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ABSTRACT
This paper presents two evolutionary algorithms, ECGA
and BOA, applied to constructing stock market trading ex-
pertise, which is built on the basis of a set of specific trading
rules analysing financial time series of recent price quota-
tions. A few modifications of ECGA are proposed in order
to reduce the computing time and make the algorithm ap-
plicable for real-time trading. In experiments carried out
on real data from the Paris Stock Exchange, the algorithms
were compared in terms of the efficiency in solving the opti-
mization problem, in terms of the financial relevance of the
investment strategies discovered as well as in terms of the
computing time.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Applications and Expert Sys-
tems; I.2 [Artificial Intelligence]: Learning; J.1 [Computer
Applications]: Administrative Data Processing—Finan-
cial

General Terms
Experimentation

Keywords
estimation of distribution algorithms, extended compact ge-
netic algorithm, bayesian optimization algorithm, decision
support systems, stock market expertise, financial time se-
ries

1. INTRODUCTION
Financial data analysis remains a challenge for human an-

alysts, stock market investors and computer expert systems.
Although recent computational technologies, such as artifi-
cial intelligence, neural networks or evolutionary algorithms,
enable an intensive development of financial analysis meth-
ods facilitating and speeding up computations, the size of
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data and the computing time remain the major constraints
for computational methods.

However, there are some research on applying computa-
tional intelligence to financial modelling [2]. Genetic pro-
gramming was applied to building decision trees for sup-
porting financial decision making [16]. Some evolutionary
algorithm were constructed for portfolio optimization [12].
Grammatical evolution was applied to discovering trading
rules for stock market speculations [4].

In this paper, we discuss an evolutionary approach to con-
structing stock market trading expertise built on the basis of
a set of specific trading rules analysing financial time series
of recent price quotations [8]. In order to solve the optimiza-
tion problem, corresponding to discovering the trading ex-
pertise, genetic algorithms may be applied. It may be solved
using a number of fast algorithms, such as CGA [7], PBIL [1]
or SGA [5]. However, much better results may be often ob-
tained with more advanced, but also more time-consuming,
algorithms, such as BOA [14] or ECGA [6]. Unfortunatelly,
the time constraint is critical for stock trading decision sup-
port systems, especially for real-time trading, so in practice
a less efficient but faster algorithm must be chosen.

In this paper, we analyze two algorithms, ECGA and
BOA, applied to discovering trading expertise. We compare
and discuss their performance and usability in modelling fi-
nancial expertise.

This paper is structured in the following manner: Section
2 introduces the stock market trading expertise. In Section
3, construction of such an expertise is transformed into an
optimization problem. Section 4 and 5 describe two algo-
rithms proposed to solve the problem. In Section 6, some
experiments and their results are presented. Finally, Section
7 concludes the paper.

2. STOCK MARKET TRADING EXPERTS

2.1 Stock Market Trading Rules
Financial analysts and stock market investors observe the

stock market to sell stocks if they tend to lose value, to
buy stocks if they tend to gain value, and to do nothing
in the remaining cases. Investors often assume that future
stock market prices can be, more or less accurately, pre-
dicted on the basis of publicly available information, such
as past prices, order books, economic reports, tax rates and
so on. Therefore, they analyze available data to take trading
decisions in line with this analysis.

Obviously, various methods of financial data analysis are
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used widespread. For instance, Technical Analysis [13] mainly
focuses on past prices, considering stock market data as the
main source of information. Other ones, for instance Funda-
mental or Quantitative Analysis [3], take into consideration
various information on specific firms, such as assets, liabili-
ties, expenses or revenues. They try to estimate the future
performance of the firm which is then considered as the main
factor driving the stock price.

Technical Analysis introduces many functions to charac-
terize stock market data. It attempts to detect trends and
discover signals of the occurrence of particular future events
like falls and rises in stock prices. Using these functions,
investors make trading decisions: buying, selling or doing
nothing.

