 − f2k . . . −fbk

377777775 .

Second, to save space while depicting the following alge-
braic manipulation, we switch to a more concise represen-
tation of Meq, and furthermore only show Meq and the
right-hand vector in each of the following steps. Thus we
start with

2666664
1 1 1 . . . 1
1 −1 1− 2fb1 . . . 1− 2fbk

fb1 −fb1 fa1 − 1 . . . fak − f1k

...
...

...
. . .

...
fbk −fbk fa1 − f1k . . . −fbk

3777775
2666664

1
0
0
...
0

3777775 .

Next, we reduce the lower left triangle to all zeros. We
begin by noting that the first row already has a one in the
main diagonal. So we procede to row two, substracting the
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first row from the second:2666664
1 1 1 . . . 1
0 −2 −2fb1 . . . −2fbk

fb1 −fb1 −fb1 . . . fak − f1k

...
...

...
. . .

...
fbk −fbk fa1 − f1k . . . −fbk

3777775
2666664

1
−1
0
...
0

3777775 .

Next, we divide the second row by -2 and also subtract
fbx times the first row, from the (x + 2)th row, for x = 1..k:

266666664
1 1 1 . . . 1
0 1 fb1 . . . fbk
0 −2fb1 −2fb1 . . . fak − f1k − fb1
.
.
.

.

.

.

.

.

.
. . .

.

.

.
0 −2fbk fa1 − f1k − fbk . . . −2fbk

377777775
266666664

1
1
2−fb1
.
.
.

−fbk

377777775 .

Next, we obtain zeros in the second column, below row 2,
by adding 2fbx times the second row, to the (x + 2)th row,
for x = 1..k:

266666664
1 1 1 . . . 1
0 1 fb1 . . . fbk
0 0 2fb1(fb1 − 1) . . . fak − f1k + fb1(1 + 2fbk)

.

.

.

.

.

.

.

.

.

.

.

.
0 0 fa1 − f1k + fbk(1 + 2fb1) . . . 2fbk(fbk − 1)

377777775266666664
1
1
2
0

.

.

.
0

377777775 .

We now partition the matrix that we have derived:

266666666664

1 1 1 . . . 1
0 1 fb1 . . . fbk

0 0 2fb1(fb1 − 1) . . . fak − f1k + fb1(1 + 2fbk)

.

.

.

.

.

.

.

.

.

.

.

.
0 0 fa1 − f1k + fbk(1 + 2fb1) . . . 2fbk(fbk − 1)

377777777775
2666666666664

1
1
2

0

.

.

.
0

3777777777775
.

Looking at the lowerright submatrix above, we can see
that it represents a homogenous system of linear equations,
since the values on the righthand side are all zero. If the
original matrix Meq is non-singular, then so is this subma-
trix, and there is a unique solution to it. This solution must
be the trivial solution: p1 = p2 = ... = pk = 0. Substituting
this solution into the first and second rows of our matrix
above, we find that pa = pb = 1

2
.

Theorem 1. If two distinct species a and b exactly cover
the resources, then under RFS with proportionate selection
and an infinite population, a sufficient condition for a and b
to take over the population, resisting invasion by all competi-
tor species, is the non-singularity of the niching equilibrium
matrix.

PROOF: The proof is given above.

4. DISCUSSION
The RFS algorithm seems unusual among co-evolutionary

systems because it lends itself to a static analysis. RFS ap-
pears to be amenable to static analysis in part because in-
teraction among individuals, and thus between species, is

limited to pair-wise competition for resources, and because
the expression for the niche-count calculation leads to lin-
ear equations to describe niching equilibrium. These linear
equations can be manipulated for analysis via simple alge-
bra.

4.1 Conclusion
One major result of our analysis is the conclusion that if

two species together exactly cover the resources of any and
all other species, and if these two species form the only exact
cover, then these two species will take over the population
at niching equilibrium, resisting “invasion” by any and all
other “redundant” species.

One might interpret the relationship between two cover-
ing species to be “cooperative” in that they both “compete”
against (overlap) k common competitors: additional, and
losing, species that are completely covered by the combina-
tion of a and b. This is a remarkable result. k + 2 species
can all have the same objective fitness (that is, unshared fit-
ness); they all cover the same amount of resources. Yet RFS
selection strongly favors two against the other k. This pref-
erence must be due solely to the greater resource coverage
of one particular ensemble of species over any other.

We note that the RFS algorithm analysed here, and the
analysis itself, are general to all types of RFS applications.
The results of this paper are not limited to spatial “nesting”
of geometric shapes. The RFS algorithm, and hence the
current analyis of the algorithm, apply to the nesting of any
kind of set. Shape overlap is really just a special case of
set intersection. Thus the most general problem domain to
which this analysis is applicable is exact k-cover (from the
general domain of set covering)2.

