
A Comparison of Evaluation Methods in Coevolution

Ting-Shuo Yo
Utrecht University
PO Box 80.089
3508 TB Utrecht
The Netherlands
tyo@cs.uu.nl

Edwin D. de Jong
Utrecht University

PO Box 80.089
3508 TB Utrecht
The Netherlands

dejong@cs.uu.nl

ABSTRACT
In this research, we compare four different evaluation meth-
ods in coevolution on the Majority Function problem. The
size of the problem is selected such that an evaluation against
all possible test cases is feasible. Two measures are used
for the comparisons, i.e., the objective fitness derived from
evaluating solutions againt all test cases, and the objective
fitness correlation (OFC), which is defined as the correlation
coefficient between subjective and objective fitness. The re-
sults of our experiments suggest that a combination of aver-
age score and weighted informativeness may provide a more
accurate evaluation in coevolution. In order to confirm this
difference, a series of t-tests on the preference between each
pair of the evaluation methods is performed. The resulting
significance is affirmative, and the tests for two quality mea-
sures show similar preference on four evaluation methods.

Categories and Subject Descriptors
F.0 [General]

General Terms
Algorithms, Experimentation, Performance

Keywords
Coevolution, evaluation, performance comparison, objective
fitness corelation, OFC

1. INTRODUCTION
Coevolution offers an approach to adaptively select tests

for the evaluation of learners [10, 20, 12, 19, 18, 5]. Using
coevolution, the evaluation function is adapted as part of
the evolutionary process. This approach can be useful if the
quality of individuals can be assessed using some form of
tests. For such test-based problems, the identification of an
informative set of tests can reduce the amount of required

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

computation, while potentially providing more useful infor-
mation than any static selection of tests. Since an adap-
tive test set can render evaluation unstable, an important
question is how coevolution can be set up to be sufficiently
reliable.

A recent insight in coevolution research is that the de-
sign of a coevolutionary setup should begin with a con-
sideration of the desired solution concept [6]. A solution
concept specifies which elements of the search space qualify
as solutions and which do not. Examples of solution con-
cepts include: Maximum Expected Utility (maximizing the
expected outcome against a randomly selected opponent,
which for uniform selection is equivalent to maximizing the
average outcome against all opponents), the Pareto-optimal
set resulting from viewing each test as a separate objective,
and Nash-equilibria, in which no candidate solution or test
can unilaterally deviate given the other candidate solutions
and tests without decreasing its payoff.

For several of the main solution concepts used in coevo-
lution, archive methods exist guaranteeing that when suffi-
ciently diverse sets of new individuals are submitted to the
archive, the archive will produce monotonically improving
approximations of the solution concept. Recent examples
of such archive methods are the Nash Memory [6, 9], which
guarantees monotonicity for the Nash equilibrium solution
concept; the IPCA algorithm, which guarantees monotonic-
ity for the Pareto-optimal equivalence set [3]; and the Max-
Solve algorithm [2], which guarantees monotonicity for the
Maximum Expected Utility solution concept.

While theoretical guarantees of monotonic progress are
important, so far no bounds or guarantees regarding the
improvement of the approximation to the solution concept
over time are available. Thus, approximating the solution
concept to a desired degree of accuracy may take an in-
feasible amount of time. An important current practical
question is therefore: how can coevolutionary algorithms be
set up such that their dynamics lead to quick improvement
over time? By using such efficient algorithms as generators
of new individuals and coupling them to monotic archives,
thereby combining the guarantee of monotonic progress with
efficiency, a principled approach to designing robust and ef-
ficient coevolution algorithms is obtained.

Efficiency in coevolutionary algorithms depends on selec-
tion, see e.g. [7], and evaluation. In this research we focus on
evaluation. Our aim is to compare the efficiency, reflected in
the improvement over time of an objective quality measure,
that can be achieved using different coevolutionary evalu-
ation methods. Since a main question is how sufficiently

479

accurate evaluation may be achieved, the testing environ-
ment is chosen such that evaluating individuals on all tests
is feasible; while this is not the case in practical applications
of coevolution, this provides a possibility to compare evalu-
ation methods with the maximally informative situation in
which information about all possible tests is available. This
setup permits investigating two important questions:

1. Given all information that may be relevant to evalua-
tion, how can this information be used optimally?

2. Compared to evaluation based on all relevant informa-
tion, how do different coevolutionary evaluation meth-
ods perform?