In order to formalize financial analysis methods, the con-
cept of a stock market trading rule is introduced. Generally
speaking, a stock market trading rule is a function which
evaluates a trading signal, based on available information.
This information is referred to as a factual financial knowl-
edge and denoted as K. In Technical Analysis, the factual
financial knowledge K represents historical prices and order
books; in other cases, K may include tax rates, exchange
rates, economic reports or recent press dispatches. A stock
market trading rule is formalized in Definition 1.

Definition 1: A stock market trading rule is a function

f : K 7→ y ∈ R (1)

which maps a factual financial knowledge K to a real number
y. The result may be interpreted later as a trading signal:
values lower than a certain threshold α1 correspond to a
sell signal, values greater than a certain threshold α2 corre-
spond to a buy signal, and remaining values correspond to
no signal.

Formally, in order to get a trading signal, selling, buy-
ing or doing nothing, an auxiliary function D(y; α1, α2) is
introduced

D(y; α1, α2) =

8
<
:
−1 if y ≤ α1

0 if α1 < y < α2

1 if α2 ≤ y
(2)

where −1 ≤ α1 < α2 ≤ 1 denote thresholds specified as pa-
rameters. Therefore, D(y; α1, α2) = −1 denotes a sell signal,
D(y; α1, α2) = 1 denotes a buy signal, and D(y; α1, α2) = 0
denotes no signal.

As the parameters α1, α2 are usually constant, fixed for
specific values depending on the considered experiments,
they will be omitted, if it does not lead to misunderstanding.
In this paper, α1 = −0.5 and α2 = 0.5 are used, although
other values are possible. It is worth noticing that these
values determine the number of signals generated by the
trading rules. The closer are the values of α1 and α2, the
more buy and sell signals are generated.

2.2 Example of a Trading Rule : the
Stochastic Oscillator

Among the large number of trading rules (in experiments,
350 trading rules are considered), only one, namely the Sto-
chastic Oscillator, will be discussed in details in this paper.

The Stochastic Oscillator indicator was introduced by George
C. Lane [13]. It shows the location of the current close rel-
ative to the high and low range over a number of periods.
Closing levels consistently near the top of the range indicate

accumulation (buying pressure) and those near the bottom
indicate distribution (selling pressure).

The indicator is defined as follows: Let

κ(t) =
Close(t)−M∗(t; T1)

M∗(t; T1)−M∗(t; T1)
, (3)

where M∗(t; T ) and M∗(t; T ) are the lowest low and the high-
est high respectively over the last T periods

M∗(t; T ) = min{Low(t̃) : t− T < t̃ ≤ t}, (4)

M∗(t; T ) = max{High(t̃) : t− T < t̃ ≤ t}, (5)

Close(t), Low(t), High(t), denote the close, high and low of
the t-th time period.
Let δ(t) be the T2-period moving average of κ

δ(t) =
1

T2

tX

t̃=t−T2+1

κ(t̃). (6)

T1 and T2 are two parameters of the Stochastic Oscillator
indicator. Their values vary according to the type of signal
desired. T1 = 14 and T2 = 3 are usual values, although
other values are possible.

The Stochastic Oscillator may lead to diverse interpreta-
tions to generate buy and sell signals. In this paper, for the
sake of simplicity, it is assumed that sell signals occur when
δ is above a specified threshold θ1 (e.g. θ1 = 0.80) and buy
signals occur when δ is below a specified threshold θ2 (e.g.
θ2 = 0.20). However, the other approaches are also consid-
ered in some experiments, but they are not referred to as
the original Stochastic Oscillator.
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Figure 1: Stochastic Oscillator with parameters T1 =
14 and T2 = 3 for daily price quotations of AXA
over the period from January 2, 2003 to June 30,
2003. Top: the signals generated. Circles denote
buy signals and stars denote sell signals. Bottom:
values of the indicator.

