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ABSTRACT
Considering the available body of literature on continuous
EDAs, one must state that many important questions are
still unanswered, e.g.: How do continuous EDAs really work,
and how can we increase their efficiency further? The first
question must be answered on the basis of formal mod-
els, but despite some recent results, the majority of con-
tributions to the field is experimental. The second question
should be answered by exploiting the insights that have been
gained from formal models. We contribute to the theoreti-
cal literature on continuous EDAs by focussing on a simple,
yet important, question: How should the variances used to
sample offspring from change over an EDA run? To answer
this question, the convergence process is separated into three
phases and it is shown that for each phase, a preferable strat-
egy exists for setting the variances. It is highly likely that
the use of variances that have been estimated with max-
imum likelihood is not optimal. Thus, variance modifica-
tion policies are not just a nice add-on. In the light of our
findings, they become an integral component of continuous
EDAs, and they should consider the specific requirements of
all phases of the optimization process.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—Gradient
methods; I.2 [Artificial Intelligence]: Problem Solving,
Control Methods, and Search

General Terms
Algorithms, Theory

Keywords
Evolutionary Algorithms, Estimation of Distribution Algo-
rithms, Numerical Optimization, Predictive Models
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1. INTRODUCTION
Since the introduction of continuous EDAs for numeri-

cal optimization, this field has made significant progress,
see [2] for a review of the state of the art. Current imple-
mentations solve complicated, non-linear problems reliably
and efficiently. We note that over the years, the focus of
published work has changed with respect to at least the fol-
lowing issues. 1) In first-stage EDAs the correct choice of
the structure of probabilistic models was regarded as cru-
cial for efficient optimization. This was largely motivated
through the lessons that had been learned from the analy-
sis of the dynamics and design of discrete EDAs. The re-
sults obtained in the continuous domain were by far not
comparable to that of their discrete counterparts and these
algorithms sometimes failed on problems where much sim-
pler algorithms, even hill-climbers, did not fail. More recent
results suggest that a sensible adaption of the parameters
of the model (specifically the variances) boosts the perfor-
mance of continuous EDAs, see [11], [12], and [4]. Simple
adaptive variance scaling policies such as the one proposed
in [4] have lead to a performance that is comparable to that
of state-of-the-art Evolution Strategies. 2) While most of
the initial work was experimental, researchers have started
to model the dynamics of continuous EDAs, see [3], [5], and
[13]. In addition to being interesting itself, formal analysis
provides guidelines for design decisions.

The contributions of this paper are in line with these
trends. We present a formal study of the hill-climbing be-
havior of continuous EDAs on the sphere function. The
EDA is initialized with a mean that is far from the opti-
mal solution and should minimize the sphere function to a
pre-defined value to reach. The convex region that holds so-
lutions that have a fitness below this value to reach is called
the optimal region. The convergence process is artificially
decomposed into three phases, see figure 1. (1) The mean
is far from the optimal region and optimal solutions have a
negligible chance of being sampled. (2) The mean is close
to, but still outside, the optimal region and significant pro-
portions of the sampled candidate solutions are in the op-
timal region. (3) The mean is positioned on the optimum.
For phase (1) we recapitulate work that has been developed
elsewhere and tie relations to the necessity of variance scal-
ing. We show that once an EDA is in phase (2), a unique,
optimal sampling variance exists, that can be obtained in
a closed form. The optimal sampling variance maximizes
the proportion of solutions that are optimal. For conver-
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gence in phase (3) we derive a lower bound on the number
of generations that is required until the optimal solution is
sampled with, e.g., 99.5% chance. Such runtime analysis is
available for, e.g., Evolution Strategies in [8] and [7], but is
still missing for continuous EDAs.