In this paper, we focus on the second question. Four dif-
ferent coevolutionary evaluation methods are compared to
each other and to the baseline of testing against all tests.
The test problem is a small variant of the Majority Func-
tion test problem [17] [16] [12] chosen such that evaluation
against all test cases (initial conditions) is feasible. A new
tool named the Objective Fitness Correlation (OFC) [4], the
correlation between the subjective and the objective fitness
measures, is used to assess the evaluation accuracy of the
different methods.

The paper is structured as follows. In section 2 we dis-
cuss the evaluation methods and algorithms used in this
research. The design of experiments, parameters and per-
formance measures are described in section 3. The results
are presented in section 4, and the discussions and conclud-
ing remarks are shown in section 5.

2. EVALUATION METHODS
In this section, we describe the evaluation methods con-

ducted in this study. Since we put our main focus on the
test-based problems, we start with defining some terminolo-
gies and fitness measures. Evaluation methods based on
those fitness measures are introduced in the following sec-
tions.

2.1 Interaction matrix
For a test problem, there are two sample spaces: one is

the test cases, T , and the other is possible solutions, S.
The term interaction is defined as the result of letting one
solution interact with one test case. For the ease of analysis,
an interaction function, G(T, S), is designed to return one
scalar outcome of the interaction between a pair of test case
and a solution. To simplify the following discussion, we
assume that the interaction function returns a binary result
which represents whether the solution succeeds in solving
the test case or not. An affirmative interaction is preferred
by the solution, but is unfavorable to the test case.

By evaluating all solutions, S = {Sj |j = 1, 2,, m},
against all test points, T = {Ti|i = 1, 2,, n}, an interac-
tion matrix, I = {Iij |i = 1,, n; j = 1,, m}, is obtained.
The sum of column j, Ij , of this interaction matrix repre-
sents the number of test cases that Sj has solved, which is
a common performance measure for a solution. Similarly,
the sum of row i, Ii, is the number of times this test case Ti

being solved, which represents the difficulty of the test case.
In the simplest case, only the interaction outcomes are

considered, so that −Ii can be used as the fitness of Ti (i.e.,
the more difficult the better), and Ij for Si (i.e., the more
powerful the better).

2.2 Distinctions
Distinctions are defined as the ability to distinguish be-

tween good and bad solutions and may provide important
information for selecting a proper set of test cases. This
concept was first proposed in [8], and here we follow the
notation in [5] for our experiments. Accordingly, a three-
dimensional matrix dist(T, S, S) is defined to represent ”if
test case Ti distinguishes Sk from Sl”, or mathematically:

dist(Ti, Sk, Sl)⇔ G(Ti, Sk) > G(Ti, Sl) (1)

where Ti ∈ T and Sk, Sl ∈ S.
The number of distinctions that test case Ti has made may
be represented by summing up all m2 solution pairs in dist,
i.e., distT (Ti) =

�
kl dist(i, k, l). This value represents the

ability of a test case to maintain diversity of the solutions,
and it may also be considered as a fitness measure for test
cases.

Although we explain the concept of distinction in terms
of “selecting a proper set of test cases”, the same procedure
can also be applied to solutions. This yields the distinction
of solutions, and is also a reasonable fitness measure for
evaluating solutions. With those measures, four different
evaluation methods are defined as follows.

2.3 Four evaluation methods
For each evaluation method, we define the fitness for test

cases F (T) and solutions F (S) as follows.