Figure 1 shows the Stochastic Oscillator with parameters
T1 = 14 and T2 = 3 on a time series including daily prices of
AXA over a period from January 2, 2003 to June 30, 2003.
The bottom plot presents the indicator values. The top plot
presents the corresponding prices and signals. One can see
that results are quite efficient in this case.
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2.3 Stock Market Trading Experts
Stock market trading rules produce trading advices for

financial analysts and investors. Naturally, investors may
smoothly accept these advices when all the trading rules
point in the same direction, but they must wonder about
a final trading decision when some trading rules are dis-
cordant. As, in practice, there are often opposing advices
produced by trading rules, investors must spend some effort
to transform these advices into a trading decision. One so-
lution is to follow the majority of trading rules. An other
solution is to define a set of favorite rules and consider only
advices produced by this subset. A more complex solution
is to use a weighted average of advices.

In a decision support system inspired from experience of
financial analysts and investors, the same problem appears.
In this paper, in order to solve it, we try to select an efficient
set of trading rules which defines the final trading decision
by the trading advice proposed by the majority of trading
rules in the chosen subset, ignoring the other trading rules.
Such a set will be referred to as a stock market trading expert.
It is formalized in Definition 2.

Definition 2: Let R = {f1, f2, . . . , fd} be the entire set of
available trading rules. A trading expert is a subset of the
entire set of trading rules

E ⊂ R. (7)

A result E(K) of a trading expert E = {fi1 , fi2 , . . . , fik},
where i1 < i2 < . . . < ik, for a given factual financial knowl-
edge K, is an arithmetic average of the results of the trading
rules from the subset E

E(K) =
1

k
(fi1(K) + fi2(K) + . . . + fik (K)). (8)

Obviously, in order to get a trading signal, selling, buying
or doing nothing, the result of the trading expert must be
transformed using the auxiliary function defined in (2).

3. PROBLEM DEFINITION

3.1 Valuation of Trading Experts
Stock market trading experts, defined in the previous sec-

tion, are designed not to produce a single advice at a given
date, but a sequence of advices at successive dates. In prac-
tice, a given advice may be accidental, depending on the
context, while a sequence of such advices may suit accu-
rately the stock market state.

Consider a specific time period. Let t0, t1, t2, . . . , tT−1 de-
note its successive dates. Since K varies through time, Kti

will denote the factual financial knowledge available at time
ti. For instance, if K represents financial time series, includ-
ing prices for a specific stock, Kti may be a data table, whose
rows consist of open, high, low and close price, transaction
volume and stock market index collected since a given date
and up to date ti.

Each trading expert E proposes a sequence of trading de-
cisions at successive dates in the time period considered

D(E(Kt0)), D(E(Kt1)), . . . , D(E(KtT−1)). (9)

For a sequence of trading decision to be useful, it is neces-
sary to define the volume of stocks to be traded. In practice,
this volume depends on individual trading abilities and pref-
erences, but in decision support systems a common approach
must be introduced.

However, when a trading expert advises to buy, some in-
vestors can invest all their capital, others will only invest
a part of it, and others will invest nothing, due to a lack
of cash. An advice to sell may be more difficult to follow
if investors do not hold the stock, short selling conditions
being sometimes restrictive.

In this paper, volumes of stock to buy or sell are obtained
by simulating the behavior of an hypothetical investor. This
investor is given an initial endowment (c0, s0) with c0 the
amount of cash and s0 the initial quantity of stocks (in ex-
periments, c0 = 10000 and s0 = 100). Since trading gener-
ates transaction costs, they are assumed proportional with
rate τ% (in simulations, τ = 0.2).

At time t0, the investor takes a decision D(E(Kt0)). If
the decision is to sell, i.e. D(E(Kt0)) = −1, he sells q% of
stocks, i.e. the amount of stock ∆s in the investor’s order is
equal to

∆s = s0 · q/100. (10)

If the decision is to buy, i.e. D(E(Kt0)) = 1, he invests
q% of money in stocks, i.e. the amount of stock ∆s in the
investor’s order is equal to

∆s =
c0 · q/100

(1 + τ/100) ·Open(t1)
, (11)

where Open(t) denotes the opening price at date t. The
parameter q in experiments equals 50, which guarantees
that the investor will not empty his account too fast. The
transaction is executed at time t1 and the investor’s capital
changes accordingly.