The results are discussed with a special focus on how they
influence design guidelines for continuous EDAs. It should
be noted, that this article presents results that are obtained
under limiting assumptions such as the use of normal dis-
tributions and quadratic functions. Relaxations of these as-
sumptions and generalizations of results to, e.g., generally
unimodal convex functions and more general classes of dis-
tributions will be rewarding. This paper discusses a basic
approach that might serve as a starting point for future anal-
ysis.

2. NOTATION, ALGORITHM, AND
CONVERGENCE PHASES

Numerous symbols are used throughout this paper, all of
which are explained in Table 1. The subscript t denotes the
state of a variable in generation t. As an example, a variance
in generation t is denoted by σ2

t .

Symbol Description

χ2
α,n (1 − α)-quantile of the chi-square

distribution with n degrees of free-
dom

μ Mean
n Dimensionality of the problem
φ Probability density function (pdf)

of the standard normal distribution
Φ Cumulated density function (cdf) of

the standard normal distribution
Φ−1 Inverse of the standard normal cdf
Φμ,σ2 Cumulated density function of the

normal distribution with mean μ
and variance σ2

σ Standard deviation
σ2 Variance
Σ Covariance matrix of order (n × n)
t Generation counter
τ Percentage of selected solutions
v A target fitness function value, the

value to reach
x = (x1, x2, . . . , xn) A single solution

Table 1: List of symbols.

This paper analyzes a simple continuous EDA. The prob-
abilistic model used is an n-dimensional normal distribu-
tion. New solutions are obtained by randomly sampling
from it. In contrast to available practical implementations,
the first population is not generated uniformly within a fea-
sible region. Instead, the first population is a random sam-
ple from a n-dimensional normal distribution with an initial
mean vector μ0 and an initial covariance matrix Σ0. All
candidate solutions are evaluated with the sphere function.
The sphere function assigns a single, n−dimensional solu-
tion x = (x1, x2, . . . , xn) a fitness

f(x) =
nX

i=1

x2
i .

The best τ · 100% individuals are selected. From those, the
mean vector and the covariance matrix are estimated using
the known maximum likelihood estimators. The offspring
replace the entire population, and the iterations starts over.
Throughout the formal analysis, an infinite population size
is assumed.

A value to reach is a real value v that denotes the maximal
fitness that a solution may have to be considered optimal.
The region that contains all optimal solutions is referred to
as the optimal region.

Further, we refer to the estimated variance as the
maximum-likelihood variance (ML-variance). A variance
that is used to sample offspring from is referred to as a
sampling variance. Note that in the above simple EDA,
the ML-variance equals to the sampling variance. If the
ML-variance is modified before sampling, e.g., because it is
scaled, the sampling variance can be different.

We decompose the convergence process into three phases.
It is assumed, that the EDA is initialized with a mean that
is far from the optimal region. Phase (1) approximates the
far from optimum dynamics. In this phase, the mean is far
from the optimal region, and no significant portion of the
sampled solutions is optimal, i.e., because the optimal region
lies outside the 99.5% prediction ellipsoid of the normal dis-
tribution that is sampled from. As optimization progresses,
the mean will shift towards the optimal region. In phase (2),
the mean is still outside the optimal region, but a significant
portion of offspring is optimal. In phase (3), the mean does
not only lie inside the optimal region, but the EDA has
successfully located the optimum as well. Not all sampled
solutions must be optimal, because the variance might be
large. Ideally, selection will reduce the variance far enough
to sample solutions that are optimal with high probability.

The results for phase (1) and (2) are not exclusively valid
for the sphere function only. Phase (1) approximates far
from optimum search behavior in a region of the search space
that has a slope-like function. Phase (2) generalizes to a
situation in which solutions inside a convex region of interest
are sampled with significant chance.

