
Addressing Sampling Errors and Diversity Loss in UMDA

Jürgen Branke
Institute AIFB

University of Karlsruhe
76128 Karlsruhe, Germany

branke@aifb.uni-
karlsruhe.de

Clemens Lode
Institute AIFB

University of Karlsruhe
Karlsruhe, Germany
clemens@lode.de

Jonathan L. Shapiro
School of Computer Science

University of Manchester
Manchester, M13 9PL UK

Jonathan.Shapiro
@manchester.ac.uk

ABSTRACT
Estimation of distribution algorithms replace the typical
crossover and mutation operators by constructing a prob-
abilistic model and generating offspring according to this
model. In previous studies, it has been shown that this
generally leads to diversity loss due to sampling errors. In
this paper, for the case of the simple Univariate Marginal
Distribution Algorithm (UMDA), we propose and test sev-
eral methods for counteracting diversity loss. The diversity
loss can come in two phases: sampling from the probabil-
ity model (offspring generation) and selection. We show
that it is possible to completely remove the sampling error
during offspring generation. Furthermore, we examine sev-
eral plausible model construction variants which counteract
diversity loss during selection and demonstrate that these
update rules work better than the standard update on a
variety of simple test problems.

Categories and Subject Descriptors
I2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms
Algorithms

Keywords
UMDA, variance loss, sampling error

1. INTRODUCTION
Estimation of Distribution Algorithms (EDAs) are search

algorithms which use probability models instead of popula-
tions to search for solutions of a problem. A population is
generated by sampling from the current probability model
and selection is applied to this population. The selected
population is then used to generate the probability model
for the next generation, using methods developed by the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

statistical machine learning community to build probability
models from data. A range of EDAs have been proposed and
developed, both for continuous and discrete search spaces,
and a number of successful applications have been reported.
For reviews, see the book [6] or the review article [9].

One known problem of EDAs is that they may suffer from
“premature convergence”. As diversity is lost from the prob-
ability model, it will not be restored. This was first shown
in [4, 10] for PBIL, and has been shown to hold generally
for EDAs [12]. The effect is analogous to genetic drift1 for
ordinary evolutionary algorithms, and it is most apparent
when operating on a flat fitness landscape, as the algorithm
quickly converges to a single solution.

The variance loss happens at two stages of the EDA: when
the population is generated by sampling from the probability
distribution, and when selection is applied to this population
to generate the probability model for the next generation. In
this paper, we propose a number of ways to counteract this
variance loss for the example of the Univariate Marginal Dis-
tribution Algorithm (UMDA), which is a typical yet simple
EDA. However, we believe that similar ideas can be applied
also to more complex EDAs.

As we show, the variance loss in the offspring generation
phase can be easily removed. Counteracting the variance
loss due to selection is more difficult, and we propose and
empirically compare several approaches.

The paper is structured as follows. In Section 2 we give
a short introduction to UMDA and briefly recall the main
results on variance loss. Section 3 deals with removing the
variance loss from the offspring generation phase, while dif-
ferent alternatives to reduce the variance loss in the selec-
tion phase are discussed in Section 4. The different proposed
variants are empirically compared in Section 5. The paper
concludes with a summary and some ideas for future work.

2. UMDA
The Univariate Marginal Distribution Algorithm (UMDA)

[8] is an EDA which acts on discrete variables and treats all
variables as independent. For simplicity, we consider binary
strings of length L. The probability model treats each com-
ponent of the string independently. The parameters of the
model are the probabilities that each component takes the
value 1, denoted,

γi ≡ P (xi = 1). (1)

At each iteration, N strings will be sampled. The ith com-

1In population genetics, the term drift refers to the loss of
genetic diversity due to finite population sampling

508



ponent of the µth string is denoted xµ
i . Thus, the probability

of generating a string xµ can be written

P (xµ) =

L
Y

i=1

[γix
µ
i + (1− γi) (1− xµ

i )] , (2)

and the probability of producing a population of N strings
is just the product of Equation (2) over µ.