Therefore, at time t1, the investor’s capital consists of the
amount of money c1 and the amount of stocks s1

c1 = c0−D(E(Kt0)) ·∆s ·Open(t1)− τ/100 ·∆s ·Open(t1),
(12)

s1 = s0 + D(E(Kt0)) ·∆s. (13)

At time t1, the investor, makes a decision D(E(Kt1)),
which is executed at time t2 and the investor’s capital again
changes, and so on. Finally, c0, c1, . . . , cT denote the suc-
cessive cash volumes and s0, s1, . . . , sT the corresponding
quantities of stocks over the time period considered.

3.2 Optimization Problem
Such a simulation characterizes the behavior of a trad-

ing expert over a specific time period. These sequences of
cash volumes and quantities of stocks might be used for val-
uation the trading expert, for instance by evaluating the
obtained profit over the specific time period. The problem
is that in practice the goal is to build a trading expert ef-
ficient over a future period with unknown stock prices, so
the simulation cannot be performed over that period. How-
ever, the future performance of an expert may be assessed
on the basis of its behavior over a past period using so-called
performance measures introduced by financial analysts and
market traders considering not only the future return rate,
but also the risk related to achieving it. There are a number
of different performance measure, such as the Sharpe ratio,
the Sortino ratio or the Sterling ratio [10]. In this paper, we
focus on the Sharpe ratio.

Let

Ci = ci + si ·Open(ti), i = 0, 1, . . . , T (14)

Ri =
Ci − Ci−1

Ci−1
, i = 1, 2, . . . , T (15)
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denote the investor’s date-ti wealth and the return on the
portfolio for the period [ti−1; ti]. The Sharpe ratio for a
trading expert behavior over the period [t0, t0+T ) is defined
then as

%(E) =
E[R]− r0

Std[R]
, (16)

where E[R] denotes the expected return rate of the invest-
ment strategy proposed by the trading expert E over the
period [t0, t0 + T ), the Std[R] denotes the standard devia-
tion of the return rate and r0 denote the reference return
rate of risk-free asset.

Using the performance measure defined, discovering effi-
cient stock market trading experts may be transformed to
an optimization problem with the objective function %(E)
over the search space of all trading experts E. Formally, let
R = {f1, f2, . . . , fd} be the set of all available trading rules
and E(R) be the set of all available trading experts built
on these rules. The objective is to find a trading expert
E ∈ E(R) such as

%(Ẽ) ≤ %(E) (17)

for all Ẽ ∈ E(R), for a given training period [t0, t0 + T )
and for given parameters of the simulation described in the
previous section.

3.3 Representation of Trading Experts
Each trading expert E ∈ E given by (7) may be repre-

sented in a natural way by a binary vector e = (e1, e2, . . . , ed),
such that

ei =

�
0, if fi /∈ E
1, if fi ∈ E

, (18)

i.e. ei corresponds to the i-th trading rule fi from R; ei = 0
denotes the absence and ei = 1 denotes the presence of the
trading rule fi in the set E.

Then, a one-to-one map is defined between trading ex-
perts and binary vectors of length d. Consequently, in the
optimization problem defined in the previous section, the
search space is simply {0, 1}d and the objective function is
the performance %(e) of the trading expert E corresponding
to the binary vector e.

4. DISCOVERING TRADING EXPERTS
USING EXTENDED COMPACT
GENETIC ALGORITHM (ECGA)

In this section, we discuss solving the optimization prob-
lem using the Extended Compact Genetic Algorithm (ECGA)
[6], which evolves a population of trading experts E encoded
in binary chromosomes e ∈ {0, 1}d, as defined in (18). The
problem is considered in the context of a given set R of trad-
ing rules, a given performance measure % being the Sharpe
ratio, a given stock and a given training period.