2.3.1 Average score
For a solution, the average-score is defined as “the pro-

portion of test points it has succeeded in solving.” And for
a test point, this value is represented by ”the proportion
of solutions that it has failed”. With an interaction matrix
I(i, j) as described earlier, we define:

FAS(Ti) = 1−
m�

j=1

I(i, j)/m,

FAS(Sj) =

n�
i=1

I(i, j)/n (2)

The application results of FAS on test cases and solutions are
both between [0, 1], and a higher value represents a better
performance.

2.3.2 Weighted score
Instead of giving each interaction an equal weight, the

average scores described above may be used as weights for
each test case and solution. That is to say, a test case earns
more credits by failing a more powerful solution, and a so-
lution gets a higher score when it succeeds in a tough test
case. The mathematical expression of this evaluation can be

480

represented as follows:

WT (Ti) =

�
m�

j=1

I(i, j)

�−1

,

WS(Sj) =

�
n�

i=1

I(i, j)

�−1

,

W ′
T (Ti) =

WT (Ti)�n
i=1 WT (Ti)

,

W ′
S(Sj) =

WS(Sj)�m
j=1 WS(Sj)

,

FWS(Ti) = 1−
m�

j=1

W ′
S(Sj) · I(i, j),

FWS(Sj) =

n�
i=1

W ′
T (Ti) · I(i, j) (3)

Weights are checked to avoid being divided by zero and nor-
malized to ensure the weighted scores are ranged from 0 to
1. Hence FWS also returns a value between [0, 1], and the
higher values are more preferable. This definition is similar
in spirit to the niching methods of Rosin [20] and Juille [11],
though their methods are not considered while we developed
the weight function.

2.3.3 Average informativeness
The informativeness of a test measures the amount of in-

formation it provides about a given set of candidate solu-
tions. In [1], a definition for informativeness based on the
incomparable and equal elements of the order induced by a
test is provided. Here, we measure the informativeness of a
test based on Ficici’s notion of distinctions [8]. Since each
distinction a test makes contributes to its informativeness,
and since the set of all possible distinctions is sufficient to
provide ideal evaluation [5], we measure the informativeness
of a test as the normalized number of distinctions it makes.
In this study, we define the distinction score, D, as “the
number of distinctions one test case (solution) makes.” This
value can be derived from the distinction matrix described
in (1), and represents the informativeness. For the conve-
nience of further computation, we normalize the distinction
score with its maximum and minimum values, which are re-
turned by the function Max(D) and Min(D). Because the
informativeness represents the individual’s ability to main-
tain diversity of the other population, we want to integrate
it with the average scores to form the fitness. Here we sim-
ply use a linear combination of two scores, with weights
of (0.3, 0.7) for distinction and average score, respectively.
These weights are based on the observation that the average
scores are generally lower than the distinction scores due to
the computational scheme we used, as well as experiences
from the pilot experiments. The average informativeness is
therefore defined as the linear combination of the normalized
distinction score and the average score.

DT (Ti) =
� �

k,l∈[1,m]

dist(Ti, Sk, Sl),

DS(Sj) =
� �

p,q∈[1,n]

dist(Sj , Tp, Tq),

D′
T (Ti) =

DT (Ti)−Min(DT (Ti))

Max(DT (Ti))−Min(DT (Ti))
,

D′
S(Sj) =

DS(Sj)−Min(DS(Sj))

Max(DS(Sj))−Min(DS(Sj))
,

FAI(Ti) = 0.3 ·D′
T (Ti) + 0.7 · FAS(Ti),

FAI(Sj) = 0.3 ·D′
S(Sj) + 0.7 · FAS(Sj) (4)

2.3.4 Weighted informativeness
Similar to the weighted score, each distinction that has

been made can be weighted differently when the distinction
score is derived. For example, the distinction made by all
test cases,

�n
i=1 dist(Ti, Sk, Sl), provides the information of

“how many test cases have made the distinction on Sk and
Sl, such that G(Ti, Sk) > G(Ti, Sl).” The inverse of this
value can be used as the weight of this particular distinction,
so that when more test cases can make this distinction, the
less worthy this distinction is. This operation can also be
applied to solutions, and the weighted informativeness can
be defined mathematically as:

Wd(Sk, Sl) =

�
n�

i=1

dist(Ti, Sk, Sl)

�−1

,

Wd(Tp, Tq) =

�
m�

j=1

dist(Sj , Tp, Tq)

�−1

,

DT (Ti) =
� �

k,l∈[1,m]

Wd(Sk, Sl) · dist(Ti, Sk, Sl),

DS(Sj) =
� �

p,q∈[1,n]

Wd(Tp, Tq) · dist(Sj , Tp, Tq),

D′
T (Ti) =

DT (Ti)−Min(DT (Ti))

Max(DT (Ti))−Min(DT (Ti))
,

D′
S(Sj) =

DS(Sj)−Min(DS(Sj))

Max(DS(Sj))−Min(DS(Sj))
,

FWI(Ti) = 0.3 ·D′
T (Ti) + 0.7 · FAS(Ti),

FWI(Sj) = 0.3 ·D′
S(Sj) + 0.7 · FAS(Sj) (5)

In the following discussion, the four evaluation methods
described above are referred as AS, WS, AI, and WI, re-
spectively.

2.4 Algorithms for experiments
There are two main algorithms used in this study, i.e., a

single population genetic algorithm (GA) and coevolution
(CO). The former uses only one single population for solu-
tions and evaluates the population on all possible test cases
to obtain the interaction defined earlier. Afterward, the av-
erage scores given by FAS are used as the fitness in the
GA. The results of this algorithm are used as the baseline
for comparisons. The second algorithm uses coevolution be-
tween test cases and solutions, and all four evaluation meth-
ods are tested.

Algorithm 1 and 2 describe GA and CO, respectively.

481

Functions used in the algorithms, e.g., INTERACTION,
EVALUATE, SELECT and BREED, are specific to prob-
lems and experiments. The general concepts of INTERAC-
TION and four implementations of EVALUATE are already
discussed in this section. The SELECT and BREED to-
gether define the selection, reproduction and replacement
cycle in a generation. The choice of these two functions is
problem specific and they are specified in the experimental
design section.

Algorithm 1 Single Population GA

TC ← all n test cases
Sol(0)← randomly generate m solutions
while t < MAX GENERATION do

I ← INTERACTION(TC,Sol(t))
Sol(t)← EVALUATE Sol(t) with FAS

Sol′(t)← SELECT Sol(t)
Sol(t + 1)← BREED Sol′(t)
t = t + 1

end while
return Sol(t)

Algorithm 2 Coevolution

TC(0)← randomly generate n test cases
Sol(0)← randomly generate m solutions
while t < MAX GENERATION do

I ← INTERACTION(TC(t), Sol(t))
TC(t)← EVALUATE TP (t)
Sol(t)← EVALUATE Sol(t)
TC′(t)← SELECT TC(t)
Sol′(t)← SELECT Sol(t)
TC(t + 1)← BREED TC′(t)
Sol(t + 1)← BREED Sol′(t)
t = t + 1

end while
return (TP (t), Sol(t))

3. EXPERIMENTAL SETUP
In this section, the settings of our experiments are de-

scribed. The software used in this research is implemented
as an extension of ECJ [15], which is developed by George
Mason University’s Evolutionary Computation Laboratory.
All simulations use the basic evolutionary loop provided by
ECJ, plus the evaluation methods and problem-specific func-
tions in the extension. The design of the experiments, the
parameters used in the test problem, and the performance
measures are introduced as follows.

3.1 Design of experiments
As mentioned in the previous section, two algorithms and

four evaluation methods are used in this study. Table 1
shows the design of our experiments. Experiment 1 is a
combination of the single population genetic algorithm and
the average score evaluation method. This GAAS evaluates
the solutions against all possible test cases and serves as
the baseline experiment. Experiment 2, 3, 4, and 5 are four
different evaluation methods combined with the coevolution
algorithm. Each experiment is run for ten times with ten
different random seeds.