Truncation selection is typically used although any selec-
tion operator can be utilized; the selected population con-
sists of a fraction f of the best fitnesses in the population
(e.g. f = 0.5). The parameters of the new model are given
by the frequencies of 1’s at each site in the selected popula-
tion.

γi ←
1

(fN)

X

µ∈Ds

xµ
i , (3)

where Ds is the data from the selected population. This
choice of parameters maximizes the likelihood of the selected
data. Algorithm 1 shows the algorithm.

Algorithm 1 Simple UMDA algorithm

Set γi ← 1/2 for all i = 1 . . . L;
repeat

Sample N strings according to Equation (2) to make a
population D.
Generate a new population Ds from D by selecting the
fN fittest strings.
for i = 1 to L do

γi ← 1

(fN)

X

x
µ∈Ds

xµ
i , (4)

end for
until Stopping criterion met

As has been shown in [11, 12], EDAs, and UMDA in
particular, suffer from a variance loss over generations. In
brief, instead of performing an unbiased search, they tend
to search in regions of the search space where they have
searched before. To see why this is, consider what happens
when the algorithm is run on a flat landscape where all the
states are equally good and selection has no effect on the
statistics of the population. Obviously, the expected mean
of any property of the sampled population would be the
mean of the probability model. However, the variance of
the sampled population will be less than that of the prob-
ability model. It is very well known that the variance of a
sample of size N has a expected value of size σ2(1 − 1/N)
where σ2 is the variance in the parent distribution. Most
EDAs do not compensate for this; when the new probability
model is produced, it attempts to model the new popula-
tion and therefore has a reduced variance. When this is
iterated repeatedly, the variance of the sampled population
gets smaller and smaller and decays to zero. The probabil-
ity model evolves to one which can only generate identical
configurations.

The diversity loss in UMDA occurs in two steps:

1. When sampling from the model distribution to gener-
ate the N offspring solutions. This happens indepen-
dently of the optimization problem at hand and is due
to the well-known fact that a sampled population has

a variance smaller than that of the distribution from
which it was drawn.

2. When performing selection on the N sampled solu-
tions. If selection is random, e.g. because there are
several individuals with equivalent fitness, or because
a randomized selection method is used, then this is
just equivalent to further sampling. In general, some
diversity loss is due to the population focusing on fit-
ter solutions, and some is random, but it is difficult to
analyze and is problem dependent. We will use model
generation rules to mitigate against this loss.

For the dynamics on a flat landscape, it was shown in [12]
that if the diversity at a single bit position in a population
of size N is σ2 (as measured by the variance), then after
removing a fraction (1− f) of the population by truncation
selection, constructing a model and generating a new popu-

lation of size N , the variance is reduced to σ2
“

1− 1
fN

”

. In

other words, the total variance loss within one iteration on
a flat landscape corresponds to the factor

Lt =

„

1− 1

fN

«

. (5)

This is distributed on the two sources of sampling error
as follows: Because we know that sampling a population of
size N from a distribution reduces the variance by a factor
(1− 1

N
), the variance loss of generating N offspring involves

a variance loss of

Lg =

„

1− 1

N

«

(6)

The selection step thus is responsible for the remaining vari-
ance loss,

Ls =
fN − 1

fN − f
. (7)

In standard EAs, the sampling error in the case of gener-
ational reproduction is usually reduced by stochastic uni-
versal sampling [1]. This idea has also been transferred
to steady-state EAs in [3]. Of course, standard EAs usu-
ally have a mutation operator which explicitly changes the
statistics of the current population towards a more random-
ized one. Many EDAs lack this, attempting to faithfully
reproduce the statistics of the current population in the con-
structed probability model.

The importance of diversity loss in EDAs was probably
first investigated by Gonzalez and collaborators [5, 4]. The
authors showed that in PBIL, a independent variable EDA
related to UMDA, once the probability at a particular site
got sufficiently close to zero or one, the probability that the
diversity would be restored at that site can be arbitrarily
close to zero. This could be avoided if the rate of updat-
ing the probability model was sufficiently slow, so that the
diversity loss is slower than the search rate. However, how
slow this rate must be is very problem-dependent, as was
shown in [10].