In the ECGA, the main idea is to use linkage learning to
build a chromosome partition, i.e. to divide the chromosome
into a number of groups consisting of related genes, called
building blocks. Such a structure over the chromosome is
being discovered dynamically by the ECGA in the evolution
process. It corresponds to discovering dependencies among
stock market trading rules in trading experts, more exactly,
to grouping related trading rules in blocks. Previous re-
search proves that trading rules are strongly correlated and
such relations are usually frequent [9].

Due to size constraints, only the overview of the ECGA is
discussed here. A complete specification of the ECGA may
be found in [6].

4.1 Algorithm
Figure 2 shows the framework of the ECGA designed to

optimize an objective function % with a population P com-
posed of N trading experts.

Extended-Compact-Genetic-Algorithm(%, N)
1 P ← Random-Population(N);
2 Population-Evaluation(P, %);
3 while not Termination-Condition(P)
4 do
5 Weak-Individual-Elimination(P);
6 S ← Chromosome-Partition-Generating(P);
7 Population-Regenerating(P,S, N);
8 Population-Evaluation(P, %);

Figure 2: The Extended Compact Genetic Algo-
rithm designed to optimize an objective function %
with a population P composed of N trading experts.

First, the algorithm creates an initial population P =
{e1, e2, . . . , eN} of random trading experts. After creation,
the population is evaluated.

After the population is generated, weak individuals are
eliminated and the chromosome partition S is generated on
the basis of the population P using the algorithm shown in
Figure 3 described further.

After the chromosome partition is generated, the popula-
tion is generated anew on the basis of the chromosome par-
tition S, in such a way that offspring individuals inherit all
the genes in one building block together [6], and the process
is repeated, until a termination condition is satisfied.

4.2 Chromosome Partition Generating
Figure 3 shows the framework of the algorithm for gener-

ating the chromosome partition S on the basis of the popula-
tion P. It tries to discover an optimial chromosome partition
according to the combined complexity measure evaluated on
the basis of the current population [6].

In the classic ECGA, the chromosome partition generat-
ing is performed by a greedy algorithm. Such an algorithm
is very time-consuming, which constitutes a serious disad-
vantage of the ECGA.

First, the algorithm creates an initial chromosome parti-
tion S, where all the genes in the chromosome are consid-
ered independent, so the chromosome partition S consists
of d building blocks of size 1.

In order to update the chromosome partition S, the al-
gorithm considers all the candidate chromosome partitions
created from the current partition S by merging two build-
ing blocks. Assuming that the current partition consists of

n building blocks, there are n(n−1)
2

candidate partitions to
evaluate. The best of new candidate partitions, i.e. that one
which minimizes the combined complexity among them, re-
places the current partition S, unless it is not better than
S when the algorithm terminates. The whole process is re-
peated until none of new candidate partitions is better than
S, i.e. has lower combined complexity than S.

It is worth noticing that, in each iteration, the size n of
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Chromosome-Partition-Generating(P)
1 S ← {{1}, {2}, . . . , {d}};
2 repeat
3 Smin = ∅;
4 CCmin ← Combined-Complexity(S,P);
5 for each Bi, Bj ∈ S
6 do
7 S̃ ← S \ {Bi, Bj} ∪ {Bi ∪Bj};
8 C̃C ← Combined-Complexity(S̃,P);

9 if C̃C < CCmin

10 then Smin ← S̃;
11 CCmin ← C̃C;
12 if Smin 6= ∅
13 then S ← Smin;
14 until Smin = ∅;
15 return S;

Figure 3: Generating the chromosome partition S
on the basis of the population P in the ECGA.

the chromosome partition decreases by 1, which makes the
partition restructuring rather slow.

4.3 Reducing Computing Time
Although applying ECGA to discovering trading experts

leads to very good solutions, one of serious disadvantages is
the computing time. The bottleneck is the greedy algorithm
for updating the chromosome partition. Although a few effi-
cient implementations were proposed [11], which reduce the
computing time by managing and reusing previously cal-
culated combined complexities for chromosome partitions,
further modifications are necessary.