Exp No 1 2 3 4 5
Algorithm GA CO CO CO CO
Evaluation Method AS AS WS AI WI
Number of Runs 10 10 10 10 10

Table 1: Design of experiments.

Parameter Value
MAX GENERATION 200
Size of population 64/100
Elitism 12/20 (20%)
Selection linear rank selection
Crossover one point crossover
Mutation rate 0.01

Table 2: Parameters used for the majority function
problem.

3.2 Parameters for the test problem
In this study, we perform the experiments on the majority

function problem. This problem is also known as the one
dimensional cellular automata problem. Mitchell and his
colleagues have detailed discussion on this problem in [17]
and [16]. Two major parameters are used for this problem,
i.e., the radius of the neighbourhood (r) and the size of
the one dimensional lattice (N). Boolean vectors are used
to represent both the initial conditions (test cases) and the
rules (solutions). In order to evaluate against all test points,
we chose r = 2 and N = 9. Other parameters, e.g., the
size of populations, elitism, crossover type, and mutation
probability are selected based on Mitchell’s work [16], and
are summarized in Table 2.

In the coevolution experiments (2, 3, 4, and 5), a symmet-
ric setup is used, i.e., the same set of EVALUATE, SELECT
and BREED functions are used for both population of test
cases and the population of solutions. However, there is
one exception: the population size. Because there are only
512 possible test cases in total, the population size for test
cases is set as 64 in the convenience of comparison, while
the population size for solutions is set as 100. Accordingly,
the number of elites for two populations are also different,
while their proportions to the size of populations are the
same (20%). The initial populations are both randomly cre-
ated and are both checked to ensure there are no redundent
individuals in the begining of the experiments.

3.3 Performance measures
In order to compare all experiments fairly, an objective

performance measure is required. Hence we define the sub-
jective fitness and objective fitness separately. The subjective
fitness is the fitness value returned by the EVALUATE func-
tion used in the coevolution algorithm. In this study, the
objective fitness is defined as the fitness used in experiment
1, i.e., to evaluate the average scores against all possible
test cases. For each generation in experiment 2 ∼ 5, both
the subjective and the objective fitness are recorded. All
experiments are compared with the their objective fitness,
based on the number of interactions. In coevolution experi-
ments, the number of test cases is 1/8 of that in the GAAS
experiment, therefore during the analysis we compare the

482

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Interaction (*512)

B
es

t F
itn

es
s

GAAS
COAS
COWS

COAI
COWI

Averaged Best Objective Fitness

Figure 1: The best objective fitness of solutions as
a function of the number of interactions

objective fitness of the coevolution experiments every 8 gen-
erations to the fitness of the controlled experiments every
generation. Since these values are all derived from exhaus-
tive testing, the progress over interactions may be seen as
the performance of each method.

In addition to the progress of the fitness, the correlation
coefficients between subjective and objective fitness are also
computed. This correlation is defined as the Objective
Fitness Correlation, OFC, in [4] as a new objective mea-
sure for evaluating coevolutionary algorithms. In our ex-
periments, this measure is collected for each generation of
every run. Since OFC is always 1 in the baseline experiment,
we only compare OFC among the four evaluation methods
with coevolution. Comparisons are made with these two
measures averaged upon ten independent runs.

4. RESULTS

4.1 Best objective fitness
Figure 1 shows the best objective fitness of the solutions

averaged over 10 runs. As illustrated in the figure, the base-
line experiment is outperformed by all coevolution experi-
ments, especially when the number of total interactions is
small. Among four evaluation methods with coevolution,
the weighted informativeness shows a constantly better per-
formance than others.

A series of paired, one-tailed t-tests are performed to ex-
amine the significance of the differences between each eval-
uation methods. The best fitness of each generation is av-
eraged over 10 runs, and is paired with the same quantity
of another evaluation method for the t-test. The results of
t-tests shows significance on WI > AI, WI > WS, WI > AS,
AI > AS, and WS > AS (with p-values < 1×10−10), but not
on AI �= WS with α = 0.05. These results are summarized
in table 3.

