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ABSTRACT
Recent research into single–objective continuous Estimation–
of–Distribution Algorithms (EDAs) has shown that when
maximum–likelihood estimations are used for parametric dis-
tributions such as the normal distribution, the EDA can
easily suffer from premature convergence. In this paper we
argue that the same holds for multi–objective optimization.
Our aim in this paper is to transfer a solution called Adap-
tive Variance Scaling (AVS) from the single–objective case
to the multi–objective case. To this end, we zoom in on
an existing EDA for continuous multi–objective optimiza-
tion, the MIDEA, which employs mixture distributions. We
propose a means to combine AVS with the normal mixture
distribution, as opposed to the single normal distribution
for which AVS was introduced. In addition, we improve
the AVS scheme using the Standard–Deviation Ratio (SDR)
trigger. Intuitively put, variance scaling is triggered by the
SDR trigger only if improvements are found to be far away
from the mean. For the multi–objective case, this addition
is important to keep the variance from being scaled to ex-
cessively large values. From experiments performed on five
well–known benchmark problems, the addition of SDR and
AVS is found to enlarge the class of problems that continu-
ous multi–objective EDAs can solve reliably.

Categories and Subject Descriptors
G.1 [Numerical Analysis]: Optimization; I.2 [Artificial
Intelligence]: Problem Solving, Control Methods, and Search

General Terms
Algorithms, Performance, Experimentation

Keywords
Evolutionary Algorithms, Estimation of Distribution Algo-
rithms, Multi–Objective Optimization, Adaptive Variance
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1. INTRODUCTION
Estimation–of–distribution algorithms (EDAs, [16, 19, 23])

are a class of evolutionary algorithms in which the main op-
erator of variation is the estimation of a probability distribu-
tion from the selected solutions and the subsequent sampling
from the estimated distribution to generate new solutions,
i.e. offspring. EDAs attempt to induce and exploit structure
from the optimization problem. The probability distribution
constitutes an explicit, probabilistic, search bias.

In general, for any optimization algorithm to be successful
when solving a certain optimization problem, the structure
of the problem needs to match the bias of the optimization
algorithm. Recent studies have shown that the EDA ap-
proach in continuous spaces, specifically when maximum–
likelihood normal distributions are used, is not always suc-
cessful [4, 12]. Also, it has been pointed out more clearly
under which conditions an EDA is expected to be success-
ful [11]. Summarizing, it is required that the structure of
the problem can be modeled by the probability distribution
and the estimation procedure can do this modeling well. For
the normal distribution however, this not always the case.

As the normal distribution itself is a single peak, it can
match the contour–lines of a single peak in the fitness land-
scape. Things are different for slope–like situations, i.e.
when the optimum is outside the range of selected solutions.
The true structure is then misrepresented by a maximum–
likelihood estimate because the normal distribution focuses
search around its mean. Relying the search on maximum–
likelihood estimates potentially misleads the EDA and can
therefore cause premature convergence.

Although there is currently no theoretical justification for
the same problem arising in the multi–objective case, it is
not hard to see that similar problems may indeed arise. One
might argue that the variance is “artificially” kept nonzero
as upon convergence there will be multiple rank–0 solutions
with different configurations in the parameter space. How-
ever, this non–zero variance may only be related to a certain
subspace of the parameter space. The variance in the direc-
tions in which the entire Pareto front may be advanced can
vanish, making progression very slow or even non–existing.

Recently, a technique was introduced to remedy the prob-
lem of the prematurely vanishing variance with promising
results [11]. In this paper, we discuss transferring this tech-
nique, called adaptive variance scaling (AVS), to the multi–
objective case. The addition of variance scaling brings about
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a different view on the way model–based search is performed
with continuous EDAs. Originally, the covariance matrix
was estimated using maximum likelihood directly from data
(i.e. the selected solutions). With variance scaling, the co-
variance matrix is adapted according to additional sources
of information. EDAs are not the only approach to model–
guided search. Specifically, when regarding the use of the
normal distribution, there are clear similarities with evolu-
tion strategies (ES) [2], or more recently, the CMA–ES [13,
14]. But also approaches like particle–swarm optimization
(PSO) share a similar notion of maintaining, updating and
adapting a model during search. All approaches have a dif-
ferent, but solid, rationale and background. An advantage
of the EDA approach that also holds for the AVS extension
is that it is conceptually easy to understand. Its choices
are well motivated and principled. In addition, the building
of mixture distributions by clustering the objective space in
multi–objective optimization, was first proposed in an EDA
approach, i.e. the multi–objective mixture–based iterated
density–estimation evolutionary algorithm (MIDEA) [6, 25].
It has been shown that the use of mixture probability distri-
butions leads to better results. As such, it is important to
investigate and advance all these model–based approaches
and specifically EDAs, on which this paper is focused.