In order to illustrate how long may be the computing time,
results of a few experiments are shown in Table 1. In each
experiment, the algorithm was run to discover an optimal
trading expert E based on a specific set R of 350 trading
rules maximizing the Sharpe ratio % over the training pe-
riod from July 28, 2000 to January 16, 2001 (120 days) for
financial time series including daily price quotations of the
stock Renault. Similar results were obtained for other opti-
mization problems.

Table 1: Computing times for ECGA run to discover
an optimal trading expert based on a specific set of
350 trading rules with varying population size N

N Avg(%) Max(%) Iterations Time per Iter.
500 0.1178 0.1191 12 18 s

1000 0.1178 0.1201 36 50 s
2000 0.1269 0.1302 46 112 s
4000 0.1232 0.1317 35 229 s
8000 0.1335 0.1358 45 7 min

20000 0.1244 0.1342 30 18 min

In this paper, we propose some modifications in order
to limit the greedy algorithm for updating the chromosome
partition and make ECGA practical. Some of them are sim-
ilar to improvements of the model building process in the
BOA proposed in [15].

First, the chromosome partition updating should be sep-
arated from the main evolutionary algorithm. A simple so-
lution is to update the chromosome partition only once for

a few iterations of the main evolutionary algorithm. Other
one is to update the chromosome partition only a specific
number of times and then turn it off. In both cases, a sig-
nificant computing time reduction were obtained. However,
despite the improvement, the computing time remains too
long.

Second, the chromosome partition updating should be
limited in such a way that only a specific number of it-
erations within the chromosome partition updating is per-
formed. Therefore, each time, only a limited number of
building blocks may be merged, even if there are still build-
ing blocks, whose merging decreases the combined complex-
ity. Computing time reduction obtained in such a way makes
the algorithm practical.

In experiments, the computing time of the original ECGA
with a population of 4000 individuals and 30 iterations was
about 115 minutes, where one iteration took about 229 sec-
onds in average. In each iteration, the main part was up-
dating the chromosome partition, while the remaining part
including the population generation took only a few sec-
onds. After the modifications proposed, the overall comput-
ing time for the same parameters, i.e. a population of 4000
individuals and 30 iterations, decreased to 1 – 2 minutes.

5. DISCOVERING TRADING EXPERTS
USING BAYESIAN OPTIMIZATION
ALGORITHM (BOA)

In this section, we discuss solving the optimization prob-
lem using the Bayesian Optimization Algorithm (BOA) [14].
Although the general concept of the approach is similar to
the previous one, the difference lies in modelling dependen-
cies among trading rules.

In the BOA, the main idea is to use bayesian networks
to represent dependencies among genes in the chromosome.
Such a network is being discovered dynamically by the BOA
in the evolution process. It corresponds to discovering de-
pendencies among stock market trading rules in trading ex-
perts, more exactly, to tracking values of which trading rules
influence values of others.

As in the case of the ECGA, modelling dependencies among
genes is a time consuming task. Therefore, a few approaches
to more economic model building were proposed [15].

Due to size constraints, only the overview of the BOA is
discussed here. A complete specification of the BOA may
be found in [14].

5.1 Algorithm
Figure 4 shows the framework of the BOA designed to

optimize an objective function % with a population P com-
posed of N trading experts.

First, the algorithm creates an initial population P =
{e1, e2, . . . , eN} of random trading experts. After creation,
the population is evaluated.

After the population is generated, weak individuals are
eliminated and the bayesian network B is generated on the
basis of the population P as described further.

After the bayesian network is generated, the population
is generated anew according to the joint probability distrib-
ution defined by the bayesian network B and the process is
repeated, until a termination condition is satisfied.