4.2 Objective fitness correlation
The OFCs for different evaluation methods with coevolu-

tion are shown in figure 2. The values shown in the figure are
averages of 10 independent runs, and therefore the fluctua-
tions of OFCs are already smoothed. In a single run of one
experiment, the OFC can be negative for some generations.

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Generation

O
F

C

COAS
COWS

COAI
COWI

Averaged Objective Fitness Correlation

Figure 2: The OFC for experiment COAS, COWS,
COAI and COWI.

P-value for test
on i < j WS AI WI

AS 1.4× 10−21 9.9× 10−15 1.9 × 10−68

WS 9.8× 10−1 7.2 × 10−81

AI 1.5 × 10−64

Table 3: Significant level in paired t-tests for objec-
tive fitness among experiment COAS, COWS, COAI
and COWI. A p-value smaller than 0.05 is usually
considered as significant.

In all experiments, the OFC always starts from a high
value. This is because the initial populations are randomly
generated, and this can be seen as they are sampled from
the set of all possible cases with a uniform distribution. Ide-
ally, this random sampling may create a set well represents
the original search space, i.e., the all possible cases, and re-
sults in a higher correlation between the subjective and the
objective fitness. As the coevolution proceeds, the popula-
tions move toward certain direction rather than a uniformly
random sampling, and hence the OFC decreases over gener-
ations. However, as argued in [4], the OFC may still remain
as a performance measure for comparing different evaluation
methods in a coevolutionary algorithm.

As demonstrated in figure 2, the weighted informative-
ness shows a constantly higher OFC through generations
than other methods, while other evaluation methods do not
show clear differences between one another due to the fluc-
tuations.

A set of t-tests is employed to verify the difference in
OFC between each pair of evaluation methods. The results
show significance on all of following relations: WI > AI,
WI > WS, WI > AS, AI > WS, AI > AS, and WS >
AS. The preferences for WI against other methods are very
significant, with p-values < 1 × 10−15, which is the limit
of precision in the computing software. These results are
summarized in table 4.

483

P-value for test
on i < j WS AI WI

AS 4.2× 10−5 6.5× 10−21 2.9× 10−69

WS 4.6 × 10−9 3.4× 10−59

AI 1.1× 10−39

Table 4: Significant level in paired t-tests for
OFC among experiment COAS, COWS, COAI and
COWI.

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Generation

B
es

t F
itn

es
s

GAAS
COAS
COWS

COAI
COWI

Averaged Best Objective Fitness

Figure 3: The objective fitness over generations
for experiment GAAS, COAS, COWS, COAI and
COWI.

5. DISCUSSION

5.1 Evaluating with the weighted
informativeness

The results of our experiments suggest that in coevolution,
a combination of performance (average score) and diversity
(weighted distinction) can achieve the accuracy of full eval-
uation with less computational cost. This statement holds
for both conditions when considering the improvement of
an objective quality measure over time or the correlation
between the subjective fitness and objective measure. This
advantage is even clearer if we compare the objective fitness
according to the generation instead of the number of inter-
actions. As shown in figure 3, the WI evaluation method
with coevolution progresses as fast as evaluating against all
possible test cases, while other evaluation methods are ap-
parently slower than the baseline.

In our study, the OFC is used as a quality measure in
addition to the objective fitness. If the preference orderings
of evaluation methods are considered, this measure provides
information similar to the objective fitness. However, the
difference between WS and AI shows significance in OFC but
not in the objective fitness. This implies that two measures
may contain different information, and a detailed discussion
on OFC can be found in [4].

5.2 The majority function problem with
different sizes

This research is the first time the OFC is calculated on a
real problem, but in exchange we are only able to experiment
on problems with a small number of possible test cases in

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Interaction (*2048)

B
es

t F
itn

es
s

GAAS
COAS
COWS

COAI
COWI

Averaged Best Objective Fitness

Figure 4: The averaged best objective fitness for the
N = 11 majority function problem.