Several methods have been used to reduce diversity loss.
Although the early authors did not explicitly mention diver-
sity loss, early EDAs use selection mechanisms which update
the probability model very slowly. For example, in an early
study of an EDA called MIMIC [2], statistics about the pop-
ulations visited were maintained in a matrix and this matrix

509



was used to build the probability model. The current pop-
ulation had a (roughly) 1% effect on this matrix.

For UMDA, the rate of unintended diversity loss depends
on the population size, and is reduced with increasing pop-
ulation size. The appropriate population size is again prob-
lem dependent with an exponential (in the string length)
dynamic range [11]. A wide range of EDAs, including those
which learn structural relationships between variables, be-
have like UMDA in this regard [12].

An explicit approach to control diversity loss in EDAs
was introduced by Mahnig and Mühlenbein [7]. They used
Laplace’s method of updating the probability model; a method
which is considered further in Section 4.2 of this paper. This
approach is equivalent to a Bayesian method of updating.
It was shown to have an analogous effects to mutation, and
was deemed “Bayesian mutation”. Like mutation, it is an
operator which when repeatedly applied converges to the
random population.

Another approach is to impose a detailed-balance con-
dition on the probability updates [10, 11]. This approach
is parameter-free and completely removes diversity loss on
a flat landscape and for some problems it is very effective.
However, it makes it difficult to sample the optimum in some
problems. Cross-validation using a second population to test
for diversity loss due to random sampling was employed by
structure modeling in [13], to some effect, but was not ap-
plied in UMDA.

3. REMOVING THE VARIANCE LOSS DUE
TO SAMPLING

The variance loss due to sampling can be easily removed
by ensuring that the generated population has exactly Nγi

individuals with bit i set to ′′1′′. This can be achieved
by simply generating all bits for all the N individuals, and
then randomly permuting the bits amongst the individuals
in each bit position. Also, note that because γi are cal-
culated according to Equation 4, N · γi is always integer,
and the variance loss can be removed completely. Later on,
we will propose alternative model construction rules for γi

which do no longer have this property. In this case, we
suggest to randomly round up or down proportional to the
rounding error. That is, N · γi is rounded up to ⌈Nγi⌉ with
probability Nγi − ⌊Nγi⌋ and rounded down otherwise.

We call the proposed sampling mechanism permutation

sampling. The goal and effect is similar to the goal and
effect of stochastic universal sampling [1] used for parent
selection in generational evolutionary algorithms, namely to
remove sampling errors due to small sample sizes (i.e., a
small population size) as much as possible.

4. REDUCING THE VARIANCE LOSS DUE
TO SELECTION

As discussed in Section 2, the variance loss due to selec-
tion on a flat landscape corresponds to Ls = fN−1

fN−f
. In this

section, we propose a couple of ways to remove the effect of
this variance loss. Note that it is not possible to remove the
variance loss by intelligent sampling, as we have done for
the offspring generation, because we can only select whole
individuals, and the gene positions are thus strongly inter-
dependent.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

γ i’

γi

LC
No correction

Figure 1: Effect of loss correction (LC) on γi, as-
suming N = 10.

4.1 Loss correction
One idea to remove the effect of the expected variance loss

is to bias the model to generate a larger variance. Because
we model binomial distributions, the variance of the prob-
ability model at gene position i is just σ2

i = γi(1− γi). To
counteract the variance loss, we would thus replace γi by a
γ′

i such that the expected variance loss is counterbalanced

γ′
i(1− γ′

i) =
γi(1− γi)

Ls
(8)

As in a binomial distribution the highest variance is obtained
for γi = 0.5 and decreases towards 0 and 1, this basically
corresponds to moving γi closer to 0.5. Equation 8 easily
leads to

γ′

i,1/2 =
1±

p

1− 4(1− γi)γi/Ls

2
(9)

For this to be a valid expression, we require 1 − 4(−γ2
i +

γi)/Ls ≥ 0. This is fulfilled only for γi ≤ 1
2

“

1−
q

1− fN−1
fN−f

”

and γi ≥ 1
2

“

1 +
q

1− fN−1
fN−f

”