3. FAR FROM OPTIMUM DYNAMICS
In the following, we assume that the mean of the nor-

mal distribution is positioned far away from the optimum
(phase (1)). “Far away” means that by sampling candidate
solutions from the density, the chance of obtaining solutions
that lie in the optimal region is virtually 0. Although the
normal distribution is defined from −∞ to +∞ in arbitrary
dimensionality, the probability of sampling solutions outside
its 99.5% ellipsoid is negligible. This situation is modelled in
[3] and [5]. Assume that a linear function f(x) = x is maxi-
mized and x is unconstrained. Starting with an initial mean
μ0 and standard deviation σ0, the simple EDA described in
Section 2 is run under the assumption of an infinite pop-
ulation size. Since no optimal solution exists, no sensible
search strategy will ever stop to enlarge x. [5] show that
the distance that the mean can move is limited due to an
exponentially fast decrease of the sampling variance. After
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Phase (1) Phase (2) Phase (3)

Sphere fct.

Sphere fct.

Sphere fct.

Normal pdf

Normal pdf

Normal pdf
s

s

Figure 1: Decomposition of the overall process into three artificial phases. s denotes the success ratio, that
is the mass of the normal pdf inside the optimal region.

an infinite number of generations, the mean μ∞ will be

μ∞ = μ0 + σ0 · d(τ ) · 1

1 −pc(τ )
, with

d(τ ) =
φ
`
Φ−1(τ )

´
τ

, and

c(τ ) = 1 +
Φ−1(1 − τ )φ

`
Φ−1(τ )

´
τ

−
 

φ
`
Φ−1(τ )

´
τ

!2

.

The constants c(τ ) and d(τ ) can be computed numerically.
This result explained premature convergence of EDA on
standard test problems as observed in [1] and [9]. Con-
sequently, variance adaption schemes were proposed in [11],
[12] and [4]. All of these approaches modify the variance ob-
tained from the known maximum likelihood estimators. The
resulting sampling variance is used to generate offspring.
[11] use an adaption scheme based on the 1

5
−th success-rule

of Evolution Strategies. [13] suggest to amplify the variance
by a constant factor. [4] propose a policy that bounds the
variance from below and above. Variance enlargement is
triggered, if the best solution found has improved. In order
to suppress unnecessary scaling if the mean is located at the
optimum (see phase (3)), the correlation between density
and fitness of selected individuals is exploited.

An isolated analysis of phase (1) will come to the conclu-
sion, that in order to prevent from premature convergence
and to pass slope-like regions of the search space as fast as
possible, the ML-variances are too small. They need to be
enlarged towards a sampling-variance of maximum size.

4. OPTIMAL SAMPLING VARIANCES
According to the lessons learned from the last section,

variance enlargement is crucial if a continuous EDA tra-
verses a slope-like region of the search space. Relying on the
maximum-likelihood estimators can easily lead to premature
convergence. A fundamental question is, whether the sam-
pling variance can be set arbitrarily high, or whether values
exist that should preferably be chosen.

We seek to answer this question in this section. To this
end, assume the simplified case that the one-dimensional
sphere function f(x) = x2 should be minimized to a value
to reach v. All solutions x that lie inside an optimal region
R have a fitness smaller than v. For the one-dimensional
case, R = [−√

v; +
√

v]. Consequently, we seek to find a

variance that maximizes the chance to sample candidate so-
lutions inside R. The success ratio s measures the overall
probability that a solution sampled from a one-dimensional
normal distribution with mean μ and variance σ2 lies inside
an optimal region R = [a, b], with μ < a < b, and is defined
as

s(μ, σ2, a, b) = Φμ,σ2(b) − Φμ,σ2(a).

Without loss of generality we set μ = 0, a and b are known
parameters. The aim is to find a sampling variance (σ2)�

that maximizes s:

(σ2)� = arg max
σ2∈R+

s(0, σ2, a, b)

The first order derivative of s(μ, σ2, a, b) with respect to σ
is given as

ds

dσ
= − 1√

2πσ2
e
− b2

2σ2 · b +
1√

2πσ2
e
− a2

2σ2 · a. (1)

(1) has two roots, one of which is infeasible due to negativity.
The positive root

(σ2)� =

 
2 ln b

a

b2 − a2

!−1

is a possible feasible maximizer for s. The second order
derivative of s(μ, σ2, a, b) with respect to σ is

d2s(μ, σ, a, b)

dσ2
=

e
− b2

2σ2

√
π

·
„√

2

σ3
− b3

√
2

«
−e

− a2

2σ2

√
π

·
„√

2

σ3
− a3

√
2

«
.