Because AVS was designed only with the single normal
distribution in mind, we will have to expand this technique
to the level of mixtures of normal distributions. The combi-
nation of mixture distributions with AVS to reduce the risk
of premature convergence is an important next step in the
development of continuous multi–objective estimation–of–
distribution algorithms (MOEDAs) that can reliably tackle
a wide range of problem difficulty.

The remainder of this paper is organized as follows. First,
we briefly discuss mixture distributions in MOEDAs as well
as the specific MOEDA called MIDEA in Section 2. Then, in
Section 3 we briefly recall AVS for single–objective optimiza-
tion and propose the extension of AVS to normal mixture
distributions. In Section 4 we improve the AVS approach
further by introducing the standard–deviation ratio (SDR)
trigger. We test the performance of the MIDEA with and
without AVS and SDR in Section 5 on five benchmark prob-
lems. We present our final conclusions in Section 6.

2. MULTI–OBJECTIVE EDAS

2.1 Mixture distributions, clusters and
multiple objectives

A mixture probability distribution is a weighted sum of
k probability distributions. Let X be the random variable
that represents the entire space of solutions to the problem
at hand. Typically, the solutions are fixed–length vectors
that constitute a Cartesian search space, making X a fixed–
length vector of random variables Xj where Xj is associated
with the j–th problem variable. A mixture probability dis-
tribution can now be defined as:

Pmixture(X) =

k−1
X

i=0

βiP
i(X) (1)

where βi > 0, i ∈ {0, 1, . . . , k − 1} and
Pk−1

i=0
βi = 1. The

βi are called the mixing coefficients and each probability
distribution P i is called a mixture component.

The power of mixture distributions mainly lies in the com-
bination of multiple, typically simpler, distributions. In this

way, accurate descriptions can be obtained of the data in
different parts of the sample space. Although the mixture
components may overlap heavily, it is often more convenient
to think of them as a means of clustering the sample space.
One mixture component then represents one cluster, making
the mixture components spatially separated [4, 22, 25].

For multi–objective optimization, spatial separation ren-
ders mixture distributions particularly useful [6, 25]. Using
clustering in the objective space, the distributions related
to these clusters can portray specific information about the
different regions along the Pareto front. This typically in-
creases the effectiveness in advancing the Pareto front. Each
distribution needs only to focus on moving solutions in a spe-
cific part of the search space. A parallel exploration along
the Pareto front is thereby obtained that may very well pro-
vide a better spread of new solutions along the Pareto front
than when a single non–mixture distribution is used.

2.2 The MIDEA
The MIDEA framework is a framework for multi–objective

optimization with EDAs [6, 25]. Components that are spe-
cific for this framework are the way in which variation, se-
lection and replacement are performed. A coarse–grained
outline of the framework is given in Figure 1.

MIDEA

1 Initialize a population of n (random) solutions
2 Iterate until termination

2.1 Select the best ⌊τn⌋ solutions
2.2 Generate n − ⌊τn⌋ new solutions by variation:

estimate a mixture distribution from the selected solutions,
then draw samples from it.

2.3 Replace the non–selected solutions with the new solutions

Figure 1: Outline of the MIDEA framework.

2.2.1 Variation
The probability distribution used in the MIDEA is the

mixture distribution as described in Section 2.1. Each mix-
ture component is assigned an equally large mixing coeffi-
cient, i.e. βi = 1/k. This is done so as to distribute the
solutions as good as possible along the Pareto front. Giving
each cluster an equal probability of producing new solutions
maximizes parallel exploration along the Pareto front [6].

There are various ways to estimate mixture distributions.
Currently existing implementations employ clustering in the
objective space to partition the selected solutions into sub-
sets. For each subset, a probability distribution is then es-
timated. Using partitioning, specific emphasis is put on the
spatial separation of the mixture components. Each mix-
ture component is a factorized distribution [18], similar to
the approach adopted by BOA, FDA and IDEA [4, 20, 23].