, in which case we can use the

above equation to counterbalance the expected variance loss.
For γi within these bounds, a γ′

i = 0.5 would not be suffi-
cient to counterbalance the variance loss, in which case we
simply set γ′

i = 0.5.
Overall, the corrected probability is calculated according

to

γ′
i =

8

>

<

>

:

1−
√

1−4(1−γi)γi/Ls

2
: γi ≤ 1

2

`

1−
√

1−Ls

´

1+
√

1−4(1−γi)γi/Ls

2
: γi ≥ 1

2

`

1 +
√

1−Ls

´

0.5 : otherwise

(10)

Figure 1 demonstrates how γ′
i differs from γi. The correc-

tion depends on the population size, N , and is smaller for
larger population sizes. The strongest effect is for γi close to
0.5, when γ′

i is always moved back to 0.5. At the extremes,
i.e. for γi → 0 and γi → 1, the correction vanishes. This
basically leads to a stronger exploration in the early phase
of the optimization, while allowing to fully converge even-
tually. In the following, we will denote this method as loss
correction, or LC for short.

510



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

γ i’

γi

Laplace, α=0.2
No correction

Figure 2: Effect of Laplace correction on pi, with
N = 10 and α = 0.2.

4.2 Laplace correction
Bayesian statistics usually takes into account a prior dis-

tribution when determining the probability model from ob-
servations. In the absence of any other knowledge, usually
non-informative prior is used. For the binomial distributions
we consider, a commonly used prior is the beta distribution,
which is the conjugate prior for the binomial distribution.
This would be integrated into the model construction phase
by replacing Equation 4 by

γi =

P

x
µ∈Ds

xµ
i + α

fN + 2α
(11)

where α is a parameter which determines the strength of
the influence of the prior. In fact, the beta distribution is
a two-parameter distribution, but we only consider priors
peaked at 1/2.

The effect on γi is depicted in Figure 2 for α = 0.2. As can
be seen, the effect is quite different from the loss correction
described in the previous section. The probabilities are al-
most not influenced near γi = 0.5, but γi is prevented from
converging completely to 0 or 1. This means that UMDA
will never completely converge but keep exploring, similar
to an EA with a minimum mutation probability. While this
certainly improves the exploratory power of the algorithm, it
may dramatically delay the algorithm finding the optimum,
e.g. in OneMax, when the considered string is long, and it
becomes very unlikely to generate an offspring consisting of
all ones as long as γi > ǫ. Furthermore, we know from the
discussion above that the variance loss is at maximum for
γi = 0.5, but the Laplace correction has basically no effect
there.

4.3 Incremental Laplace correction
The motivation for the Laplace correction was actually to

take into account a prior distribution. But except for the ini-
tial population, the population has usually been generated
from a Binomial distribution with γi 6= 0.5. Thus, another
idea would be to use beta distribution peaked at γi from
the last iteration as the prior distribution for the current
generation, instead of always assuming a prior distribution
peaked at 1/2.

More formally, we set

γi(t) =

P

x
µ∈Ds

xµ
i + 2αγi(t− 1)

fN + 2α
(12)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

γ i’

γi

iLaplace, α=2
No correction

Figure 3: Effect of incremental Laplace correction
on γi(t), at the example of γi(t− 1) = 0.25.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

γ i’

γi

BC, β=0.05
No correction

Figure 4: Effect of boundary correction on γi, for
β = 0.05.

This can not be visualized in 2D, as it additionally de-
pends on the previous iteration’s γi, but Figure 3 shows the
plot for γi(t− 1) = 0.25. Basically, the incremental Laplace
method, or iLaplace method for short, discourages large de-
viations from the previous distribution in either direction,
and thus slows down convergence but does not prevent it
completely as with the Laplace correction from the previous
section.

As the beta distribution is a two-parameter family of func-
tions, the constraint that the prior distribution is peaked at
γi(t − 1) can be realized by a line in the parameter space.
Equation 12 is just one way of parameterizing this line. Al-
though any parametrization is equivalent when γi(t − 1) is
known, γi(t−1) is a fluctuating quantity. Equation 12 is the
parametrization which is unchanged on a flat fitness land-
scape when averaged over sampling fluctuations.

