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ABSTRACT

The hierarchical Bayesian optimization algorithm (hBOA)
can solve nearly decomposable and hierarchical problems
of bounded difficulty in a robust and scalable manner by
building and sampling probabilistic models of promising so-
lutions. This paper analyzes probabilistic models in hBOA
on two common test problems: concatenated traps and 2D
Ising spin glasses with periodic boundary conditions. We
argue that although Bayesian networks with local struc-
tures can encode complex probability distributions, analyz-
ing these models in hBOA is relatively straightforward and
the results of such analyses may provide practitioners with
useful information about their problems. The results show
that the probabilistic models in hBOA closely correspond
to the structure of the underlying problem, the models do
not change significantly in subsequent iterations of BOA,
and creating adequate probabilistic models by hand is not
straightforward even with complete knowledge of the opti-
mization problem.

Categories and Subject Descriptors

1.2.8 [Artificial Intelligence]: Problem Solving, Con-
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1. INTRODUCTION

The hierarchical Bayesian optimization algorithm
(hBOA) [22, 21, 25] can solve the broad class of nearly
decomposable and hierarchical problems in a robust and
scalable manner and a number of efficiency enhancement
techniques have been proposed to further improve hBOA
performance [35, 29, 16, 32, 36]. While both the per-
formance of hBOA as well as the effectiveness of various
efficiency enhancement techniques for hBOA crucially
depend on the quality of probabilistic models used in hBOA
to guide exploration of the space of potential solutions, very
little work has been done in analyzing the structure and
complexity of these models with respect to the structure of
the underlying optimization problem [16, 40, 15].

The purpose of this paper is to analyze the structure and
complexity of probabilistic models in hBOA on two com-
mon test problems: (1) concatenated traps and (2) two-
dimensional +J Ising spin glasses with periodic boundary
conditions. Concatenated traps are used as an example of a
separable problem of bounded order with subproblems that
cannot be further decomposed [8, 1]. Two-dimensional Ising
spin glasses, on the other hand, cannot be decomposed into
subproblems of bounded order [18] and they provide a chal-
lenge for most optimization methods because they contain
an extremely large number of local optima and the candidate
solutions between different local optima are often of very low
quality [3, 17, 9, 7, 28]. The results show that (1) proba-
bilistic models obtained by hBOA closely correspond to the
structure of the underlying optimization problem, (2) the



models do not change significantly between subsequent it-
erations of hBOA, and (3) creating adequate probabilistic
models by hand is far from straightforward even with com-
plete knowledge of the structure of the underlying problem.
The proposed techniques for model analysis in hBOA can
be adapted to study model structure and model complexity
for other problems and other estimation of distribution algo-
rithms, providing the practitioners with a powerful tool for
learning about their problems. The obtained knowledge can
be used to extend the class of problems that can currently
be solved tractably by hBOA.

The paper is organized as follows. Section 2 outlines
hBOA. Section 3 discusses concatenated traps and trap-5
in particular, and then analyzes probabilistic models ob-
tained with hBOA when solving trap-5. Section 4 describes
the problem of finding ground states of 2D +J Ising spin
glasses with periodic boundary conditions, and presents the
analysis of hBOA models in this class of problems. Finally,
section 5 concludes the paper and outlines future research.

2. HIERARCHICAL BOA (HBOA)

Estimation of distribution algorithms (EDAs) [2, 19, 14,
27]—also called probabilistic model-building genetic algo-
rithms (PMBGASs) [27, 21] and iterated density estima-
tion algorithms (IDEAs) [5]—replace standard crossover and
mutation operators of genetic and evolutionary algorithms
by building a probabilistic model of selected solutions and
sampling the built model to generate new candidate so-
lutions. The hierarchical Bayesian optimization algorithm
(hBOA) [22, 24, 21] is an EDA that uses Bayesian networks
to represent the probabilistic model and incorporates re-
stricted tournament replacement [12] for effective diversity
maintenance. This section outlines hBOA and briefly dis-
cusses Bayesian networks, which are used to guide the ex-
ploration of the search space in hBOA.