2.2.2 Selection and replacement
The motivation behind truncation selection and replace-

ment of all non–selected solutions in the MIDEA framework
is that of elitism. The currently–best solutions are always
preserved from one generation to the next. Elitism has
proven to be advantageous if the variation operator is ca-
pable of effectively exploiting problem structure [24]. As
finding a competent means of variation is exactly the goal
of EDA research, the choice of elitism is natural.

Two common ways to compute a ranking to use in trunca-
tion selection in the multi–objective case are non–dominated
ranks [8, 10] and domination count [9, 25]. In MIDEA the
latter is often chosen although it has been shown that there
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is not much difference between the two approaches in prac-
tice [5]. The domination count of a solution is the number of
times it is dominated by another solution in the population.
The lower the rank, the better the solution.

Whenever there are more solutions of rank 0 than the
number of solutions to be selected, diversity is used to make
the actual selection from all available rank–0 solutions. Note
that this situation can easily happen if the search space is
continuous. Then, there is typically an infinite number of
solutions in the Pareto–optimal front. A nearest–neighbour
heuristic is used with Euclidean distances measured in the
objective space [5]. Each dimension is scaled linearly by its
observed range to take into account different scales of ob-
jectives. For each rank–0 solution, the nearest neighbour in
the set of selected solutions is stored and updated during
selection. Until enough solutions are selected, the solution
with the largest nearest–neighbour distance is selected. By
selecting the first solution to be maximal in a randomly cho-
sen objective, selection automatically attempts to divide up
the space between selected solutions evenly.

3. ADAPTIVE VARIANCE SCALING
3.1 AVS and the normal distribution

To remedy the problem of the prematurely vanishing vari-
ance, the variance can be scaled. This was first noted only
recently [21]. One successful scheme for doing variance scal-
ing in an adaptive fashion (i.e. during optimization) was re-
cently introduced under the name adaptive variance scaling
(AVS) [11]. This scheme significantly improves performance
in the single–objective case and allows the EDA to solve
problems that it couldn’t solve without scaling the variance.
We now briefly summarize AVS.

The smaller the variance, the smaller the area of explo-
ration for the EDA. The variance in the normal distribution
is stored in the covariance matrix Σ. A variance multiplier
cAVS is maintained. Upon sampling new solutions, the dis-
tribution is scaled by cAVS, i.e. the covariance matrix used
for sampling is cAVSΣ instead of just Σ. If the best fitness
value improves in one generation, then the current size of
the variance allows for progress. Hence, a further enlarge-
ment of the variance may allow further improvement in the
next generation. To fight the variance–diminishing effect of
selection, the size of cAVS is scaled by ηINC > 1. If on the
other hand the best fitness does not improve, the range of
exploration may be too large to be effective and the variance
multiplier should be decreased by a factor ηDEC ∈ [0, 1]. For
symmetry, ηDEC = 1/ηINC. As the objective of the AVS
scheme is to enlarge the variance to prevent premature con-
vergence, cAVS is not allowed to become smaller than 1.

3.2 AVS and the normal mixture distribution
In the MIDEA, a mixture of normal distributions is used

instead of a single normal distribution. Here we describe an
extension of AVS to a spatially separated set of clusters to
be used in the normal mixture distribution.

3.2.1 Clustering
Each distribution explores its own region. Hence it makes

sense to assign each distribution P i a different cAVS,i. This
can however not be combined directly with clustering. There
is not necessarily a clear correspondence between the clus-
ters found in generation j and the clusters found in gener-
ation j + 1. This correspondence is however important for

the progression of the cAVS,i. For this reason, we propose an
alternative approach to building the mixture distribution.

The number of mixture components k is fixed beforehand.
Each normal distribution is assigned its own subpopulation
of equal size nsubpop , i.e. n = knsubpop . During optimiza-
tion, the subpopulations are kept spatially separated, i.e.
a clustering is maintained rather than recomputed in each
generation anew. Enforcing spatial separation in the differ-
ent MOEDA–phases is described in subsections 3.2.2– 3.2.4.
Because now there is a clear correspondence of the normal
distributions between two subsequent generations, AVS can
be used for each subpopulation separately.