4.4 Boundary correction
As has been explained above, the Laplace correction pre-

vents UMDA from completely converging, which has a great
impact on algorithm performance (good and bad, depending
in the considered scenario). Because we wanted to separate
the probability distribution correction effect from the non-
convergence effect, we introduce here the boundary correc-
tion (BC), which does not influence the probability distri-
bution except preventing γi from moving too close to either

511



0 or 1:

γ′
i =

8

<

:

β : γi < β
1− β : γi > 1− β

γi : otherwise
(13)

.
For a visualization, see Figure 4. This method can be eas-

ily combined with the other correction methods, by simply
applying it as a second stage correction.

5. EMPIRICAL EVALUATION
We start our empirical evaluation in the first subsection

with an examination of the effect of removing the sampling
error from the offspring generation phase. Then, in the re-
maining subsections, we will compare the different model up-
date strategies on a number of simple test problems, namely

• Flat landscape: all bit strings have equal fitness values,
and consequently selection is random.

• OneMax: the fitness is the number of ones in the bit
string.

• LeadingOnes: the fitness is the number of leading ones
in the bit string. Compared to OneMax, this leads to
a random drift of the later bit positions in the early
generations, because bit positions after the first zero
have no influence on the fitness.

• NK landscapes allow to set the level of epistasis be-
tween bit positions. The fitness value is a sum of lo-
cal fitness values fi, where fi is a randomly generated
function based on bit position i and the k − 1 clos-
est neighbors. In the tests below, we use L = 50 and
k = 5.

As default values and unless specified otherwise, we use
a population size of N = 20, a fraction of individuals to
select of f = 0.5, and problem size of L = 100, L = 300, and
L = 500 for the flat landscape, OneMax, and LeadingOnes,
respectively. Diversity is measured as average variance over
all bit positions. All results reported below are averaged
over 50 independent runs.

5.1 Removing the sampling error from offspring
generation

The undesired diversity loss due to sampling errors is most
significant on the flat landscape, because selection is purely
random. Figure 5 visualizes the dramatic diversity loss at
the example of a population of size N = 20 and a problem of
size L = 100. According to the dashed line representing the
standard UMDA, the algorithm has basically converged to a
single solution after about 40 iterations. Removing the sam-
pling error for the offspring generation step as proposed in
Section 3 (solid line) can not prevent the complete loss of di-
versity, but at least delays it until after about 40 iterations.
Nevertheless, such a delayed diversity loss can greatly im-
prove performance on problems which provide a fitness gra-
dient. Figure 6 shows the fitness of the best solution found
so far for the OneMax problem, this time with problem size
L = 300. Neither of the two algorithms consistently finds
the optimum, but while the standard UMDA converges on
average to a fitness of 241, using permutation sampling for
the offspring generation pushes this up to about 272.2.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  10  20  30  40  50  60  70  80  90  100

di
ve

rs
ity

generation

Permutation sampling
Random sampling

Figure 5: Diversity loss on a flat landscape, N =
20, L = 100.

 160

 180

 200

 220

 240

 260

 280

 0  10  20  30  40  50  60  70  80  90  100

fit
ne

ss

generation

Permutation sampling
Random sampling

Figure 6: Convergence curves for OneMax, best so-
lution found so far, N = 20, L = 300.

512



 160

 180

 200

 220

 240

 260

 280

 300

 0  10  20  30  40  50  60  70  80  90  100

fit
ne

ss

generation

No correction
BC, β=0.00333333

BC, β=0.01923
Laplace, α=0.033557

Laplace, α=0.2

Figure 7: Comparison of BC and Laplace correction
on a OneMax problem, best solution found so far,
N = 20, L = 300.

Note that the removal of sampling error from the offspring
generation phase does not bias the algorithm in any way but
simply helps it to do what it is supposed to do. Because the
variance loss depends on the population size N , the ben-
efit from permutation sampling will be larger the smaller
the population size, but it should always be beneficial. We
therefore recommend using this method under all circum-
stances, and we use it as default in all subsequent tests to
examine the different model update strategies. That is, the
“No correction” case used for comparison in the following
figures is already using the improved permutation sampling.