(2)
It can easily be shown, that (2) is < 0 ∀ a < b. Thus,
(σ2)� is the unique maximizer for the success probability. If
a converges towards the mean μ = 0, then (σ2)� → 0.

The existence of a unique maximizer for the success proba-
bility is an interesting and novel result with some important
consequences for EDA design. If R is known, a sampling
variance of (σ�)2 maximizes the number of solutions that
are sampled in R and hence maximizes convergence speed.
If the used sampling variance deviates from (σ�)2, less in-
dividuals will be sampled in R. The result applies only for
one-dimensional search spaces, and we do not provide an
extension to multi-dimensional spaces in this paper. We
conjecture, that a similar maximizer exists for the multi-
dimensional case as well, although it might be more difficult
to obtain.

518



An isolated analysis of phase (2) will lead to setting the
sampling variance to (σ2)�.

5. RUNTIME WITH A STABLE MEAN
In this section, we analyze phase (3) of the search. The

mean is positioned inside the optimal region. Not all solu-
tions are optimal, as the success ratio depends also on the
sampling variance. We derive a lower bound on the number
of generations that a continuous EDA utilizing truncation
selection needs in order to solve the sphere function to a
given precision. Provided parameters are an initial variance
σ2

0 for each dimension of the normal distribution and a value
to reach v. We consider the simpler one-dimensional case
first and extend the results to n dimensions.

5.1 Runtime on x2

The sphere function in a single dimension is f(x) = x2.
We consider the case that the EDA has already located the
optimal solution x� = 0 and that the mean μ is μ = x�.
All following calculations assume an infinite population size.
Under an infinite population size, μ will not move away from
x� in an EDA run. Truncation selection selects solutions
point-symmetrically to x�. The consequence is that μt =
0 ∀ t.

5.1.1 Change from σ2
t to σ2

t+1

Given a variance in period t denoted by σ2
t and the frac-

tion of selected individuals τ , we seek to derive σ2
t+1 – the

variance after truncation selection. Since μ = x� = 0, all
individuals that lie inside the unique interval [−w, w] satis-
fying Z w

−w

φ0,σ2
t
(x)dx = τ

are selected. Selection equals a double truncation of the
normal distribution. The variance of a doubly truncated
normal distribution can be expressed in simple terms for
the special case of truncation limits A, B, A < B that are
symmetric around the mean, cf. [6] p. 158. If A−μ = −(B−
μ) = −kσ, then the mean of the truncated distribution is,

again, μ. The variance σ2′ of the truncated normal is

σ2′ = σ2 ·
„

1 − 2kφ(k)

2Φ(k) − 1

«
. (3)

This special case applies here. The upper bound B can be
determined by

B = Φ−1(0.5 + 0.5τ ) = k.

The variance after selection can thus be written as

σ2
t+1 = σ2

t

 
1 − 2Φ−1(0.5 + 0.5τ )φ

`
Φ−1(0.5 + 0.5τ )

´
τ

!

= σ2
t · b(τ ),with

b(τ ) =

 
1 − 2Φ−1(0.5 + 0.5τ )φ

`
Φ−1(0.5 + 0.5τ )

´
τ

!

Thus, the variance is decreased by a constant factor that
solely depends on the selection intensity. The term b(τ ) can
easily be computed numerically.