3.2.2 Initialization
Initially, n random solutions are generated. Subsequently,

they are divided into k subpopulations of size nsubpop . To
separate them spatially, an approach similar to the diversity–
selection approach in selection is used. First, k solutions are
selected in the same way as in selection when selecting from
rank–0 solutions only. These solutions are called the leaders
of the subpopulations. Then, each subpopulation, in turn, is
expanded with the solution that is closest to its leader. This
process is repeated until all solutions have been assigned.

3.2.3 Selection
To obtain a joint effort of the subpopulations to move

toward the Pareto–optimal front, selection is performed on
the union of all subpopulations (i.e. the entire population).
Each solution is marked with its subpopulation of origin to
identify the selected solutions in each subpopulation. The
estimation of the distributions in this way is done from spa-
tially separated clusters. It may happen though, that no
solutions are selected from subpopulation i. In this case,
cAVS,i is reset to 1 and the distribution is cloned from another
subpopulation that does not have an empty set of selected
solutions. Because over subsequent generations, spatial sep-
aration is enforced, these populations will drift apart again,
spreading the search effort along the Pareto front.

3.2.4 Offspring generation and replacement
New solutions are generated by drawing a single new solu-

tion from each distribution in turn. This process is repeated
until n−⌊τn⌋ solutions have been generated. To enforce spa-
tial separation, a solution that was generated from the i–th
distribution is not by default assigned to the i–th subpopula-
tion. Instead, the solution is assigned to the subpopulation
to which it is nearest and doesn’t already contain nsubpop

solutions. The distance of a solution to a subpopulation is
taken to be the average Euclidean distance (linearly scaled
by the observed ranges of the objectives) between that solu-
tion and all members of the subpopulation. If a subpopula-
tion has filled up to nsubpop solutions, it is no longer allowed
to generate new solutions.

3.3 AVS, multiple objectives and convergence
The AVS scheme is based upon whether or not improve-

ments are found when making new solutions. The notion
of improvement that we use for the multi–objective case is
a straightforward extension of the single–objective case: an
improvement is obtained for subpopulation i if any new so-
lution in subpopulation i dominates any elitist solution.

Because we are dealing with continuous objectives, some
undesirable convergence properties can be expected with
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AVS. Without a technique such as ε–dominance archiving,
true convergence to the Pareto–optimal front may not oc-
cur [17]. As soon as selection based on diversity is required
to prune superfluous rank–0 solutions, it is possible that
over multiple generations solutions end up in the population
that are dominated by solutions that were pruned earlier.
Hence, maintaining the best solutions of the current genera-
tion doesn’t lead to true elitism. This also happens with the
selection method employed here. Improvements thus keep
happening, even when no actual improvement is made in
terms of convergence toward the Pareto–optimal front. For
AVS this means that the variance is scaled up even in the
convergence phase, which worsens the oscillatory behavior.

To overcome this, we propose to maintain an external,
elitist, archive that is updated in a fashion similar to ε–
dominance [17]. This archive is only used to have a better
notion of improvement. The archive consists of all the best
solutions seen so far. Because the objectives are continuous,
there are usually infinitely many non–dominated solutions
possible. To prevent the archive from growing to an ex-
treme size, the search space is discretized into hypercubes
by discretizing each objective separately. Only one solution
per hypercube is allowed to be in the archive. Once the
offspring are generated, they are compared to the solutions
in the archive. If the offspring is dominated by any archive
solution, it is not entered into the archive. If the offspring is
not dominated, it is added to the archive if and only if the
hypercube that it resides in does not already have a repre-
sentative solution in the archive. Finally, when a new solu-
tion is entered into the archive, all solutions in the archive
that are dominated by it, are removed. A new solution now
is said to be an improvement if and only if it is added to the
archive. As the external archive now is truly elitist over all
generations, this definition of improvement does not lead to
additional problematic scalings upon convergence.

4. STANDARD–DEVIATION RATIO (SDR)
TRIGGER

In the AVS scheme, improvements automatically increase
cAVS. Improvements however do not always mean that the
variance needs to be enlarged. This is especially the case if
the mean is near the optimum. In this case, the induced bias
of the normal pdf already leads the EDA to the optimum.