In experiments, the bayesian network is represented by
a collection of conditional probability tables, which defines
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Bayesian-Optimization-Algorithm(%, N)
1 P ← Random-Population(N);
2 Population-Evaluation(P, %);
3 while not Termination-Condition(P)
4 do
5 Weak-Individual-Elimination(P);
6 B ← Bayesian-Network-Generating(P);
7 Population-Regenerating(P,B, N);
8 Population-Evaluation(P, %);

Figure 4: The Bayesian Optimization Algorithm de-
signed to optimize an objective function % with a
population P composed of N trading experts.

the probability of each value of each gene under conditions
referring to values of the other genes.

5.2 Bayesian Network Generating
In the algorithm, the bayesian network B is optimized

according to the K2 metric evaluated on the basis of the
current population [14]. It measures the fitting of the prob-
ability model represented by the bayesian network to the
current population.

In the classic BOA, the bayesian network generating is
performed by a greedy algorithm, which tries either to insert
a new edge to the current network, or to delete an edge, or to
change the direction of an edge in the current network, and
repeats this until there is no improvement in the network.

6. VALIDATION OF THE METHODS
In this section, we discuss a number of experiments aiming

at comparing the two algorithms in solving the optimization
problem described in this paper.
In the discussion, two issues are addressed separately:
– the efficiency of the different algorithms in solving the op-
timization problems corresponding to discovering the stock
market expertises;
– the financial relevance of the investment strategies based
on the stock market expertises discovered by these algo-
rithms.
Moreover, the two studies generate some by-products, that
is to say:
– comparisons of the different algorithms in terms of opti-
mal values reached by the objective function and in terms
of computation time;
– comparisons of the realized financial return generated by
the investment strategies discovered by these algorithms with
the one generated by usual investment strategies.

All the experiments were performed on real-life data from
the Paris Stock Exchange. Each experiment concerns a
given stock, one of about 40 stocks constituting the CAC40
index, and a given training and test period. Thus, the prob-
lem of finding an optimal investment strategy for the chosen
test period might be transformed to an optimization prob-
lem, the solution of which being a trading expert optimized
on the chosen training period.

In order to assess and compare the effectiveness of the
different optimization algorithms, each problem was solved
several times with various algorithms. If e0 denotes the best
expert among all the experiments for the same problem (i.e.

the same stock and the same training and test period), it will
be considered as a quasi-maximum of the objective function
% for that problem. The ratio α = %(e)/%(e0) then denotes
the relative performance of an expert e with respect to the
reference expert e0. Efficient algorithms give experts with a
ratio α close to 1.

For assessing the financial relevance of an investment strat-
egy, deduced from an expert e, on the test period, its prof-
itability is compared with the one generated by a Buy-and-
Hold strategy, denoted as B&H. It consists in investing all
the capital in stocks at the start of the period and keeping
it until the end of the period under study. Although sim-
ple, the B&H strategy is an usual benchmark on financial
markets.

In each experiment, the inputs were:
– a set of trading rules (the same set of 350 trading rules
was used in all the experiments);
– a stock from the Paris Stock Exchange (randomly chosen
one of about 40 stocks constituting the CAC40 index) and
the financial time series of its price quotations;
– a performance measure and a randomly chosen training
and test period (which define the objective function).

In most experiments, the test period contains 20 dates and
the training period contains 60 preceding dates. Evaluation
was carried out on about 40 data sets. Each data set con-
sists of financial time series from the Paris Stock Exchange,
including daily price quotations of a given stock over a pe-
riod starting on January 4, 1999 and lasting on March 3,
2004.

In order to illustrate the methodology, we present a few
experiments concerning the stock Renault. In all these ex-
periments, the test period starts on May 7, 2002 and lasts
on June 3, 2002 (20 days). The training period consists of
60 days preceding the test period, so it starts on February
7, 2002 and lasts on May 6, 2002. The objective function is
constructed on the basis of the Sharpe ratio.

Table 2 compares the results obtained with the two al-
gorithms (appearing in the first column). The next four
columns concern the training period. The performance %(e)
is reported in the second column; in the two following appear
the returns on the optimized strategy and on the benchmark
(B&H). The return on the CAC40 index is given for infor-
mation on the next column. The remaining columns pro-
vide the returns on the two strategies and the return on the
CAC40 on the test period.