5.2 Parameter settings for update strategies
Some of our proposed model update strategies have pa-

rameters, and in this section we discuss how to set them.
The boundary correction (BC) basically corresponds to

a minimal mutation probability in evolutionary algorithms.
And there, for simple problems as the OneMax problem, a
bit mutation rate of 1/L is generally recommended (with L
denoting the string length of the solution). For this reason,
we will set β = 1/L in the experiments reported below unless
stated otherwise. The fact that this is a good parameter
setting was also confirmed in some additional empirical tests
(not shown).

For Laplace correction, we assume that its main effect also
lies in effectively guaranteeing a minimal mutation proba-
bility. Therefore, we set α such that the minimal mutation
probability guaranteed equals 1/L, i.e.

α

fN + 2α
=

1

L
(14)

or

α =
fN

L− 2
(15)

which is essentially also what is recommended in [7]. Fig-
ure 7 shows at the example of a OneMax problem that
BC and Laplace correction with the recommended param-
eter setting indeed perform very similar, and much bet-
ter than the standard approach. For larger parameter val-
ues, both approaches suffer, but Laplace suffers significantly
more than BC.

For iLaplace correction, we have no intuitive parameter
setting, and indeed the optimal parameter setting seems to

 160

 180

 200

 220

 240

 260

 280

 300

 0  10  20  30  40  50  60  70  80  90  100

fit
ne

ss

generation

iLaplace, α=0
iLaplace, α=2
iLaplace, α=4
iLaplace, α=6
iLaplace, α=8

iLaplace, α=10

Figure 8: The effect of parameter α on the it-
erative Laplace correction on a OneMax problem,
N = 20, L = 300.

 0

 5

 10

 15

 20

 25

 30

 0  50  100  150  200  250  300  350  400  450  500

fit
ne

ss

generation

iLaplace, α=0
iLaplace, α=2
iLaplace, α=4
iLaplace, α=6
iLaplace, α=8

iLaplace, α=10

Figure 9: The effect of parameter α on the iterative
Laplace correction on a LeadingOnes problem, N =
20, L = 100.

depend very much on the problem at hand. Figures 8 and 9
depict the convergence of the iLaplace correction for differ-
ent settings of α on the OneMax and LeadingOnes problems,
respectively. While on the OneMax problem, we have a clear
trade-off between convergence speed and final solution qual-
ity (a larger α leads to slower convergence but better final
solutions), on the LeadingOnes problem the slower conver-
gence is almost not noticeable, while there is a clear and
dramatic increase in final solution quality. If combined with
BC, iLaplace yields only a marginal improvement over pure
BC, but delaying convergence significantly. Based on these
observations, we set α = 2 for iLaplace in the following,
unless specified otherwise.

5.3 Comparison of update strategies

5.3.1 Flat landscape
Figure 10 compares the evolution of diversity for the dif-

ferent model update strategies on the flat landscape. Nat-
urally, the BC and Laplace correction methods prevent a
complete diversity loss, and we observe a somewhat higher
convergence level for Laplace than for BC. LC and iLaplace
both fully converge, although slower than with the standard
model update strategy.

The fact that the run with LC converges shows that this

513



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  20  40  60  80  100  120  140  160  180  200

di
ve

rs
ity

generation

No correction
BC, β=0.01

Laplace, α=0.1
iLaplace, α=2

LC

Figure 10: Comparison of the different model up-
date strategies on the flat landscape, N = 20, L = 100.

method is not able to fully compensate the variance loss in
the selection step. One reason is that it can not increase
variance beyond γi = 0.5, another one is that it can only
compensate for the expected loss, but not recover if the loss
happened to be larger due to random fluctuations.

Interestingly, the diversity level is much higher than the
minimum value of γi = β would suggest. Considering p(1−
p) = 0.1 yields p ≈ 0.11, i.e. a lot more bits are mutated
than we anticipated. This indicates that the results about
optimal mutation ratesmight not readily carry over to BC
settings in UMDA.