2.1 Basic hBOA Procedure

hBOA evolves a population of candidate solutions. The
population is initially generated at random according to a
uniform distribution over all n-bit strings. Each iteration
starts by selecting a population of promising solutions using
any common selection method of genetic and evolutionary
algorithms, such as tournament and truncation selection.
We use truncation selection with the threshold 7 = 50%.
New solutions are generated by building a Bayesian net-
work with decision trees [6, 10] for the selected solutions
and sampling the built Bayesian network. The new candi-
date solutions are incorporated into the original population
using restricted tournament replacement (RTR) [12]. We
use RTR with window size w = min{n, N/20} as suggested
in [21]. The run is terminated when termination criteria are
met.

2.2 Bayesian Networks

Bayesian networks [20, 13] combine graph theory, prob-
ability theory and statistics to provide a flexible and prac-
tical tool for probabilistic modeling and inference. BOA
and hBOA use Bayesian networks to model promising solu-
tions found so far and sample new candidate solutions. A
Bayesian network consists of two components: (1) Structure,
which is defined by an acyclic directed graph with one node
per variable and the edges corresponding to conditional de-
pendencies between the variables, and (2) parameters, which
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consist of the conditional probabilities of each variable given
the variables that this variable depends on.

Mathematically, a Bayesian network with n nodes en-
codes a joint probability distribution of n random variables
X17X27. . .,Xni

n

LX) = [[ e,

i=1

p(X1, Xo, .. (1)

where II; is the set of variables from which there exists
an edge into X; (members of II; are called parents of X;).
In addition to encoding direct conditional dependencies, a
Bayesian network may also encode a number of conditional
independence assumptions [20, 13].

hBOA uses Bayesian networks with local structures in the
form of dependency trees [6, 10]. That means that the condi-
tional probabilities for each variable are stored in a decision
tree, allowing a more efficient representation of conditional
dependencies and a more powerful model-building proce-
dure. For more details on learning and sampling Bayesian
networks with local structures, see [6, 21].

3. HBOA MODELS FOR
PROBLEMS

We start the analysis of hBOA models on separable prob-
lems of bounded difficulty; specifically, we consider concate-
nated traps of order 5. There are several reasons for an-
alyzing hBOA models on concatenated traps. First of all,
many real-world problems are believed to be nearly decom-
posable [37], and separable problems of bounded difficulty
represent a broad class of such problems [11]. Second, there
is a solid body of theory that defines what a good probabilis-
tic model should look like in order to provide scalable per-
formance on separable problems of bounded difficulty [11,
31, 21]. Finally, concatenated traps bound the class of de-
composable problems of bounded difficulty because they use
fully deceptive subproblems [8], which cannot be further de-
composed, and any model that fails to accurately represent
the problem decomposition is expected to fail to scale up
polynomially with problem size [8, 39, 11, 21].

Our analysis will focus on answering two primary ques-
tions:

SEPARABLE

1. Do hBOA models accurately represent problem de-
composition for separable problems?

2. How do the models change over time (from generation
to generation)?

Answering the above questions is important to better un-
derstand how hBOA works on separable problems. But
even more importantly, these results provide important in-
formation for developing theory and efficiency enhancement
techniques for hBOA and nearly decomposable problems of
bounded difficulty. Our primary focus will be on the second
question as an in-depth analysis of model accuracy in hBOA
on traps can be found in [15].

3.1 Concatenated 5-bit Trap

In concatenated 5-bit traps [1, 8], the input string is par-
titioned into disjoint groups of 5 bits each. This partitioning
is unknown to the algorithm, and it does not change during
the run. A 5-bit trap function is then applied to each of
the groups and the contributions of all the groups are added



together to form the fitness, which we want to maximize.
The 5-bit trap function is defined as follows:

praps(uy = § 0 ifu=>5
ps "] 4—u  otherwise

where v is the number of ones in the input string of 5 bits.
An n-bit trap-5 has one global optimum in the string of all
ones and 2"/® — 1 other local optima (the number of local
optima grows exponentially fast with problem size).

Trap-5 necessitates that all bits in each trap partition
(linkage group) are treated together, because statistics of
lower order mislead the search away from the global opti-
mum [8], leading to highly inefficient performance [39, 11].

3.2 A Perfect Model for Trap-5

Since the 5-bit trap described above is fully deceptive [8],
to solve concatenated traps in polynomial time, it is nec-
essary that the probabilistic model encodes conditional de-
pendencies between all or nearly all pairs of variables within
each trap partition. On the other hand, to maximize the
mixing and minimize model complexity, it is desirable that
we do not discover any dependencies between the differ-
ent trap partitions. Therefore, a “perfect” model for solv-
ing trap-5 would contain all dependencies between the bits
within each trap partition but it would not contain any de-
pendencies between the different trap partitions.