In multi–objective optimization, this problem plays an im-
portant role. Many improvements are made every genera-
tion as the Pareto–front is advanced. Because an improve-
ment can be made anywhere along the front, the probability
of obtaining at least one improvement in a single generation
is much larger than in the single–objective case. Many of
these improvements are however likely to be close to the
means of the distributions along the front. Without SDR,
the variance multipliers will grow very large, making further
advancement much slower. Increasing the variance will then
only slow down convergence, as the EDA is forced to explore
a larger area of the search space unnecessarily.

If improvements mostly take place far away from the mean,
then obviously, the mean needs to shift. As we know that
mean–shift is problematic for maximum–likelihood normal
EDAs, this is a situation in which AVS is called for. If how-
ever most of the improvements are obtained near the mean,
then the EDA with maximum–likelihood parameters already
has a good focus and no further variance enlargement is re-
quired. It is known (see, e.g. [1]) that for any value of the

standard deviation σ, a fixed percentage of the density of
the normal distribution is contained within [µ − cσ, µ + cσ]
where µ is the mean of the normal distribution and c ≥ 0.
Now, let xIMP,i(t) denote the average of improvements in
generation t for subpopulation i. We propose to trigger the
further enlargement of the variance multiplier of subpopula-
tion i in generation t+1 whenever xIMP,i(t) lies further away
from the estimated mean than a single standard deviation,
i.e. outside the ≈ 68% region surrounding the mean. This
amounts to computing the ratio of the distance of xIMP,i(t)
to the mean and the distance of the contour line of one stan-
dard deviation to the mean in the same direction. We call
this ratio the standard–deviation ratio (SDR). Note that this
trigger is independent of the sample range and has a fixed,
predefined notion of being “close” to the mean. The SDR–
AVS–MIDEA is summarized in pseudo–code in Figure 2.

SDR–AVS–MIDEA

1 Generate n (random) solutions
2 Evaluate the objectives of all solutions
3 Choose k far–apart leaders with the nearest–neighbour heuristic
4 Repeat until all solutions are assigned

4.1 For i ∈ {0, 1, . . . , k − 1}
4.1.1 Assign to subpopulation i the nearest solution

5 cAVS,i ← 1, i ∈ {0, 1, . . . , k − 1}
6 Iterate until termination

6.1 Select the best ⌊τn⌋ solutions from all subpopulations
6.2 Assign selected solutions back to subpopulations of origin
6.3 Estimate a normal distribution for each subpopulation
6.4 Scale the covariance matrices, i.e. Σi ← cAVS,iΣi

6.5 For each subpopulation i with 0 selected solutions
6.5.1 Copy distribution parameters from a randomly

chosen subpopulation with > 1 selected
solutions and reset cAVS,i ← 1

6.6 nIMP,i ← 0, xIMP,i ← (0, 0, . . . , 0), i ∈ {0, 1, . . . , k − 1}
6.7 i ← 0
6.8 Repeat n − ⌊τn⌋ times

6.8.1 If subpopulation i not yet full
6.8.1.1 Generate new solution o from distribution i
6.8.1.2 Evaluate the objectives of solution o

6.8.2 Assign o to its nearest, non–full, subpopulation
6.8.3 If o is an improvement

6.8.3.1 nIMP,nearest ← nIMP,nearest + 1
6.8.3.2 xIMP,nearest ← xIMP,nearest + o

6.8.4 i ← (i + 1) mod k
6.9 For each subpopulation i ∈ {0, 1, . . . , k − 1}

6.9.1 If nIMP,i > 0
6.9.1.1 xIMP,i ← xIMP,i/nIMP,i

6.9.1.2 Compute SDR from xIMP,i

6.9.1.3 If SDR > 1
6.9.1.3.1 cAVS,i ← cAVS,iηINC

else
6.9.1.2 cAVS,i ← cAVS,iηDEC

6.9.2 If cAVS,i < 1
6.9.2.1 cAVS,i ← 1

Figure 2: Standard–Deviation Ratio (SDR) trigger-
ing and Adaptive Variance Scaling (AVS) in the
MIDEA. Gray lines are SDR–only.