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Generation

O
F

C

COAS
COWS

COAI
COWI

Averaged Objective Fitness Correlation

Figure 5: The averaged OFC for the N = 11 majority
function problem. The upper lines are AI and WI,
and the lower lines are AS and WS.

484

0 10 20 30 40 50

0.
4

0.
5

0.
6

0.
7

0.
8

Number of Interaction (*64)

B
es

t F
itn

es
s

GAAS
COAS
COWS

COAI
COWI

Averaged Best Objective Fitness

Figure 6: The averaged objective fitness for the 6-
odd-parity problem.

0 20 40 60 80 100

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Generation

O
F

C

COAS
COWS

COAI
COWI

Averaged Objective Fitness Correlation

Figure 7: The averaged OFC for the 6-odd-parity
problem.

total. The majority function problem with different sizes
(N = 7 and N = 11) are also tested. The results are similar
to the finding presented in the previous section, and the
experiments of N = 11 are summarized in figure 4 and 5.
From these figures it is shown that OFC can distinguish
AI and WI from AS and WS while the objective fitness
can not. This argument is consistent with the results of
t-tests (not shown): t-tests on the objective fitness show
no significant difference between pairs among AS, WS, and
AI, while those on OFC show the same preference as in the
N = 9 experiments.

5.3 The parity problem
In addition to the majority function problem, the same

comparison is also performed on the n-odd-parity problems.
Although Lee, Xu, and Chau [14] have proposed that the
boolean parity problem may be transformed into a cellular
automata problem, here we use Koza’s Genetic Program-
ming approach in [13].

Figure 6 and 7 show the results for the 6-odd-parity prob-
lem. As shown in figure 6, the WI still performs the best
among four evaluation methods in coevolution, and this is
also confirmed by the t-tests (not shown). However, we also

find some disagreement between results from the majority
function problem and the parity problem. First, in the par-
ity problem, the single population GA outperforms all CO
experiments in this genetic programming approach, while
figure 1 shows the opposite in the majority function prob-
lem. Second, OFC in the parity problem shows no significant
pattern (as shown in figure 7), while the OFC distinguishes
different evaluation methods better than the objective fit-
ness in the majority function problem. Finally, the t-tests
hardly show any significant difference among AS, WS, and
AI in the parity problem.

A detailed analysis on the output has been done and sug-
gests a few possible reasons for the disagreement. First,
solving the parity problem with the genetic programming
approach is not a symmetric test-based problem in nature.
That is to say, while the test cases are represented with
boolean vectors as they are in the majority function prob-
lem, the solutions for the parity problem are represented
with tree-like structures. As a result of this asymmetry, the
same evolutionary operator (e.g., selection methods, muta-
tion rate, crossover methods, etc.) may have different ef-
fects on two populations, and hence a symmetric setting for
coevolution is not suitable. Second, the initial population
of the tree-like solutions is not randomly selected from “all
possible solutions”. In Koza’s approach, the sizes of the so-
lutions start from smaller values and grow over generations.
This “biased sampling” may explain the disfavor of OFC
in the parity problem. Finally, since Koza’s approach has
been studies for several years, the evolutionary operators
and parameters are already well tuned. We believe that the
disagreement may be reduced by developing proper asym-
metric coevolution schemes.

Despite the disagreement, the results of the parity prob-
lem still shows a favor to WI in coevolution.

6. CONCLUSION
In this research, we compare four different evaluation meth-

ods in coevolution on a test-based problem. Two mea-
sures are used for the comparisons among average score
(AS), weighted score (WS), average informativeness (AI),
and weighted informativeness (WI). In addition to an objec-
tive quality measure, the objective fitness correlation (OFC)
is also computed.

The experimental results show a strong preference on WI,
which suggest that a combination of the performance and
the ability to create distinctions may provide more accurate
evaluation in coevolution. The resulting significance from
t-tests show a similar preference when two quality measures
are used, separately. This study also uses the recently pro-
posed OFC to evaluate the accuracy of coevolutionary eval-
uation methods on a concrete test problem.