4.2 Limitations
The limitations of this conclusion must be considered.

These limitations arise from the assumptions made in the
analysis. For example, the use of proportions instead of
actual numbers, in keeping track of species representation,
means we are using the “infinite population” model, in which
we assume that the population is large enough to exactly re-
alize any proportions generated by the manipulation of the
equations in our model. More practically, however, pop-
ulations are generally finite. While we expect that finite
populations are well-modeled by the infinite population as-
sumption in many cases [3], a clearer picture of the fidelity
of our static models would require some dynamic modeling.
For example, we could apply evolutionary game theory anal-
ysis to our equilibrium proportions to see if they constitute
dynamically stable fixed points [12, 4].

Another way to verify our models (by checking the valid-
ity of their assumptions) is through experimentation. While
the empirical results in [7, 8], and seen in Figure 2 for exam-
ple, provide some indication that our models can correctly
predict the dynamic behavior of RFS, the actual implemen-
tations of RFS in these earlier experiments utilize a form of
tournament selection rather than the proportionate selection
assumed in our model here. New experiments, however, are
showing that RFS, under proportionate selection and with
a population size of 1000, does indeed promote the exact
cover over a third, covered, species (unpublished results).

2Here the integer value k is the fixed size of the subsets
used in the cover, and therefore implements our assumption
of identical shapes/areas in RFS.
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Another limitation of our model is the assumption that
only a single, exact cover exists. What about “ties”? Our
model does not preclude them, only our assumptions do. For
example, in the four niche scenario, the species pair (c,d),
could form an alternative exact cover. We would only have
to allow fcd = 0, fac+fad = 1, and fbc+fbd = 1. Would RFS
“choose” one of the two exact covers? Our model shows no
preference. Both covers should be treated equally, with an
infinite number of solutions to the set of equilibrium equa-
tions, implying genetic drift to the extinction of one pair or
the other. Situations with multiple exact covers are worthy
of further analysis.

One final limitation seems to have the deepest implica-
tions: the non-singularity of the niching equilibrium matrix
Meq. Under what conditions is the niching equilibrium ma-
trix non-singular? Does the non-singularity condition trans-
late to meaningful conditions in the physical world of niche
overlaps? Would the singularity/non-singularity of the in-
teraction matrix MRFS imply singularity/non-singularity of
the niching equilibrium matrix Meq?

While the analysis of the singularity conditions for the
niching equilibrium matrix Meq is beyond the scope of this
paper, we can make some early observations. One such ob-
servation is that in the case in which one species completely
overlaps another, fij = 1, i 6= j, then both MRFS and Meq

become singular, since species i and j are identical in their
niche overlaps with other species and therefore i and j have
identical rows in both of the matrices. But such situations
can be considered degenerate if we are interested in k + 2
distinct species. Another situation that is likely to be suffi-
cient for singularity is that of multiple solutions, that is, a
tie for exact cover, as in the case discussed above for a four-
species, two-way tie. But there may be more subtle niching
situations resulting in a singular matrix and thus limiting
our static analysis (although not necessarily the ability of
RFS!) to find a single exact cover even when one exists.
Defining and studying such situations might yield insights
into important niching/covering dynamics of these evolu-
tionary approaches to hard problems.

4.3 Future Work
This paper presents only an early foray into the theoreti-

cal analysis of RFS. A logical next step in the analysis would
be to consider the case of h-against-k, where h > 2. Would
the h exact-covering species still emerge as the sole surviv-
ing species at niching equilibrium, when competing against
an arbitrarily large number k of other, covered, species? If
so, then we will have proven that RFS converges to the op-
timal tiling in shape nesting problems (e.g., [7]), at least
under certain conditions (e.g., non-singular niching equilib-
rium matrix).

Other directions for future work include a comparison
with resource sharing [10]. Does resource sharing behave
similarly to RFS when there exists in the population an ex-
act cover of the resources? (We note that there seems to
be little need to conduct a similar analsis of, and compar-
ison with, fitness sharing [5] because FS and RFS use the
same functional structure in their sharing functions, with
the caveat that FS is limited to rotationally symmetric niche
shapes.) Finally, beyond static analysis lie many tools of dy-
namic analysis of niching and sharing methods [1, 6], such
as convergence to equilibrium, stability of equilibrium, using
expected proportions over time via recurrence relations, and

Markov chains, which have mostly been applied to two-niche
scenarios.
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