In the remainder of this section, we call the dependencies
that we would like to discover the necessary dependencies
whereas the dependencies that we would like to avoid in
order to maximize the mixing will be called unnecessary.

; (2)

3.3 Experimental Setup

To make sure that our results correspond to the actual
hBOA performance on trap-5 and are not biased by either
a too large or too small population size, we first use bisec-
tion [33] to ensure that the population size is large enough
to obtain reliable convergence to the global optimum in 30
out of 30 independent runs. The results are then averaged
over the 30 successful runs with the population size obtained
by bisection. The number of generations is upper bounded
according to preliminary experiments and hBOA scalabil-
ity theory [31] by 24/n where n is the number of bits in
the problem. Each run of hBOA is terminated when the
global optimum has been found (success) or when the up-
per bound on the number of generations has been reached
without discovering the global optimum (failure). To look at
the relationship between problem size and the probabilistic
models, we consider traps of sizes n = 15 to n = 210 bits.

3.4 Model Accuracy for Trap-5

We first look at the accuracy of the probabilistic models
in hBOA on trap-5; specifically, we are interested in finding
out how many of the necessary and unnecessary dependen-
cies are covered. Since numerous empirical results confirmed
that hBOA can solve trap-5 in a number of evaluations that
grows polynomially with problem size [26, 21], we expect
that the necessary dependencies will be discovered; other-
wise, the deceptiveness of the trap partitions should lead to
poor, exponential scalability [39, 11, 21]. On the other hand,
good scalability does not directly necessitate that the num-
ber of unnecessary dependencies is relatively small compared
to the overall number of dependencies. Quite the contrary,
[16] showed that with tournament selection, hBOA often
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Figure 1: The average number of necessary and un-
necessary dependencies with respect to problem size
on trap-5. Three model snapshots were taken in
each run (the first, middle, and last generation).

finds many unnecessary dependencies when solving trap-5.
Nevertheless, the results with truncation selection show that
the models closely resemble what we consider the perfect
model for trap-5, where trap partitions are fully connected
while there are almost no connections between the different
traps.

Figure 1 shows the number of necessary and unnecessary
dependencies for trap-5 of sizes 15 to 210. For each problem
size, the results show the average number of necessary and
unnecessary dependencies over the 30 runs using the popu-
lation size determined by the bisection method. Since the
models change over time, we consider three snapshots. The
first snapshot shows the model in the first generation, the
second snapshot shows the model in the middle of the run,
and the last snapshot shows the final model learned before
terminating the run.

The results show that initially, the probabilistic model
covers only a few of the necessary dependencies. Nonethe-
less, the model improves over time and the second snapshot
shows that in the middle of the run, all or nearly all nec-
essary dependencies are covered (the number of necessary
dependencies for trap-5 is 2n). Finally, late in the run, the
model covers many but not all necessary dependencies.

The results from figure 1 are quite intuitive. At the begin-
ning, only some subproblems can be expected to be discov-
ered because the initial population is generated at random
and the statistical information from one round of selection
does not provide enough information to identify all subprob-
lems. However, after several more iterations, the collateral
noise [11] in the population decreases, the overall quality
of solutions in the population increases, and the statisti-
cal information provides enough input to enable hBOA to
learn better models. Finally, at the end of the run, even
though accurate problem decomposition should still be im-
portant, the dependencies between the subproblems become
easy enough to cover with short-order conditional probabil-
ities (because we expect each trap partition to be assigned
to either of the two local optima, that is, 00000 or 11111).

We illustrate the argument that in the end of the run
our models can significantly simplify without affecting the
encoded distribution with the following example. Con-
sider a population of 5-bit binary strings with only two
alternative candidate solutions: 00000 and 11111. Late
in the run of hBOA on trap-5, every trap partition is
expected to have the same or at least a very similar
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Figure 2: Ratio of the number of unnecessary de-
pendencies to the total number of dependencies over
the lifetime for trap5 of sizes 15 to 210.

distribution to this. Clearly, the value of any bit de-
pends on the value of the remaining bits. Nonetheless,
to fully encode this probability distribution, we can use
a simple chain model defined as p(Xi, X2, X3, X4, X5) =
p(X1)p(X2|X1)p(Xs| X2)p(Xa|X3)p(X5|Xa), Therefore, as
the population diversity decreases and some partial solu-
tions are eliminated, many of the necessary dependencies
become unnecessary.