Although we have shown the advantages of using WI in
coevolution, the way we combine these two measures is sim-
ply using a weighted summation. It may worth explor-
ing more sophisticated methods to fuse this information to-
gether. Currently a multi-objective approach is in progress,
and this may lead to a more detailed investigation on how
to use both measures in coevolutionary algorithms.

7. REFERENCES
[1] A. Bucci and J. B. Pollack. A mathematical

framework for the study of coevolution. In

485

Foundations of Genetic Algorithms (FOGA-2002),
San Francisco, CA, 2003. Morgan Kaufmann.

[2] E. D. De Jong. The MaxSolve algorithm for
coevolution. In H.-G. Beyer, editor, Proceedings of the
Genetic and Evolutionary Computation Conference,
GECCO-05, pages 483–489. ACM Press, 2005.

[3] E. D. De Jong. A monotonic archive for
pareto-coevolution. Evolutionary Computation, 15(1),
2007. to appear.

[4] E. D. De Jong. Objective fitness correlation. In Dirk
Thierens et al., editor, Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO-07.
ACM Press, 2007.

[5] E. D. De Jong and J. B. Pollack. Ideal evaluation from
coevolution. Evol. Comput., 12(2):159–192, 2004.

[6] S. G. Ficici. Solution Concepts in Coevolutionary
Algorithms. PhD thesis, Brandeis University, 2004.

[7] S. G. Ficici, O. Melnik, and J. B. Pollack. A
game-theoretic and dynamical-systems analysis of
selection methods in coevolution. IEEE Transactions
on Evolutionary Computation, 9(6):580–602, 2005.

[8] S. G. Ficici and J. B. Pollack. Pareto optimality in
coevolutionary learning. In ECAL ’01: Proceedings of
the 6th European Conference on Advances in Artificial
Life, pages 316–325, London, UK, 2001.
Springer-Verlag.

[9] S. G. Ficici and J. B. Pollack. A game-theoretic
memory mechanism for coevolution. In Cantú-Paz, E.,
et al., editor, Genetic and Evolutionary Computation
– GECCO-2003, volume 2723 of LNCS, pages
286–297, Chicago, 12-16 July 2003. Springer-Verlag.

[10] D. W. Hillis. Co-evolving parasites improve simulated
evolution in an optimization procedure. Physica D,
42:228–234, 1990.

[11] H. Juillé and J. Pollack. Dynamics of co-evolutionary
learning. In Proceedings of the Fourth International
Conference on Simulation of Adaptive Behavior, pages
526–534. MIT Press, 1996.

[12] H. Juillé and J. B. Pollack. Coevolving the ”ideal”
trainer: Application to the discovery of cellular
automata rules. In Proceedings of the Third Annual
Genetic Programming Conference, 1998.

[13] J. R. Koza. Genetic programming: on the
programming of computers by means of natural
selection. MIT Press, Cambridge, MA, USA, 1992.

[14] K. M. Lee, H. Xu, and H. F. Chau. Parity problem
with a cellular automaton solution. Phys. Rev. E,
64(2):026702, Jul 2001.

[15] S. Luke. ECJ 15: A Java evolutionary computation
library. http://cs.gmu.edu/∼eclab/projects/ecj/, 2006.

[16] M. Mitchell, J. P. Crutchfield, and P. T. Hraber.
Evolving cellular automata to perform computations:
mechanisms and impediments. Phys. D,
75(1-3):361–391, 1994.

[17] M. Mitchell, P. T. Hraber, and J. P. Crutchfield.
Revisiting the edge of chaos: Evolving cellular
automata to perform computations. Complex Systems,
7:89–130, 1993.

[18] L. Pagie and P. Hogeweg. Evolutionary consequences
of coevolving targets. Evolutionary Computation,
5(4):401–418, 1998.

[19] J. Paredis. Coevolutionary computation. Artificial
Life, 2(4), 1996.

[20] C. D. Rosin and R. K. Belew. New methods for
competitive coevolution. Evolutionary Computation,
5(1):1–29, 1997.

486

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