5.3.2 OneMax
On the OneMax problem, all proposed methods clearly

outperform the standard model update in terms of fitness
obtained, see Figure 11. All methods which provide a min-
imal diversity threshold get very close to the optimum. LC
and LC+BC converge significantly slower than the other
methods. The diversity preservation by the pure LC and
iLaplace strategies is not sufficient to prevent premature
convergence, although they are still better than the stan-
dard method. The fitness convergence is reflected also in
the diversity convergence, see Figure 12.

5.3.3 LeadingOnes
The LeadingOnes problem has large plateaus consisting

of all solutions with the same number of leading ones. This
puts it somewhere between the flat landscape and OneMax,
as it has a unique optimum, but at the same time random se-
lection plays an important role in the plateau regions. Thus,
it is important to maintain sufficient diversity in the latter
bits while the front bits are being optimized. On the other
hand, too much diversity is harmful at the end, as the al-
ready found leading ones are disturbed too much.

Figure 13 depicts the convergence of the different ap-
proaches. The standard update quickly converges to a fit-
ness of only 10 (maximum is 100), which shows that Leadin-
gOnes is a really difficult problem for EDAs. The diversity
preservation of pure LC and iLaplace improve fitness some-
what, but again can not prevent premature convergence.
The clear winners on this problem are the approaches that
maintain a minimum diversity level, i.e. Laplace and all
methods combined with BC. They all reach a fitness level
of about 80, differing in the time they require to find good
solutions. Overall, LC+BC seems to perform best. Further-

 250

 260

 270

 280

 290

 300

 0  20  40  60  80  100  120  140  160  180  200

fit
ne

ss

generation

No correction
BC, β=0.0033

Laplace, α=0.034
iLaplace, α=2

iLaplace + BC, α=2, β=0.0033
LC

LC + BC, β=0.0033

Figure 11: Comparison of the different model up-
date strategies on the OneMax landscape, best fit-
ness found so far, N = 20, L = 300.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  20  40  60  80  100  120

di
ve

rs
ity

generation

No correction
BC, β=0.0033

Laplace, α=0.034
iLaplace, α=2

iLaplace + BC, α=2, β=0.0033
LC

LC + BC, β=0.0033

Figure 12: Comparison of the different model up-
date strategies on the OneMax landscape, N =
20, L = 300.

more, we had set the default parameters based on OneMax.
However, in LeadingOnes, it is important to not disrupt the
leading sequence of ones by too much exploration, thus a
smaller minimal mutation rate is appropriate for this prob-
lem. When setting β = 0.005 and α = 0.05, all the ap-
proaches maintaining a minimum diversity are able to find
the optimal solution with fitness 100 within 1000 iterations
(not shown).

5.3.4 NK landscapes
On the NK landscape, the different model update strate-

gies are compared in Figure 14. As for the previous test
problems, all update strategies proposed in this paper out-
perform the standard approach (solid line). Among the pure
strategies, BC and Laplace perform very well, followed by
LC and then iLaplace. However, the latter two can be com-
bined with BC to ensure minimal mutation rates. While
the combination of iLaplace with BC is still worse than BC
alone, the combination of LC with BC yields the overall best
results, although it converges more slowly.

6. CONCLUSION
Previous studies [4, 10, 12] have shown that the standard

EDA suffers from diversity loss due to sampling errors.

514



 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

fit
ne

ss

generation

No correction
BC, β=0.01

Laplace, α=0.1
iLaplace, α=2

iLaplace + BC, α=2, β=0.01
LC

LC + BC, β=0.01

Figure 13: Comparison of the different model up-
date strategies on the LeadingOnes landscape, best
fitness found so far, N = 20, L = 100.

 600

 620

 640

 660

 680

 700

 720

 740

 0  10  20  30  40  50  60  70  80  90  100

fit
ne

ss

generation

No correction
BC, β=0.01

Laplace, α=0.1
iLaplace, α=2

iLaplace + BC, α=2, β=0.01
LC

LC + BC, β=0.01

Figure 14: Comparison of the different model up-
date strategies on the NK landscape, best fitness
found so far, N = 20, L = 50, k = 5.