5. EXPERIMENTS
5.1 Setup
5.1.1 Benchmark problems

We used the well–known problems ECi, i ∈ {1, 2, 3}. For
specific details regarding the difficulty of these problems we
refer the interested reader to the literature [7, 26]. Their def-
initions are presented in Table 1. We have taken two more
problems from more recent literature on numerical multi–
objective optimization [3]. These problems are labeled BDi,
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i ∈ {1, 2}. These problems were introduced to remedy a
shortcoming in the range of problem–difficulties presented
by the ECi problems. Both problems make use of Rosen-
brock’s function. Premature convergence on this function is
likely without proper induction of the structure of the search
space. In the single–objective case for instance, EDAs based
on a single maximum–likelihood normal distribution cannot
optimize Rosenbrock’s function efficiently, especially as the
dimensionality of the problem increases. Function BD2 is
harder than BD1 in the sense that the objective functions
overlap in all variables instead of only in the first one. Fi-
nally, we have scaled the objectives of BD2 to ensure that
the optimum of all problems is in approximately the same
range. By doing so, using the same value to reach for the
DPF →S indicator on all problems corresponds to a similar
required front–quality on all problems.

None of the problems in our test–suite have locally op-
timal fronts. This allows us to analyze more clearly the
convergence properties of the MOEDAs at hand.

Name Objectives Domain

BD1

f0 = x0

f1 = 1 − x0 + γ

γ =
Pl−2

i=1

`

100(xi+1 − x2
i )

2 + (1 − xi)
2)

´

[0; 1]×

[−5.12; 5.12]9

(l = 10)

BD
s

2

f0 = 1

l

Pl−1

i=0
x2

i

f1 = 1

l−1

Pl−2

i=0

`

100(xi+1 − x2
i )

2 + (1 − xi)
2)

´

[−5.12, 5.12]10

(l = 10)

EC 1

f0 = x0, f1 = γ
“

1 −
p

f0/γ
”

γ = 1 + 9
“

Pl−1

i=1
xi/(l − 1)

”

[0, 1]30

(l = 30)

EC 2

f0 = x0, f1 = γ
`

1 − (f0/γ)2
´

γ = 1 + 9
“

Pl−1

i=1
xi/(l − 1)

”

[0, 1]30

(l = 30)

EC 3

f0 = x0

f1 = γ
“

1 −
p

f0/γ − (f0/γ)sin(10πf0)
”

γ = 1 + 9
“

Pl−1

i=1
xi/(l − 1)

”

[0, 1]30

(l = 30)

Table 1: The benchmark problems used for testing.

5.2 Dominance and continuous objectives
Dominance, i.e. whether solution x

0 is better than solu-
tion x

1, is defined as (minimization):

x
0 ≻ x

1 ⇔
`

∀i : fi(x
0) ≤ fi(x

1)
´

∧
`

∃i : fi(x
0) < fi(x

1)
´

(2)

Directly using equation 2 in the selection operator may
however lead to unwanted behavior, especially in the case
of continuous objectives. There may for instance be many
solutions that are extremely close to each other in objective
i without any solution dominating another solution. Espe-
cially if the problem exhibits structure that makes such a
situation likely (because for instance there is a higher den-
sity around a certain value for objective i), these structures
may get focused on by the optimizer. In terms of dominance,
there is no distinguishing between keeping solutions farther
apart or having them all at a close distance. This is all the
more likely to happen if (double–precision) real values are
used instead of a discretization of the search space.

To prevent this problem from occurring, we slightly change
the dominance criterion. If for any objective i, fi(x

0) and

fi(x
1) are closer to each other than some threshold θdistance ,

i.e. |fi(x
0) − fi(x

1)| < θdistance , that objective is dropped
from the dominance relation. This means that from all solu-
tions nearer to each other than θdistance in objective i, the
solution that dominates in the other objectives, is the best.

This is quite similar to the concept of ε–dominance [17].
However, this specific remedy is only meant to prevent un-
wanted behavior due to a real–valued representation and a
real–valued search space and not to optimize convergence.

5.3 General algorithmic setup
For selection we set τ to 0.3, conforming to earlier work [3,

6] and the rule–of–thumb for FDA [20]. For AVS, we set
ηDEC = 0.9 and cAVS–MAX = 10.0, conforming to the ex-
isting literature [11]. We further set θdistance = 10−5 and
the discretization of the objectives for the external archive
to 10−3. These values are small enough to prevent the un-
wanted dominance behavior as mentioned in Section 5.2 but
also still allow many more rank–0 solutions to exist than the
number of solutions we will have in our population for test-
ing. All results are averaged over 100 independent runs.