5.1.2 Variance in Generation t

It is straightforward to derive the variance in a genera-
tion t if we know an initial variance σ2

0 . As the variance is
decreased by b(τ ) in each generation, the variance in gener-
ation t is

σ2
t = σ2

0 · b(τ )t. (4)

5.1.3 Runtime
We define the runtime as the number of generations re-

quired until the variance has decreased so far, that solutions
with a fitness that is smaller than a value to reach v are
sampled with a probability of at least 99.5%.

It is required that |x| <
√

v, for x to be optimal. The
above chance constraint can be expressed as

P (x ∈ [−√
v;

√
v]) ≥ 0.995. (5)

It is known that 99.5% of the mass of the normal distribution
lies within its 3σ-quantile. Thus, we can rewrite (5) as

3σ <
√

v

⇔ σ2 <
v

9
.

As soon as the variance has decreased to a value smaller
than v

9
, optimal solutions are sampled with a probability of

at least 99.5%. Using (4) , this will be the case, if

σ2
0b(τ )t ≤ v

9
.

Solving for t yields a runtime of

t ≥
log v

9σ2
0

log b(τ )
. (6)

Equation (6) gives a lower bound on the runtime on the
one-dimensional sphere function that depends on a value to
reach, an initial variance, and the selection intensity.

5.2 Runtime on the n-dimensional
Sphere Function

The n-dimensional sphere function is point-symmetric to 0
and has a unique global optimum at x� = 0 with f(x�) = 0.
The result from Section 5.1 is generalized to n-dimensional
spaces in the following. Therefore, μt = μ ∀ t, the reasons
being equal to the one-dimensional case.

5.2.1 The Multivariate Normal Distribution
The n-dimensional normal distribution is given by a mean

vector μ and a positive semidefinite covariance matrix Σ of
order (n × n). The eigenvectors of Σ are denoted by ei,
i = 1, 2, . . . , n. The eigenvalues of Σ are denoted by λi,
i = 1, 2, . . . , n. We are especially interested in some geomet-
ric properties of the multivariate normal. Points of equal
density lie on hyper-ellipsoids. The half-axes of the ellip-
soids point in direction of the eigenvectors of the normal
distribution. The eigenvalues relate directly to the length
of the associated half-axes. The covariances induce rota-
tion of the ellipsoids around the mean. If all covariances
are 0, the axis of the ellipsoids point exactly into the direc-
tions of the main axes of the reference (coordinate) system.
Prediction ellipsoids are the smallest ellipsoidal regions in
n-dimensional space that are centered around the mean and
contain a certain percentage of the mass of the multivariate
normal. Further details can be found in [10].
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x1

x2

μ

(1 − α)100% prediction ellipsoid

l

l

φ(x2)

φ(x1)

Figure 2: Univariate factorization of a two-dimensional normal pdf, prediction ellipsoid and half axes with
lengths l. φ(x1) and φ(x2) denote the normal pdfs associated with x1 and x2.

5.2.2 Change from Σt to Σt+1

In order to solve the n-dimensional sphere function, the
utilized EDA estimates and samples an n-dimensional nor-
mal distribution. It is assumed that in the estimation pro-
cess no superfluous dependencies between the n random
variables are introduced. Hence, the estimated model is a
univariate factorization. This product of n univariate nor-
mals matches the separable structure of the sphere function
perfectly. The general idea of our approach is that the modi-
fications of the covariance matrix due to selection can be ex-
pressed fully in terms of modifications in the univariate nor-
mals. First it is analyzed which solutions in n-dimensional
space are selected. Then, the impact of selection is modelled
in one-dimensional space. This allows to reuse the basic idea
from Section 5.1.