In addition to showing good coverage of necessary depen-
dencies, the results from figure 1 show that the number of
unnecessary dependencies is significantly smaller than the
number of necessary dependencies. This fact is also exempli-
fied in figure 2, which shows that the ratio of the number of
unnecessary dependencies to the number of necessary depen-
dencies decreases with problem size. This is great news—not
only does hBOA discover the dependencies we need to solve
trap-5 scalably, but it is also capable of avoiding the dis-
covery of a significant number of unnecessary dependencies,
which may slow down the mixing.

One of the most surprising results obtained in this study
is that the model structure in hBOA significantly depends
on the selection method used to select the populations of
promising solutions. More specifically, the work on hy-
bridization of hBOA [16] as well as the work on accuracy of
hBOA models with tournament selection [15] showed that
with tournament selection the number of unnecessary de-
pendencies is relatively significant and that the ratio of the
number of unnecessary dependencies to the total number of
dependencies increases with problem size. Furthermore, it
was shown that with tournament selection nearly all nec-
essary dependencies are discovered at the beginning of the
run. Therefore, based on [16, 15], one may conclude that
with tournament selection, hBOA models tend to be overly
complex. On the contrary, the results presented in figures 1
and 2 show that for truncation selection, the models contain
only a handful of unnecessary dependencies, but it takes sev-
eral generations to discover all the necessary dependencies.
Although hBOA scalability is asymptotically the same in
both cases [26, 21], studying the influence of the selection
method on performance of hBOA and other EDAs appears
to be an important topic for future research that has been
somewhat neglected in the past.

3.5 Model Dynamics for Trap-5

Knowing that hBOA models for traps are accurate is
great, but that’s only one piece of the puzzle and there
still remain many important questions. How do the models
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Figure 3: Dependency changes in trap-5 for two dif-
ferent problem sizes.

change over time? Are the models in subsequent genera-
tions similar? When do most changes in models occur - is it
early in the run or late in the run? All these questions are
important, especially for the design of efficiency enhance-
ment techniques, such as sporadic and incremental model
building [32] and hybridization [16, 34, 23].

To better understand model dynamics in hBOA, we an-
alyze changes in hBOA models in subsequent generations
of hBOA. In each generation, we record the number of de-
pendencies that were not present in the previous generation
but have been added in the current one, and analogically we
record the number of dependencies that were present in the
previous generation but that have been eliminated in the
current one. Figure 3 shows the obtained results for trap-
5 of size 100 and 200 (the results for other problem sizes
look similar). The results clearly indicate that most de-
pendencies are added in the first few generations of hBOA.
After the correct or approximately correct model for the
underlying problem is discovered, the models do not change
significantly.

The stability of hBOA models on trap-5 is great news
for sporadic and incremental model building [32], which are
efficiency enhancement techniques that focus on improving
efficiency of model building in hBOA. More specifically, both
sporadic and incremental model building lead to the highest
gains in performance when models in subsequent generations
have similar structure. Our results indicate that this is in-
deed the case, at least for separable problems of bounded
difficulty.

While stability of hBOA models is important for incre-
mental and sporadic model building, the rapid learning of
an accurate model is also an important precondition for ef-
ficient hBOA hybrids using specialized local operators that
are based on the learned models [16, 34].

4. HBOA MODELS FOR 2D SPIN GLASSES

We have shown on a difficult separable problem of
bounded order that hBOA learns the adequate problem de-
composition quickly and accurately, but what happens when
we move to a harder problem that cannot be broken up
into subproblems of bounded order? To answer this ques-
tion, we consider the problem of finding ground states of
2D Ising spin glasses [4, 17, 9, 41] where the task is to find
spin configurations that minimize the energy of a given spin
glass instance. While the structure of the energy function
for 2D Ising spin glasses is relatively easy to understand,
the problem of finding spin-glass ground states represents
a great challenge for most optimization techniques because



(1) the energy landscape contains an extremely large num-
ber of local optima, (2) the local optima in the energy
landscape are often separated by configurations with very
high energy (low-quality regions), (3) any decomposition of
bounded order is insufficient for solving the problem, and (4)
the problem is still solvable in polynomial time using ana-
lytical methods. This is why most standard and advanced
optimization techniques fail to solve this problem in poly-
nomial time, including classical genetic algorithms [23] and
state-of-the-art Markov chain Monte Carlo (MCMC) meth-
ods such as the flat-histogram MCMC [7]. Despite the diffi-
culty of the Ising spin glass problem, hBOA is able to solve
2D Ising spin glasses in polynomial time, achieving empiri-
cal asymptotic performance of the best analytical methods
without any problem-specific knowledge [23].