If the variables move outside their bounded ranges, some
objective values can become non–existent. It is therefore im-
portant to keep the variables within their ranges. A simple
repair mechanism that changes a variable to its boundary
value if it has exceeded this boundary value gives artifacts
that may lead to false conclusions about the performance of
the tested MOEDAs. We have therefore adapted the sam-
pling procedure to reject all solutions that are out of bounds.

5.3.1 Measuring performance
Performance is measured using the non–dominated solu-

tions in the population upon termination. We call such a
subset an approximation set and denote it by S. A perfor-
mance indicator is a function of approximation sets S and
returns a real value that indicates how good S is in some
aspect. More detailed information regarding the importance
of using good performance indicators for evaluation may be
found in the literature [5, 15, 27].

Here we use a performance indicator, denoted DPF →S ,
that uses knowledge of the Pareto–optimal front [5]. Now,
it can be shown that a single–objective indicator is not able
to capture properly whether one approximation set is truly
better than another [27]. However, because here the Pareto–
optimal front is used to compare the approximation set with
instead of another approximation set, optimality can be de-
fined well using a single–objective indicator. This makes the
DPF →S performance indicator a good, valid indicator [5].
The distance d(x0, x1) between x

0 and x
1 is the Euclidean

distance between the objective values f(x0) and f(x1). The
DPF →S indicator computes the average of the distance to
the closest solution in an approximation set S over all solu-
tions in the Pareto–optimal set PS . A smaller value for this
performance indicator is preferable and a value of 0 is ob-
tained if and only if the approximation set and the Pareto–
optimal front are identical. This indicator describes how well
the Pareto–optimal front is covered and thereby represents
an intuitive trade–off between diversity and proximity (i.e.
closeness to the Pareto–optimal front). Even if all points
in the approximation set are on the Pareto–optimal front
the indicator is not minimized unless the solutions in the
approximation set are spread out perfectly.

Because the Pareto–optimal front may be continuous, a
line integration over the Pareto front is required in the def-
inition of the performance indicator. In a practical setting,
it is easier to compute a uniformly sampled set of many so-
lutions along the Pareto–optimal front and to use this dis-
cretized representation of PF instead. We have used this
approach with 5000 uniformly sampled points:
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DPF →S(S) =
1

|PS |

X

x1∈PS

min
x0∈S

{d(x0, x1)} (3)

5.4 Results
Figure 3 shows convergence graphs of the DPF →S indica-

tor for all problems and all MOEDAs with a population size
of 500 in different subpopulation configurations. A maxi-
mum of 106 evaluations was used where one evaluation in-
volves evaluating both objectives. In this paper, we do not
determine the minimally required resources (i.e. number of
clusters and minimally required subpopulation size) because
we focus on analyzing convergence properties.

On the relatively simple ECi problems MIDEA alone out-
performs its SDR–AVS and AVS counterparts if the subpop-
ulation sizes are large enough. The reason for this is that if
the subpopulations are large enough, variance scaling is not
needed and hence only slows down convergence. Still, the
addition of AVS allows the EDA to solve more problems reli-
ably. Convergence on the BDi problems is much better with
AVS. If in addition SDR is used, faster convergence is ob-
tained than when AVS is used alone for almost all problems
and all subpopulation configurations.

Success rates can be determined as the percentage of times
a MOEDA was able to reach a certain DPF →S value. In Ta-
ble 2 all success rates are presented for DPF →S ≤ 0.01. For
the problems in our test–suite, given the ranges of the ob-
jectives for the Pareto–optimal front configurations, a value
of 0.01 for the DPF →S indicator corresponds to fronts that
are quite close to the Pareto–optimal front. Examples of
fronts with a DPF →S value of 0.01 are shown in Figure 4.

Table 2 confirms that the use of AVS results in better con-
vergence. With 10 clusters of size 50, AVS–MIDEA obtains
a success rate of 100%. Using multiple clusters indeed sub-
stantially helps to obtain better results. Moreover, smaller
subpopulation sizes can be used with AVS. The required
increase in variance to converge to the optimum no longer
needs to come from a larger set of solutions to estimate the
distribution from because the variance is artificially kept
larger. This is in agreement with earlier, single–objective,
results [11]. The only reason why AVS–MIDEA fails to reach
the required DPF →S value for less clusters and a larger sub-
population size is that convergence is slower with AVS. How-
ever, without AVS, not all problems can be solved as can be
seen from the results on problem BD2.