It is known that (1 − α) · 100% of the mass of the mul-
tivariate normal lies within the so-called (1 − α) predic-
tion ellipsoid. This ellipsoid has half-axes with lengths of
li =

p
λiχ2

n,α, i = 1, 2, . . . , n. Recall, that χ2
n,α denotes the

(1−α) quantile of the chi-square distribution with n degrees
of freedom. Truncation selection selects all individuals that
lie in a prediction ellipsoid that covers exactly τ · 100% of
the density. We are interested in the inner region of the el-
lipsoid, so α = 1 − τ . Since selection is point-symmetric
to the optimal solution all eigenvalues have equal values
λi = λ ∀ i = 1, 2, . . . , n. The prediction ellipsoid that con-
tains all selected individuals thus has axes with half lengths

l =
q

λχ2
n,1−τ . If the probabilistic model consists of a fac-

torization of univariate normals, the eigenvalues λ denote
the variances into this direction. Hence the half-length l
of the axes of the prediction ellipsoids covering the selected

solutions is

l = σ ·
q

χ2
n,1−τ . (7)

A graphical illustration of this result is depicted in figure 2.
Knowing l we can reuse the approach from Section 5.1.1

to derive the variance in the next generation. Utilizing (3)
leads to a variance after selection

σ2
t+1 = σ2

t ·
0
@1 −

2χ2
n,1−τ φ

“q
χ2

n,1−τ

”
2Φ
“q

χ2
n,1−τ

”
− 1

1
A

= σ2
t · χ(n, τ ),with

χ(n, τ ) =

0
@1 −

2χ2
n,1−τ φ

“q
χ2

n,1−τ

”
2Φ
“q

χ2
n,1−τ

”
− 1

1
A .

Like in previous calculations of the variance after selection,
the variance is reduced by a constant factor. The factor
χ(n, τ ) solely depends on τ and n and can be computed
numerically.

5.2.3 Variance in Generation t

Given an initial variance σ2
0 in each dimension and the

number of dimensions n, the variance in generation t can be
computed as

σ2
t = σ2

0 · χ(n, τ )t.

5.2.4 Runtime
Section 5.2.2 showed that the overall modification of the

covariance matrix can be expressed also through the mod-
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ifications of the n variances assuming a univariate factor-
ization and an initial isotropic normal distribution. In or-
der to derive the runtime of a continuous EDA on the n-
dimensional sphere function, we define a target standard
deviation that, if used to sample from, will cause 99.5% of
the solutions to have a fitness value smaller than a given
value to reach v. Then we analyze how many generations
selection must reduce the variance in order to reach this
target value.

Optimal solutions are solutions whose fitness is smaller
than v. For solutions to be optimal it is required that

nX
i=1

x2
i ≤ v. (8)

Under infinite population sizes the EDA behaves identically
for every dimension. This has allowed the dimensionality
reduction in the previous section and allows to rewrite (8)
as

nx2 ≤ v

⇔ x ≤
r

v

n
.

In order to sample 99.5% optimal solutions, it is required
that

3σ <

r
v

n
.

Inserting the general variance in generation t leads to

3σ0 · χ(n, τ )
t
2 ≤

r
v

n
,

which can be solved for t. The necessary number of genera-
tions t is at least

t > 2
log

√
v
n

3σ0

log χ(n, τ )
. (9)

The runtime depends on an initial variance, the selection
intensity, the value to reach, and the number of dimensions.

It can easily be seen that - once search is in phase (3)-
reducing the variance is preferable for reducing the runtime.

6. DISCUSSION OF THE RESULTS
How do continuous EDAs really work? Much of the cur-

rently available results are experimental. Although the ef-
fectiveness of current implementations is high, a thorough
understanding of continuous EDAs can only be achieved on
the basis of formal models. Taking together the current liter-
ature, many important questions are still unanswered. One
of the most important questions is how the parameters of
the probabilistic models (e.g., the covariance matrix and the
mean vector) change over time due to selection. Such results
are difficult to obtain if the underlying fitness landscape is
complex. We have concentrated on the sphere function and
have artificially decomposed the convergence process into
the following three phases.

1. The mean is far from the optimum. The EDA traverses
a region that has a slope-like function. The optimum
is not sampled with significant probability.