In this paper, we have proposed a number of methods to
address this diversity loss.

First, we have suggested an intelligent sampling technique,
called permutation sampling, which is able to completely re-
move the sampling error in the offspring generation phase
of the algorithm. Since this method otherwise leaves the
algorithm unaltered, it should always be preferred to the
standard random offspring generation.

The sampling error due to selection is more difficult to ad-
dress. We have suggested a number of intuitive ways to al-
ter the model update, attempting to correct the anticipated
loss, taking into account a prior distribution, or ensuring a
minimal diversity level. The results in our empirical tests
clearly show that all suggested approaches seem to outper-
form the standard update on all problems, in most cases by
a huge margin. The best model update strategy depends on
the application, but the idea to correct for the expected di-
versity loss in combination with a minimal ensured diversity
level seems to preform best overall.

In the future, we plan to test our ideas more extensively
also on real-world problems, and to extend the suggested
methods to a larger alphabet, other selection mechanisms
than truncation selection, and, more importantly, to more
complex EDAs such as BOA. Finally, it seems very promis-
ing to adapt the proposed methods also on dynamic test
problems, where diversity is particularly important.

7. REFERENCES
[1] J. E. Baker. Reducing bias and inefficiency in the

selection algorithm. In J. Grefenstette, editor,
International Conference on Genetic Algorithms,
pages 14–21. Lawrence Erlbaum Associates, 1987.

[2] S. Baluja and S. Davies. Using optimal
dependency-trees for combinatorial optimization:
Learing the structure of the search space. In
D. Fisher, editor, International Conference on

Machine Learning, pages 30–38, 1997.

[3] J. Branke, M. Cutaia, and H. Dold. Reducing genetic
drift in steady state evolutionary algorithms. In
Wolfgang Banzhaf et al., editors, Genetic and

Evolutionary Computation Conference, pages 68–74.
Morgan Kaufmann, 1999.

[4] C. Gonzalez, J. Lozano, and P. Larrañaga. Analyzing
the population based incremental learning algorithm
by means of discrete dynamical systems. Complex

Systems, 12(4):465–479, 2001.

[5] C. Gonzalez, J. Lozano, and P. Larrañaga. The
convergence behaviour of the PBIL algorithm: a
preliminary approach. In International Conference on

Neural Networks and Genetic Algorithms, pages
228–231, 2001.

[6] P. Larrañaga and J. A. Lozano. Estimation of

Distribution Algorithms, A New Tool for Evolutionary

Computation. Kluwer Academic Publishers, 2002.

[7] T. Mahnig and H. Mühlenbein. Optimal mutation rate
using bayesian priors for estimation of distribution
algorithms. In Stochastic Algorithms: Foundations and

Applications, volume 2264 of LNCS, 2001.

[8] H. Mühlenbein and G. Paaß. From recombination of
genes to the estimation of distributions i: Binary
parameters. In Parallel Problem Solving from Nature,
pages 178–187, 1999.

[9] M. Pelikan, D. E. Goldberg, and F. Lobo. A survey of
optimization by building and using probabilistic
models. Computational Optimization and

Applications, 21(1):5–20, 2002.

[10] J. L. Shapiro. Scaling of probability-based
optimization algorithms. In Klaus Obermayer, editor,
Advances in Neural Information Processing Systems

15, pages 399–406. MIT Press, 2003.

[11] J. L. Shapiro. The detailed balance principle in
estimation of distribution algorhithm. Evolutionary

Computation, 13(1):99–124, 2005.

[12] J. L. Shapiro. Diversity loss in general estimation of
distribution algorithms. In Parallel Problem Solving

from Nature, volume 4193 of LNCS, pages 92–101.
Springer, 2006.

[13] H. Wu and J. L. Shapiro. Does overfitting affect
performance in estimation of distribution algorithms.
In Genetic and Evolutionary Computation Conference,
pages 433–434. ACM, 2006.

515