4.1 2D Ising Spin Glass

A very simple model to describe a finite-dimensional Ising
spin glass is typically arranged on a regular 2D or 3D grid
where each node i corresponds to a spin s; and each edge
(i,7) corresponds to a coupling between two spins s; and
s;. For the classical Ising model, each spin s; can be in
one of two states: s; = +1 or s; = —1. Each edge (4, j)
has a real value (coupling) J; ; associated with it that de-
fines the relationship between the two connected spins. To
approximate the behavior of the large-scale system, peri-
odic boundary conditions are often used that introduce a
coupling between the first and the last element along each
dimension. In this paper we consider the 2D Ising spin glass
with periodic boundary conditions.

Given a set of coupling constants J; ;, and a configuration
of spins C' = {s;}, the energy can be computed as E(C) =
2 i) Sidiis; , where the sum runs over all couplings (7, j).
Here the task is to find a spin configuration given couplings
{Ji,; } that minimizes the energy of the spin glass. The states
with minimum energy are called ground states. The spin
configurations are encoded with binary strings where each
bit specifies the value of one spin (0 for +1, 1 for -1).

In order to obtain a quantitative understanding of the dis-
order in a spin glass system introduced by the random spin-
spin couplings, one generally analyzes a large set of random
spin glass instances for a given distribution of the spin-spin
couplings. For each spin glass instance, the optimization
algorithm is applied and the results are analyzed. Here we
consider the £J spin glass, where each spin-spin coupling
constant is set randomly to either 4+1 or —1 with equal prob-
ability. All instances of sizes up to 18 x 18 with ground states
were obtained from S. Sabhapandit and S. N. Coppersmith
from the University of Wisconsin who identified the ground
states using flat-histogram Markov chain Monte Carlo sim-
ulations [7]. The ground states of the remaining instances
were obtained from the Spin Glass Ground State Server at
the University of Cologne [38].

To improve the performance of hBOA, we incorpo-
rated a deterministic local search—deterministic hill climber
(DHC)—to improve quality of each evaluated solution [23,
21]. DHC proceeds by making single-bit flips that improve
the quality of the solution most until no single-bit flip im-
proves the candidate solution. DHC is applied to every so-
lution in the population before it is evaluated.

4.2 Perfect Model for 2D Ising Spin Glass

With spin glasses it is not clear what dependencies are
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really necessary to solve the problem scalably and neither is
it clear what dependencies are unnecessary and should be
avoided to maximize the mixing. In fact, to some degree,
every spin (bit) depends on every other spin either directly
through one connection (coupling) or through a chain of
connections. It has been argued [18] that to fully cover all
necessary dependencies, the order of dependencies in the
probabilistic model must grow at least as fast as Q(y/n).
Of course, since hBOA has been shown to solve 2D Ising
spin glasses in polynomial time and due to the initial-supply
population sizing [11] the population size in hBOA is lower
bounded by Q(2F) (where k is the order of dependencies
covered by the probabilistic model), the models in hBOA
cannot encode dependencies of order Q(y/n) or more.

Nonetheless, while it is unclear what a “perfect” model
for a 2D Ising spin glass looks like, it is clear that the in-
teractions between immediate neighbors should be strongest
and the interactions should decrease in magnitude with the
distance of spins measured by the number of links between
these spins. This hypothesis will be confirmed with the ex-
perimental results presented shortly.

4.3 Experimental Setup

Most hBOA parameters were set the same as in the exper-
iments for concatenated traps. Since the difficulty of spin
glass instances varies significantly depending on the cou-
plings [7, 23], we generated 100 random instances for each
considered problem size. On each spin glass instance we used
the population size obtained by bisection but since we used
100 random instances for each problem size, we required
hBOA to converge only in 5 out of 5 independent runs.