MOEDA Clusters BD1 BD2 EC1 EC2 EC3

MIDEA 2 × 250 0 0 100 100 100
AVS–MIDEA 2 × 250 100 0 0 14 0
SDR–AVS–MIDEA 2 × 250 100 0 100 69 0
MIDEA 5 × 100 33 0 100 100 0
AVS–MIDEA 5 × 100 100 100 0 28 28
SDR–AVS–MIDEA 5 × 100 100 100 100 100 100
MIDEA 10 × 50 0 0 0 0 0
AVS–MIDEA 10 × 50 100 100 100 100 100
SDR–AVS–MIDEA 10 × 50 100 100 100 100 76

Table 2: Success rates, i.e. the percentage of times
a MIDEA variants obtained DPF →S indicator ≤ 0.01.

From Table 2 it can be seen that the addition of SDR
improves the results of AVS. All problems can be solved re-
liably within the limit of the number of allowed evaluations,
even for a configuration of larger subpopulation sizes of 100
divided over 5 subpopulations due to faster, but still reli-
able, convergence as can be seen from Figure 3. The results
become slightly worse however if the subpopulation size be-
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Figure 4: For all problems: the default front and an
approximation set with a DPF →S indicator value of
0.01 obtained by SDR–AVS–MIDEA with a popula-
tion size of 500 (5 clusters of size 100).

comes smaller (i.e. for 10 clusters of size 50 problem EC3

cannot be solved in all 100 runs). Variance scaling is re-
quired when the subpopulation size becomes this small. As
SDR reduces variance scaling the minimally required popu-
lation size is slightly larger than when AVS is used without
SDR. If the population size is large enough however, more
efficient convergence is obtained by SDR–AVS–MIDEA than
by AVS–MIDEA, while still being able to solve all problems,
something that MIDEA alone, i.e. without AVS, cannot do.

We finally note that the convergence results on BD1 sug-
gest that this problem can be solved without AVS although
BD1 contains Rosenbrock’s function, which cannot be solved
without AVS in the single–objective case. The reason for
this lies in the difference between multi– and single–objective
optimization. Because multiple non–dominated solutions
are maintained along the front, the variance of the nor-
mal distributions is automatically larger. This increased
variance allows the EDA to converge, albeit slowly, to the
Pareto–optimal front. For this problem, this variance–increa-
sing side–effect helps in finding the optimal front. This is
however not always the case as was already hinted at in the
introduction. The convergence behavior on problem BD2

shows that use of multiple clusters does not increase the
variance in the right direction and optimization fails.
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Figure 3: Convergence of all MIDEA variants in various subpopulation configurations (k × nsubpop) on all
problems. Horizontal axis: number of evaluations (both objectives per evaluation). Vertical axis: DPF →S .
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6. CONCLUSIONS
We have investigated a principled approach to enlarging

the class of problems that continuous MOEDAs can solve
reliably. This approach is the use of adaptive variance scal-
ing (AVS). In AVS, the variance of the estimated probability
distribution can be enlarged beyond its maximum–likelihood
estimate to prevent premature convergence. Because it is
known that using spatially separated clusters helps multi–
objective optimization, we have proposed a means to main-
tain spatially separated clusters throughout a run to be able
to assign a separate AVS mechanism to each cluster.

Although more problems can be solved reliably with the
addition of AVS, the overall convergence speed is reduced.
We added a trigger, called standard–deviation ratio (SDR)
that discriminates between improvements made close to the
mean and improvements made far away from the mean. If
improvements are made close to the mean, the variance is
not scaled up any further. This trigger improves convergence
speed while still allowing all problems to be solved.

Our results indicate that the addition of AVS and SDR to
the MIDEA result in improved optimization behavior. From
our results we cannot yet formulate guidelines for setting the
parameters of the SDR–AVS–MIDEA. A scalability study
that reveals the minimally required number of clusters and
subpopulation sizes is therefore important future research.

Overall, we conclude that adaptive variance scaling is an
important and useful tool for designing more efficient multi–
objective estimation–of–distribution algorithms.
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