2. Selection has shifted the mean towards the optimum.
A significant portion of the sampled solutions lie in

the optimal region, but the mean is still outside the
optimal region.

3. The mean has moved onto the optimum and is rela-
tively stable.

All three phases are characterized through ML-variance
trajectories, that is a series of subsequent variances modi-
fied over generations through selection. In the first phase,
variances estimated by maximum-likelihood estimators have
been proven to lead to premature convergence. As a con-
sequence, variance enlargement was introduced in some of
the literature. This has lead to trajectories of sampling vari-
ances that are not equal to the estimated ones. In order to
traverse slopes, a maximal increase of the ML-variance is
beneficial as it increases progress.

It was an open question, whether this increase can come
at a price in later phases of optimization. We have shown
in Section 4 that too high a variance can indeed slow down
progress if the optimal solution is coming “into sight” and
is sampled with significant chance. For the one-dimensional
case we have proved the existence of a sampling variance
that is the unique maximizer of the success ratio (recall,
that the success ratio was defined as the proportion of solu-
tions sampled in the optimal region). This optimal sampling
variance decreases with the distance between the mean and
the region, and converges towards zero for the extreme case
that the mean has reached the border of the region. We
have not provided an extension of this result to the general
multi-dimensional case, but it appears highly likely that a
similar result applies, although it might be more difficult to
obtain. Obviously, if the sampling variance that an EDA
uses is very close or equal to the optimal sampling variance,
progress of the search is maximized. If the sampling vari-
ance is too high, or too low, fewer sampled individuals are
optimal.

In the third phase, selection has moved the mean onto
the optimum and it is relatively stable. Until now, it was
unknown how fast a continuous EDA can contract the dis-
tribution around a point of interest. We provided in Section
5.2 such a runtime result. The number of generations re-
quired until a value to reach is reliably sampled on the sphere
function can be computed. By multiplying with a sensible
estimate for the population size, the number of fitness eval-
uations can be approximated easily. A deeper analysis of
these results will not only be interesting on its own, but
also open the door for a principled comparison of continu-
ous EDA with, e.g., evolution strategies.

From the available results on phase (1) dynamics, and the
newly obtained results on phase (3) dynamics, we conjecture
that the variance will decrease exponentially fast also if an
EDA is in phase (2). This would mean that the variance goes
down steadily over time throughout an EDA run. This leads
to premature convergence on slope like regions of the search
space. Furthermore, it is highly unlikely that such a decrease
matches the optimal variances required for maximal progress
in phase (2). However, it is a sensible approach in phase (3).

What can we learn from these results? Variance modi-
fication policies are not just a nice add-on. Optimal sam-
pling variances are likely to exist, towards which modifica-
tion policies should alter the estimated variances. This ren-
ders variance modification policies an integral component of
continuous EDAs, at least, when maximum-likelihood nor-
mal distributions are used. These policies should not only
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prevent from premature convergence in phase (1), but also
use sampling variances coming close to the optimal ones in
phase (2), and decrease rapidly in phase (3).

7. FUTURE WORK
The main conclusion of this work is, that variance modifi-

cation policies should be integral components of continuous
EDAs using maximum likelihood for estimating the model
parameters. From a theoretical analysis of variance trajecto-
ries, it has become clear that there is more to a good variance
scaling policy than just preventing premature convergence.
It is likely that optimal sampling variance trajectories ex-
ist that maximize progress throughout the search. In order
to obtain practical approximations of such policies, further
analysis of phase (2) is required. The separation of the con-
vergence process into three phases is an artificial one that
facilitates the understanding. The integration of all phases
into one coherent framework is important future work. Fur-
thermore, the obtained runtime results are a starting point
for systematic comparisons of the effectiveness of continuous
EDAs with other optimization techniques. Generalizations
of the results to other distributions and classes of fitness
functions will strengthen our understanding of how we can
design more efficient EDAs.
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