4.4 Model Dynamics and Structure for 2D
Ising Spin Glass

Given our initial understanding of the structure of 2D
Ising spin glass, we start by analyzing the grid distances
of the spins directly connected by a dependency in the
probabilistic model, where the distance of two spins is
defined as the minimum number of links in the 2D grid that
we must pass to get from one spin to the other one. The
minimum distance, one, is between any immediate neigh-
bors in the grid. Due to the periodic boundary conditions,
the maximum distance is not between the opposite corners
of the grid. Instead, the maximum distance is, for example,
between the top-left spin and the spins around the middle
of the grid; for instance, for 2D spin glasses of size 20 x 20
the maximum distance is 20 (10 links to the right, 10 links
to the bottom). Also of note is that the number of possible
dependencies of any given distance increases to a maximum
at half of the maximum distance and then decreases to hav-
ing only one possible dependency at the maximum distance.
For example, any particular spin in a 2D spin glass of size
20 x 20 could have 38 possible dependencies of distance 10
but only 1 dependency possible of length 20. To analyze
distances of spins that are connected in the model, we cre-
ated a histogram of the average number of dependencies for
each distance value at different stages of the hBOA run on
100 randomly generated +.J Ising spin glasses. We expected
that early in the run, the majority of the dependencies would
be between immediate neighbors, whereas later in the run,
the number of dependencies between farther spins would in-
crease. We obtained four snapshots of the models at equally
distributed time intervals to cover the entire run of hBOA.
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Figure 4: Distribution of dependencies with respect
to spin distances for hBOA with DHC.

Figure 4 shows that in all stages of the run, the number of
dependencies between immediate neighbors is as large as the
number of the remaining dependencies. Since the influence
of each spin on the distribution of another spin decreases
significantly with the number of links between the spins,
we believe that (at least initially) the dependencies of spins
that are located far away are not necessary and are only a
result of the strong problem regularities and noisy informa-
tion of the initial population. However, as the run proceeds,
long-range dependencies may become more meaningful as
the search progresses to locate the candidate solutions in the
most promising regions of the search space. Further analysis
of the obtained results remains an important topic for fu-
ture work; more insight could be obtained by analyzing the
energy landscape from the perspective of the populations at
different stages of the hBOA run.

One of the surprising results is that the number of depen-
dencies at any distance decreases over time and therefore
in each generation of hBOA, the model becomes simpler.
We believe that while the effective order of dependencies
encoded by the model increases over the run, since these
dependencies become simpler (they cover fewer alternative
partial solutions), they can be covered with structures com-
posed of short-order dependencies. Also of note is the in-
creased number of mid-range dependencies that exist early
on. We believe this is a result of the increased total number
of dependencies possible at these distances and is caused by
noise early on in the run.

To check whether the spin glass results are significantly
influenced by DHC, we repeated the same experiments with-
out DHC (see figure 5). The results without DHC indicate
that the structure of the models looks similar to that found
with DHC; however, the long-range dependencies become
even more significant without DHC than with DHC. In fact,
without DHC, the models are generally more complex.

Just as with trap-5, we next look at how stable individual
dependencies are in subsequent generations. In each gener-
ation, we record the number of dependencies that were not
present in the previous generation but have been added in
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Figure 5: Distribution of dependencies with respect
to spin distances for hBOA without DHC.

the current one, and analogically we record the number of
dependencies that were present in the previous generation
but that have been eliminated in the current one. Figure 6a
shows the obtained results for one run of a 20 x 20 spin glass
(the results for other runs are similar). The results seemed
to indicate that we had a great deal of change, however in
Figure 6b we repeated the experiment and only looked at
neighbor dependencies. The results clearly show that the
short-range dependencies are very stable and the changes
seen in Figure 6a are due to the farther dependencies chang-
ing. Since many long-range dependencies can be expected to
be unnecessary as is also supported by the results presented
in the next section, the most important factor regarding the
stability of hBOA models is the stability with respect to the
short-range dependencies.

4.5 Restricting hBOA Models on Spin Glass

We have observed that most of the dependencies hBOA
finds are the short dependencies between neighbors in the
grid. So the following question arises, if restricted to only
dependencies of distance one, would hBOA still solve the
problem scalably and reliably? If not, could we at least re-
strict the dependencies to consider distances of at most two
or three? If we could restrict hBOA models significantly
without negatively affecting hBOA scalability, these restric-
tions could be used both to significantly speed up hBOA as
well as to design powerful problem-specific recombination
operators for spin glasses and other similar problems.