In this example, ECGA was the most efficient – it gen-
erated the best expert with the highest performance. It
overperformed the BOA and the B&H strategy on the test
period, even if B&H generated a higher return on the train-
ing period.

In order to test the capabilities of the different algorithms,
100 optimization problems were prepared with randomly se-
lected stocks and randomly selected training and test peri-
ods. Each algorithm was executed on each problem.

Table 3 reports the average values of α for each algorithm,
the average number of iterations to obtain convergence and
the mean computing time. The first row indicates the per-
formance when random experts are generated with the best
one being selected. ECGA proves to be the best perform-
ing algorithm, with the highest α, but also the most time-
consuming.
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Table 2: Characteristics of solutions to the optimiza-
tion problem of discovering an optimal investment
strategy with different algorithms for the stock Re-
nault

Training Period
02-07-2002 – 05-06-2002

(60 days)
Algorithm Performance Return B&H CAC40
ECGA 0.0382 0.0193% 0.2979% 0.0167%
BOA 0.0347 0.0171% 0.2979% 0.0167%

Test Period
05-07-2002 – 06-03-2002

(20 days)
Algorithm Return B&H CAC40
ECGA 0.0098% 0.0019% -0.0161%
BOA 0.0083% 0.0019% -0.0161%

Table 3: Comparisons of different algorithms in
terms of highest values reached by the objective
function and in terms of the computation time nec-
essary to discover them

Algorithm α Iterations Time
Random Generator 0.46± 0.08 100000 52 s
ECGA 0.94± 0.06 34 98 s
BOA 0.89± 0.04 51 47 s

As it may happen that the performance of an algorithm is
not independent of market conditions, we divided the entire
set of possible test periods into four categories, depending
on the return of the stock during this period. Figure 5 shows
the histogram of the return of the B&H strategy over periods
of 20 days for the stock Renault (other stocks give similar
results).
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Figure 5: The histogram of the return of the Buy-
And-Hold strategy over periods of 20 days for the
stock Renault

In order to study in detail the financial relevance of the
investment strategies based on the stock market expertises
discovered by different algorithms, we test them separately
on four types of stock market conditions:
1. extremely positive B&H, i.e. 0.05 ≤ B&H,
2. positive B&H, i.e. 0.00 ≤ B&H < 0.05,

3. negative B&H, i.e. −0.05 ≤ B&H < 0.00,
4. extremely negative B&H, i.e. B&H < −0.05.

Table 4 reports the excess return of the optimized strategy
over the return of the B&H strategy, separately for each
of these four types of stock market conditions. The mean
excess return is positive for every type and every algorithm.
ECGA always outperforms BOA. Obviously, efficiency of the
optimized strategy varies with stock market conditions, but
in most cases, the approach proposed in this paper largely
overperforms the B&H strategy.

Table 4: Returns obtained by applying the optimal
investment strategies discovered by different algo-
rithms over the test period divided into four parts
with respect to the Buy-And-Hold

Algorithm Return over B&H
1 ECGA 0.09%± 0.03

BOA 0.07%± 0.04
2 ECGA 0.23%± 0.04

BOA 0.17%± 0.04
3 ECGA 0.15%± 0.09

BOA 0.14%± 0.08
4 ECGA 0.20%± 0.07

BOA 0.16%± 0.09

7. CONCLUSIONS
In order to compare the two algorithms, a large number of

experiments were performed on real-life data from the Paris
Stock Exchange. Evaluation was performed on a set of 350
trading rules applied to financial time series including price
quotations of a given stock. The results show that the two
algorithms perform well, compared to a static strategy like
B&H. ECGA leads to the best results but this algorithm is
time consuming and, consequently, not well-suited for real-
time applications. BOA, however it leads to slightly worse
results, is faster and more suitable for real-time trading,
where the computation time is very important. Therefore,
BOA offers an interesting alternative in terms of the trade-
off between performance and computation time.
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