To answer the above question, we looked at the scalabil-
ity of hBOA with the different restrictions on the dependen-
cies using spin glass instances of sizes from 10 x 10 = 100
spins to 25 x 25 = 625 spins, using 100 instances for each
problem size. For each problem instance and each hBOA
variant, we used bisection to find an adequate population
size and recorded the average number of evaluations until
convergence. The results are shown in figure 7.

The results show that while performance of hBOA re-
stricted to neighbor dependencies is comparable to the per-
formance of the original hBOA on the smallest spin glass
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Figure 7: Scalability of hBOA with DHC with and
without restrictions on model structure.

instances of size 10 x 10, as the problem size increases, per-
formance of hBOA with only neighbor dependencies deterio-
rates quickly and the number of evaluations grows exponen-
tially. Performance of hBOA with dependencies restricted
to spins at distances of at most two leads to performance
comparable to that of the original hBOA up to the prob-
lems of size 18 x 18. However, as the problem size is further
increased, the performance of the restricted hBOA again
starts to deteriorate. In particular, the harder instances
were affected much more severely by the restrictions.

The scalability analysis thus indicates that to solve 2D
spin glasses scalably we cannot restrict the dependencies to
be only between the immediate neighbors or spins located
at the distance of at most two. This result agrees with
the results presented in [42]. The result also shows that
the hand-designed approximate Bayesian network structure
proposed for 2D Ising spin glasses in [18] is unlikely to scale
up because it relates only the spins at distance one or two.
Nonetheless, the results show that we can restrict hBOA
models significantly although the degree to which we can
restrict the models appears to depend on the problem size,
assuming that we do not want to affect hBOA scalability.
Because of the important implications of restricting com-
plexity of hBOA probabilistic models, this topic should be
further investigated in future research.

The implications of these results go beyond the direct ap-
plication of hBOA to spin glasses. Specifically, we show that
none of the probabilistic models designed by hand for 2D
Ising spin glasses in the past seems to ensure polynomially
scalable performance. While the probabilistic model based

(b) Neighbor dependencies
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on the running intersection property leads to intractable per-
formance due to the large order of dependencies it uses [18],
the approximate probabilistic model based on statistical
terms of short order [18] fails to scale up for large prob-
lems. Thus, in spite of the availability of the complete
knowledge of the problem specifics, models obtained with
automatic model building procedures of hBOA outperform
hand-crafted models.

5. CONCLUSIONS AND FUTURE WORK

Since both the scalability of hBOA as well as the effective-
ness of several efficiency enhancement techniques for hBOA
crucially depend on the quality of the probabilistic models
learned by hBOA, analysis of probabilistic models in hBOA
is an important research topic. This paper analyzed the
structure and complexity of hBOA probabilistic models on
two common test problems: concatenated traps and 2D Ising
spin glasses with periodic boundary conditions.

For concatenated traps, we know what an adequate prob-
abilistic model looks like to ensure scalable and reliable con-
vergence with hBOA. The results show that hBOA is able
to learn such adequate probabilistic models quickly and that
the learned problem decomposition corresponds closely to
the underlying problem. The results also show that the
models on concatenated traps do not change much from gen-
eration to generation, which is important especially for the
effectiveness of sporadic and incremental model building.

While for 2D Ising spin glasses it is unclear what is an
ideal probabilistic model, the probabilistic models obtained
by hBOA are shown to correspond closely to the structure of
the underlying problem. Furthermore, the results indicate
that while it seems to be possible to restrict hBOA mod-
els significantly without affecting hBOA performance much,
probabilistic models designed by hand may not lead to good
scalability despite the robust and scalable performance of
hBOA based on automatic model building procedures.

Although the analysis of Bayesian networks with local
structures is a challenging task, this paper shows that the
analysis of hBOA models is indeed possible and that such an
analysis can reveal useful information about the underlying
problem.

A direct extension of this work is analysis of probabilistic
models in hBOA on other challenging problems, considering
both artificial and real-world problems. Another important
topic for future research is the development of techniques
to effectively use information obtained from the analysis of
hBOA models and the use of this information for the design
of efficiency enhancement techniques.
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